Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases

Identifieur interne : 000004 ( Pmc/Corpus ); précédent : 000003; suivant : 000005

Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases

Auteurs : Lang Rao ; Rui Tian ; Xiaoyuan Chen

Source :

RBID : PMC:7094139

Abstract

Infectious diseases are a leading cause of mortality worldwide, with viruses and bacteria in particular having enormous impacts on global healthcare. One major challenge in combatting such diseases is a lack of effective drugs or specific treatments. In addition, drug resistance to currently available therapeutics and adverse effects caused by long-term overuse are both serious public health issues. A promising treatment strategy is to employ cell-membrane mimics as decoys to trap and to detain the pathogens. In this Perspective, we briefly review the infection mechanisms adopted by different pathogens at the cellular membrane interface and highlight the applications of cell-membrane-mimicking nanodecoys for systemic protection against infectious diseases. We also discuss the implication of nanodecoy–pathogen complexes in the development of vaccines. We anticipate this Perspective will provide new insights on design and development of advanced materials against emerging infectious diseases.


Url:
DOI: 10.1021/acsnano.0c01665
PubMed: 32129977
PubMed Central: 7094139

Links to Exploration step

PMC:7094139

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases</title>
<author>
<name sortKey="Rao, Lang" sort="Rao, Lang" uniqKey="Rao L" first="Lang" last="Rao">Lang Rao</name>
</author>
<author>
<name sortKey="Tian, Rui" sort="Tian, Rui" uniqKey="Tian R" first="Rui" last="Tian">Rui Tian</name>
</author>
<author>
<name sortKey="Chen, Xiaoyuan" sort="Chen, Xiaoyuan" uniqKey="Chen X" first="Xiaoyuan" last="Chen">Xiaoyuan Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32129977</idno>
<idno type="pmc">7094139</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094139</idno>
<idno type="RBID">PMC:7094139</idno>
<idno type="doi">10.1021/acsnano.0c01665</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000004</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000004</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases</title>
<author>
<name sortKey="Rao, Lang" sort="Rao, Lang" uniqKey="Rao L" first="Lang" last="Rao">Lang Rao</name>
</author>
<author>
<name sortKey="Tian, Rui" sort="Tian, Rui" uniqKey="Tian R" first="Rui" last="Tian">Rui Tian</name>
</author>
<author>
<name sortKey="Chen, Xiaoyuan" sort="Chen, Xiaoyuan" uniqKey="Chen X" first="Xiaoyuan" last="Chen">Xiaoyuan Chen</name>
</author>
</analytic>
<series>
<title level="j">ACS Nano</title>
<idno type="ISSN">1936-0851</idno>
<idno type="eISSN">1936-086X</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="nn0c01665_0002" id="ab-tgr1"></graphic>
</p>
<p>Infectious diseases are a leading cause of mortality worldwide, with viruses and bacteria in particular having enormous impacts on global healthcare. One major challenge in combatting such diseases is a lack of effective drugs or specific treatments. In addition, drug resistance to currently available therapeutics and adverse effects caused by long-term overuse are both serious public health issues. A promising treatment strategy is to employ cell-membrane mimics as decoys to trap and to detain the pathogens. In this Perspective, we briefly review the infection mechanisms adopted by different pathogens at the cellular membrane interface and highlight the applications of cell-membrane-mimicking nanodecoys for systemic protection against infectious diseases. We also discuss the implication of nanodecoy–pathogen complexes in the development of vaccines. We anticipate this Perspective will provide new insights on design and development of advanced materials against emerging infectious diseases.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, M L" uniqKey="Cohen M">M. L. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braden, C R" uniqKey="Braden C">C. R. Braden</name>
</author>
<author>
<name sortKey="Dowell, S F" uniqKey="Dowell S">S. F. Dowell</name>
</author>
<author>
<name sortKey="Jernigan, D B" uniqKey="Jernigan D">D. B. Jernigan</name>
</author>
<author>
<name sortKey="Hughes, J M" uniqKey="Hughes J">J. M. Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pati, R" uniqKey="Pati R">R. Pati</name>
</author>
<author>
<name sortKey="Shevtsov, M" uniqKey="Shevtsov M">M. Shevtsov</name>
</author>
<author>
<name sortKey="Sonawane, A" uniqKey="Sonawane A">A. Sonawane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J T" uniqKey="Wu J">J. T. Wu</name>
</author>
<author>
<name sortKey="Leung, K" uniqKey="Leung K">K. Leung</name>
</author>
<author>
<name sortKey="Leung, G M" uniqKey="Leung G">G. M. Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, N" uniqKey="Zhu N">N. Zhu</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
</author>
<author>
<name sortKey="Song, J" uniqKey="Song J">J. Song</name>
</author>
<author>
<name sortKey="Zhao, X" uniqKey="Zhao X">X. Zhao</name>
</author>
<author>
<name sortKey="Huang, B" uniqKey="Huang B">B. Huang</name>
</author>
<author>
<name sortKey="Shi, W" uniqKey="Shi W">W. Shi</name>
</author>
<author>
<name sortKey="Lu, R" uniqKey="Lu R">R. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Guan, X" uniqKey="Guan X">X. Guan</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P. Wu</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L. Zhou</name>
</author>
<author>
<name sortKey="Tong, Y" uniqKey="Tong Y">Y. Tong</name>
</author>
<author>
<name sortKey="Ren, R" uniqKey="Ren R">R. Ren</name>
</author>
<author>
<name sortKey="Leung, K S M" uniqKey="Leung K">K. S. M. Leung</name>
</author>
<author>
<name sortKey="Lau, E H Y" uniqKey="Lau E">E. H. Y. Lau</name>
</author>
<author>
<name sortKey="Wong, J Y" uniqKey="Wong J">J. Y. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sullivan, N J" uniqKey="Sullivan N">N. J. Sullivan</name>
</author>
<author>
<name sortKey="Sanchez, A" uniqKey="Sanchez A">A. Sanchez</name>
</author>
<author>
<name sortKey="Rollin, P E" uniqKey="Rollin P">P. E. Rollin</name>
</author>
<author>
<name sortKey="Yang, Z Y" uniqKey="Yang Z">Z. Y. Yang</name>
</author>
<author>
<name sortKey="Nabel, G J" uniqKey="Nabel G">G. J. Nabel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbink, P" uniqKey="Abbink P">P. Abbink</name>
</author>
<author>
<name sortKey="Larocca, R A" uniqKey="Larocca R">R. A. Larocca</name>
</author>
<author>
<name sortKey="De La Barrera, R A" uniqKey="De La Barrera R">R. A. De La Barrera</name>
</author>
<author>
<name sortKey="Bricault, C A" uniqKey="Bricault C">C. A. Bricault</name>
</author>
<author>
<name sortKey="Moseley, E T" uniqKey="Moseley E">E. T. Moseley</name>
</author>
<author>
<name sortKey="Boyd, M" uniqKey="Boyd M">M. Boyd</name>
</author>
<author>
<name sortKey="Kirilova, M" uniqKey="Kirilova M">M. Kirilova</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Nganga, D" uniqKey="Nganga D">D. Nganga</name>
</author>
<author>
<name sortKey="Nanayakkara, O" uniqKey="Nanayakkara O">O. Nanayakkara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, A J J" uniqKey="Wood A">A. J.J. Wood</name>
</author>
<author>
<name sortKey="Iseman, M D" uniqKey="Iseman M">M. D. Iseman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giles, J" uniqKey="Giles J">J. Giles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palella, F J" uniqKey="Palella F">F. J. Palella</name>
</author>
<author>
<name sortKey="Delaney, K M" uniqKey="Delaney K">K. M. Delaney</name>
</author>
<author>
<name sortKey="Moorman, A C" uniqKey="Moorman A">A. C. Moorman</name>
</author>
<author>
<name sortKey="Loveless, M O" uniqKey="Loveless M">M. O. Loveless</name>
</author>
<author>
<name sortKey="Fuhrer, J" uniqKey="Fuhrer J">J. Fuhrer</name>
</author>
<author>
<name sortKey="Satten, G A" uniqKey="Satten G">G. A. Satten</name>
</author>
<author>
<name sortKey="Aschman, D J" uniqKey="Aschman D">D. J. Aschman</name>
</author>
<author>
<name sortKey="Holmberg, S D" uniqKey="Holmberg S">S. D. Holmberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costerton, J W" uniqKey="Costerton J">J. W. Costerton</name>
</author>
<author>
<name sortKey="Stewart, P S" uniqKey="Stewart P">P. S. Stewart</name>
</author>
<author>
<name sortKey="Greenberg, E P" uniqKey="Greenberg E">E. P. Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S. Akira</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S. Uematsu</name>
</author>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O. Takeuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bricarello, D A" uniqKey="Bricarello D">D. A. Bricarello</name>
</author>
<author>
<name sortKey="Patel, M A" uniqKey="Patel M">M. A. Patel</name>
</author>
<author>
<name sortKey="Parikh, A N" uniqKey="Parikh A">A. N. Parikh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindenbach, B D" uniqKey="Lindenbach B">B. D. Lindenbach</name>
</author>
<author>
<name sortKey="Evans, M J" uniqKey="Evans M">M. J. Evans</name>
</author>
<author>
<name sortKey="Syder, A J" uniqKey="Syder A">A. J. Syder</name>
</author>
<author>
<name sortKey="Wolk, B" uniqKey="Wolk B">B. Wolk</name>
</author>
<author>
<name sortKey="Tellinghuisen, T L" uniqKey="Tellinghuisen T">T. L. Tellinghuisen</name>
</author>
<author>
<name sortKey="Liu, C C" uniqKey="Liu C">C. C. Liu</name>
</author>
<author>
<name sortKey="Maruyama, T" uniqKey="Maruyama T">T. Maruyama</name>
</author>
<author>
<name sortKey="Hynes, R O" uniqKey="Hynes R">R. O. Hynes</name>
</author>
<author>
<name sortKey="Burton, D R" uniqKey="Burton D">D. R. Burton</name>
</author>
<author>
<name sortKey="Mckeating, J A" uniqKey="Mckeating J">J. A. McKeating</name>
</author>
<author>
<name sortKey="Rice, C M" uniqKey="Rice C">C. M. Rice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Luk, B T" uniqKey="Luk B">B. T. Luk</name>
</author>
<author>
<name sortKey="Hu, C M J" uniqKey="Hu C">C.-M. J. Hu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Meng, Q F" uniqKey="Meng Q">Q.-F. Meng</name>
</author>
<author>
<name sortKey="Tian, M" uniqKey="Tian M">M. Tian</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B. Cai</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Zan, M" uniqKey="Zan M">M. Zan</name>
</author>
<author>
<name sortKey="Xiao, F" uniqKey="Xiao F">F. Xiao</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P. Zhang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Zeng, Y" uniqKey="Zeng Y">Y. Zeng</name>
</author>
<author>
<name sortKey="Shen, C" uniqKey="Shen C">C. Shen</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R. Li</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z. Guo</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Zheng, Q" uniqKey="Zheng Q">Q. Zheng</name>
</author>
<author>
<name sortKey="Chu, C" uniqKey="Chu C">C. Chu</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Zheng, Z" uniqKey="Zheng Z">Z. Zheng</name>
</author>
<author>
<name sortKey="Tian, R" uniqKey="Tian R">R. Tian</name>
</author>
<author>
<name sortKey="Ge, S" uniqKey="Ge S">S. Ge</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Xia, N S" uniqKey="Xia N">N.-S. Xia</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Wan, D" uniqKey="Wan D">D. Wan</name>
</author>
<author>
<name sortKey="Liu, J F" uniqKey="Liu J">J.-F. Liu</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Zhang, W F" uniqKey="Zhang W">W.-F. Zhang</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
<author>
<name sortKey="Sun, Z J" uniqKey="Sun Z">Z.-J. Sun</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, C M J" uniqKey="Hu C">C.-M. J. Hu</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Aryal, S" uniqKey="Aryal S">S. Aryal</name>
</author>
<author>
<name sortKey="Cheung, C" uniqKey="Cheung C">C. Cheung</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, C M J" uniqKey="Hu C">C.-M. J. Hu</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Luk, B T" uniqKey="Luk B">B. T. Luk</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
<author>
<name sortKey="Xu, J H" uniqKey="Xu J">J.-H. Xu</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B. Cai</name>
</author>
<author>
<name sortKey="Yu, G T" uniqKey="Yu G">G.-T. Yu</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X. Yu</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khezerlou, A" uniqKey="Khezerlou A">A. Khezerlou</name>
</author>
<author>
<name sortKey="Alizadeh Sani, M" uniqKey="Alizadeh Sani M">M. Alizadeh-Sani</name>
</author>
<author>
<name sortKey="Azizi Lalabadi, M" uniqKey="Azizi Lalabadi M">M. Azizi-Lalabadi</name>
</author>
<author>
<name sortKey="Ehsani, A" uniqKey="Ehsani A">A. Ehsani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trkola, A" uniqKey="Trkola A">A. Trkola</name>
</author>
<author>
<name sortKey="Dragic, T" uniqKey="Dragic T">T. Dragic</name>
</author>
<author>
<name sortKey="Arthos, J" uniqKey="Arthos J">J. Arthos</name>
</author>
<author>
<name sortKey="Binley, J M" uniqKey="Binley J">J. M. Binley</name>
</author>
<author>
<name sortKey="Olson, W C" uniqKey="Olson W">W. C. Olson</name>
</author>
<author>
<name sortKey="Allaway, G P" uniqKey="Allaway G">G. P. Allaway</name>
</author>
<author>
<name sortKey="Chengmayer, C" uniqKey="Chengmayer C">C. ChengMayer</name>
</author>
<author>
<name sortKey="Robinson, J" uniqKey="Robinson J">J. Robinson</name>
</author>
<author>
<name sortKey="Maddon, P J" uniqKey="Maddon P">P. J. Maddon</name>
</author>
<author>
<name sortKey="Moore, J P" uniqKey="Moore J">J. P. Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooper, L V" uniqKey="Hooper L">L. V. Hooper</name>
</author>
<author>
<name sortKey="Midtvedt, T" uniqKey="Midtvedt T">T. Midtvedt</name>
</author>
<author>
<name sortKey="Gordon, J I" uniqKey="Gordon J">J. I. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, C M J" uniqKey="Hu C">C.-M. J. Hu</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Copp, J" uniqKey="Copp J">J. Copp</name>
</author>
<author>
<name sortKey="Luk, B T" uniqKey="Luk B">B. T. Luk</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Westman, J" uniqKey="Westman J">J. Westman</name>
</author>
<author>
<name sortKey="Hube, B" uniqKey="Hube B">B. Hube</name>
</author>
<author>
<name sortKey="Fairn, G D" uniqKey="Fairn G">G. D. Fairn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moyes, D L" uniqKey="Moyes D">D. L. Moyes</name>
</author>
<author>
<name sortKey="Wilson, D" uniqKey="Wilson D">D. Wilson</name>
</author>
<author>
<name sortKey="Richardson, J P" uniqKey="Richardson J">J. P. Richardson</name>
</author>
<author>
<name sortKey="Mogavero, S" uniqKey="Mogavero S">S. Mogavero</name>
</author>
<author>
<name sortKey="Tang, S X" uniqKey="Tang S">S. X. Tang</name>
</author>
<author>
<name sortKey="Wernecke, J" uniqKey="Wernecke J">J. Wernecke</name>
</author>
<author>
<name sortKey="Hofs, S" uniqKey="Hofs S">S. Höfs</name>
</author>
<author>
<name sortKey="Gratacap, R L" uniqKey="Gratacap R">R. L. Gratacap</name>
</author>
<author>
<name sortKey="Robbins, J" uniqKey="Robbins J">J. Robbins</name>
</author>
<author>
<name sortKey="Runglall, M" uniqKey="Runglall M">M. Runglall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowman, A F" uniqKey="Cowman A">A. F. Cowman</name>
</author>
<author>
<name sortKey="Crabb, B S" uniqKey="Crabb B">B. S. Crabb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Yuan, L" uniqKey="Yuan L">L. Yuan</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Mu, Y" uniqKey="Mu Y">Y. Mu</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="Lv, P" uniqKey="Lv P">P. Lv</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Cheng, T" uniqKey="Cheng T">T. Cheng</name>
</author>
<author>
<name sortKey="Yuan, Q" uniqKey="Yuan Q">Q. Yuan</name>
</author>
<author>
<name sortKey="Xia, N" uniqKey="Xia N">N. Xia</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X. Chen</name>
</author>
<author>
<name sortKey="Liu, G" uniqKey="Liu G">G. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goyal, A K" uniqKey="Goyal A">A. K. Goyal</name>
</author>
<author>
<name sortKey="Rawat, A" uniqKey="Rawat A">A. Rawat</name>
</author>
<author>
<name sortKey="Mahor, S" uniqKey="Mahor S">S. Mahor</name>
</author>
<author>
<name sortKey="Gupta, P N" uniqKey="Gupta P">P. N. Gupta</name>
</author>
<author>
<name sortKey="Khatri, K" uniqKey="Khatri K">K. Khatri</name>
</author>
<author>
<name sortKey="Vyas, S P" uniqKey="Vyas S">S. P. Vyas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bangham, A D" uniqKey="Bangham A">A. D. Bangham</name>
</author>
<author>
<name sortKey="Standish, M M" uniqKey="Standish M">M. M. Standish</name>
</author>
<author>
<name sortKey="Weissmann, G" uniqKey="Weissmann G">G. Weissmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tallury, P" uniqKey="Tallury P">P. Tallury</name>
</author>
<author>
<name sortKey="Malhotra, A" uniqKey="Malhotra A">A. Malhotra</name>
</author>
<author>
<name sortKey="Byrne, L M" uniqKey="Byrne L">L. M. Byrne</name>
</author>
<author>
<name sortKey="Santra, S" uniqKey="Santra S">S. Santra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henry, B D" uniqKey="Henry B">B. D. Henry</name>
</author>
<author>
<name sortKey="Neill, D R" uniqKey="Neill D">D. R. Neill</name>
</author>
<author>
<name sortKey="Becker, K A" uniqKey="Becker K">K. A. Becker</name>
</author>
<author>
<name sortKey="Gore, S" uniqKey="Gore S">S. Gore</name>
</author>
<author>
<name sortKey="Bricio Moreno, L" uniqKey="Bricio Moreno L">L. Bricio-Moreno</name>
</author>
<author>
<name sortKey="Ziobro, R" uniqKey="Ziobro R">R. Ziobro</name>
</author>
<author>
<name sortKey="Edwards, M J" uniqKey="Edwards M">M. J. Edwards</name>
</author>
<author>
<name sortKey="Muhlemann, K" uniqKey="Muhlemann K">K. Mühlemann</name>
</author>
<author>
<name sortKey="Steinmann, J" uniqKey="Steinmann J">J. Steinmann</name>
</author>
<author>
<name sortKey="Kleuser, B" uniqKey="Kleuser B">B. Kleuser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nussbaum, O" uniqKey="Nussbaum O">O. Nussbaum</name>
</author>
<author>
<name sortKey="Lapidot, M" uniqKey="Lapidot M">M. Lapidot</name>
</author>
<author>
<name sortKey="Loyter, A" uniqKey="Loyter A">A. Loyter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zolnik, B S" uniqKey="Zolnik B">B. S. Zolnik</name>
</author>
<author>
<name sortKey="Gonzalez Fernandez, A" uniqKey="Gonzalez Fernandez A">A. González-Fernández</name>
</author>
<author>
<name sortKey="Sadrieh, N" uniqKey="Sadrieh N">N. Sadrieh</name>
</author>
<author>
<name sortKey="Dobrovolskaia, M A" uniqKey="Dobrovolskaia M">M. A. Dobrovolskaia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thamphiwatana, S" uniqKey="Thamphiwatana S">S. Thamphiwatana</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Pornpattananangkul, D" uniqKey="Pornpattananangkul D">D. Pornpattananangkul</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Fu, V" uniqKey="Fu V">V. Fu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Obonyo, M" uniqKey="Obonyo M">M. Obonyo</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magee, W E" uniqKey="Magee W">W. E. Magee</name>
</author>
<author>
<name sortKey="Miller, O V" uniqKey="Miller O">O. V. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bricarello, D A" uniqKey="Bricarello D">D. A. Bricarello</name>
</author>
<author>
<name sortKey="Smilowitz, J T" uniqKey="Smilowitz J">J. T. Smilowitz</name>
</author>
<author>
<name sortKey="Zivkovic, A M" uniqKey="Zivkovic A">A. M. Zivkovic</name>
</author>
<author>
<name sortKey="German, J B" uniqKey="German J">J. B. German</name>
</author>
<author>
<name sortKey="Parikh, A N" uniqKey="Parikh A">A. N. Parikh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badin, J" uniqKey="Badin J">J. Badin</name>
</author>
<author>
<name sortKey="Barillec, A" uniqKey="Barillec A">A. Barillec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bricarello, D A" uniqKey="Bricarello D">D. A. Bricarello</name>
</author>
<author>
<name sortKey="Mills, E J" uniqKey="Mills E">E. J. Mills</name>
</author>
<author>
<name sortKey="Petrlova, J" uniqKey="Petrlova J">J. Petrlova</name>
</author>
<author>
<name sortKey="Voss, J C" uniqKey="Voss J">J. C. Voss</name>
</author>
<author>
<name sortKey="Parikh, A N" uniqKey="Parikh A">A. N. Parikh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Gu, Z" uniqKey="Gu Z">Z. Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parodi, A" uniqKey="Parodi A">A. Parodi</name>
</author>
<author>
<name sortKey="Quattrocchi, N" uniqKey="Quattrocchi N">N. Quattrocchi</name>
</author>
<author>
<name sortKey="Van De Ven, A L" uniqKey="Van De Ven A">A. L. van de Ven</name>
</author>
<author>
<name sortKey="Chiappini, C" uniqKey="Chiappini C">C. Chiappini</name>
</author>
<author>
<name sortKey="Evangelopoulos, M" uniqKey="Evangelopoulos M">M. Evangelopoulos</name>
</author>
<author>
<name sortKey="Martinez, J O" uniqKey="Martinez J">J. O. Martinez</name>
</author>
<author>
<name sortKey="Brown, B S" uniqKey="Brown B">B. S. Brown</name>
</author>
<author>
<name sortKey="Khaled, S Z" uniqKey="Khaled S">S. Z. Khaled</name>
</author>
<author>
<name sortKey="Yazdi, I K" uniqKey="Yazdi I">I. K. Yazdi</name>
</author>
<author>
<name sortKey="Enzo, M V" uniqKey="Enzo M">M. V. Enzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, C M J" uniqKey="Hu C">C.-M. J. Hu</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Wang, K C" uniqKey="Wang K">K.-C. Wang</name>
</author>
<author>
<name sortKey="Luk, B T" uniqKey="Luk B">B. T. Luk</name>
</author>
<author>
<name sortKey="Thamphiwatana, S" uniqKey="Thamphiwatana S">S. Thamphiwatana</name>
</author>
<author>
<name sortKey="Dehaini, D" uniqKey="Dehaini D">D. Dehaini</name>
</author>
<author>
<name sortKey="Nguyen, P" uniqKey="Nguyen P">P. Nguyen</name>
</author>
<author>
<name sortKey="Angsantikul, P" uniqKey="Angsantikul P">P. Angsantikul</name>
</author>
<author>
<name sortKey="Wen, C H" uniqKey="Wen C">C. H. Wen</name>
</author>
<author>
<name sortKey="Kroll, A V" uniqKey="Kroll A">A. V. Kroll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De X0a Carvalho, J V" uniqKey="De X0a Carvalho J">J. V. de Carvalho</name>
</author>
<author>
<name sortKey="De Castro, R O" uniqKey="De Castro R">R. O. de Castro</name>
</author>
<author>
<name sortKey="Da Silva, E Z M" uniqKey="Da Silva E">E. Z. M. da Silva</name>
</author>
<author>
<name sortKey="Silveira, P P" uniqKey="Silveira P">P. P. Silveira</name>
</author>
<author>
<name sortKey="Da Silva Januario, M E" uniqKey="Da Silva Januario M">M. E. da Silva-Januário</name>
</author>
<author>
<name sortKey="Arruda, E" uniqKey="Arruda E">E. Arruda</name>
</author>
<author>
<name sortKey="Jamur, M C" uniqKey="Jamur M">M. C. Jamur</name>
</author>
<author>
<name sortKey="Oliver, C" uniqKey="Oliver C">C. Oliver</name>
</author>
<author>
<name sortKey="Aguiar, R S" uniqKey="Aguiar R">R. S. Aguiar</name>
</author>
<author>
<name sortKey="Dasilva, L L P" uniqKey="Dasilva L">L. L. P. daSilva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inal, J M" uniqKey="Inal J">J. M. Inal</name>
</author>
<author>
<name sortKey="Ansa Addo, E A" uniqKey="Ansa Addo E">E. A. Ansa-Addo</name>
</author>
<author>
<name sortKey="Lange, S" uniqKey="Lange S">S. Lange</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L L" uniqKey="Li L">L.-L. Li</name>
</author>
<author>
<name sortKey="Xu, J H" uniqKey="Xu J">J.-H. Xu</name>
</author>
<author>
<name sortKey="Qi, G B" uniqKey="Qi G">G.-B. Qi</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F. Yu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Ran, D" uniqKey="Ran D">D. Ran</name>
</author>
<author>
<name sortKey="Krishnan, N" uniqKey="Krishnan N">N. Krishnan</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Spector, S A" uniqKey="Spector S">S. A. Spector</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Lo, C" uniqKey="Lo C">C. Lo</name>
</author>
<author>
<name sortKey="Zhuang, J" uniqKey="Zhuang J">J. Zhuang</name>
</author>
<author>
<name sortKey="Angsantikul, P" uniqKey="Angsantikul P">P. Angsantikul</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Wei, X" uniqKey="Wei X">X. Wei</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z. Zhou</name>
</author>
<author>
<name sortKey="Obonyo, M" uniqKey="Obonyo M">M. Obonyo</name>
</author>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B. Cai</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
<author>
<name sortKey="Liao, Q Q" uniqKey="Liao Q">Q.-Q. Liao</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
<author>
<name sortKey="Dong, W F" uniqKey="Dong W">W.-F. Dong</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cryz, S J" uniqKey="Cryz S">S. J. Cryz</name>
</author>
<author>
<name sortKey="Furer, E" uniqKey="Furer E">E. Fürer</name>
</author>
<author>
<name sortKey="Germanier, R" uniqKey="Germanier R">R. Germanier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Meng, Q F" uniqKey="Meng Q">Q.-F. Meng</name>
</author>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Yu, G T" uniqKey="Yu G">G.-T. Yu</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Ma, W" uniqKey="Ma W">W. Ma</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
<author>
<name sortKey="Liu, K" uniqKey="Liu K">K. Liu</name>
</author>
<author>
<name sortKey="Yuan, Y" uniqKey="Yuan Y">Y. Yuan</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B. Cai</name>
</author>
<author>
<name sortKey="Xu, J H" uniqKey="Xu J">J.-H. Xu</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Zhang, W F" uniqKey="Zhang W">W.-F. Zhang</name>
</author>
<author>
<name sortKey="Sun, Z J" uniqKey="Sun Z">Z.-J. Sun</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Wang, T H" uniqKey="Wang T">T.-H. Wang</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, L" uniqKey="Rao L">L. Rao</name>
</author>
<author>
<name sortKey="Bu, L L" uniqKey="Bu L">L.-L. Bu</name>
</author>
<author>
<name sortKey="Meng, Q F" uniqKey="Meng Q">Q.-F. Meng</name>
</author>
<author>
<name sortKey="Cai, B" uniqKey="Cai B">B. Cai</name>
</author>
<author>
<name sortKey="Deng, W W" uniqKey="Deng W">W.-W. Deng</name>
</author>
<author>
<name sortKey="Li, A" uniqKey="Li A">A. Li</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Guo, S S" uniqKey="Guo S">S.-S. Guo</name>
</author>
<author>
<name sortKey="Zhang, W F" uniqKey="Zhang W">W.-F. Zhang</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W. Liu</name>
</author>
<author>
<name sortKey="Sun, Z J" uniqKey="Sun Z">Z.-J. Sun</name>
</author>
<author>
<name sortKey="Zhao, X Z" uniqKey="Zhao X">X.-Z. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, R H" uniqKey="Fang R">R. H. Fang</name>
</author>
<author>
<name sortKey="Kroll, A V" uniqKey="Kroll A">A. V. Kroll</name>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ACS Nano</journal-id>
<journal-id journal-id-type="iso-abbrev">ACS Nano</journal-id>
<journal-id journal-id-type="publisher-id">nn</journal-id>
<journal-id journal-id-type="coden">ancac3</journal-id>
<journal-title-group>
<journal-title>ACS Nano</journal-title>
</journal-title-group>
<issn pub-type="ppub">1936-0851</issn>
<issn pub-type="epub">1936-086X</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32129977</article-id>
<article-id pub-id-type="pmc">7094139</article-id>
<article-id pub-id-type="doi">10.1021/acsnano.0c01665</article-id>
<article-categories>
<subj-group>
<subject>Perspective</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Rao</surname>
<given-names>Lang</given-names>
</name>
</contrib>
<contrib contrib-type="author" id="ath2">
<name>
<surname>Tian</surname>
<given-names>Rui</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath3">
<name>
<surname>Chen</surname>
<given-names>Xiaoyuan</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
</contrib>
<aff id="AFF-d7e55-autogenerated">Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB),
<institution>National Institutes of Health (NIH)</institution>
, Bethesda, Maryland 20892,
<country>United States</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
Email:
<email>shawn.chen@nih.gov</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>04</day>
<month>03</month>
<year>2020</year>
</pub-date>
<pub-date pub-type="ppub">
<day>24</day>
<month>03</month>
<year>2020</year>
</pub-date>
<volume>14</volume>
<issue>3</issue>
<fpage>2569</fpage>
<lpage>2574</lpage>
<history></history>
<permissions>
<copyright-statement>Copyright © 2020 U.S. Government</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>U.S. Government</copyright-holder>
<license license-type="open-access">
<license-p>This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="nn0c01665_0002" id="ab-tgr1"></graphic>
</p>
<p>Infectious diseases are a leading cause of mortality worldwide, with viruses and bacteria in particular having enormous impacts on global healthcare. One major challenge in combatting such diseases is a lack of effective drugs or specific treatments. In addition, drug resistance to currently available therapeutics and adverse effects caused by long-term overuse are both serious public health issues. A promising treatment strategy is to employ cell-membrane mimics as decoys to trap and to detain the pathogens. In this Perspective, we briefly review the infection mechanisms adopted by different pathogens at the cellular membrane interface and highlight the applications of cell-membrane-mimicking nanodecoys for systemic protection against infectious diseases. We also discuss the implication of nanodecoy–pathogen complexes in the development of vaccines. We anticipate this Perspective will provide new insights on design and development of advanced materials against emerging infectious diseases.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>nn0c01665</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>nn0c01665</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="notes-d1e21-autogenerated">
<fn-group>
<fn fn-type="" id="d30e116">
<p>This article is made available for a limited time sponsored by ACS under the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/freetoread/index.html">ACS Free to Read License</ext-link>
, which permits copying and redistribution of the article for non-commercial scholarly purposes.</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<p id="sec1">Infectious diseases have recently emerged as a serious global public health concern, underscored by the rapidly increasing number of drug-resistant strains of existing pathogens and the emergence of new pathogens.
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
,
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
Collectively, these pathogen infections cause millions of deaths and, thus, have a huge impact on global healthcare and socioeconomical development.
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
</sup>
Very recently, the World Health Organization (WHO) declared the outbreak of a novel corona virus disease (COVID-19), in China a Public Health Emergency of International Concern.
<sup>
<xref ref-type="bibr" rid="ref4">4</xref>
</sup>
The new disease, first made public by Wuhan, China at the end of December 2019, has already spread to 65 countries; the number of people in China infected with COVID-19 reached 90,000 on 3 March 2020, and more than 3000 of them have died.
<sup>
<xref ref-type="bibr" rid="ref5">5</xref>
,
<xref ref-type="bibr" rid="ref6">6</xref>
</sup>
The primary challenge in fighting such emerging diseases is the lack of effective drugs or specific treatments.
<sup>
<xref ref-type="bibr" rid="ref7">7</xref>
,
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
In addition, adverse side effects and increasing drug resistances owing to long-term overuse are also serious issues.
<sup>
<xref ref-type="bibr" rid="ref9">9</xref>
,
<xref ref-type="bibr" rid="ref10">10</xref>
</sup>
New and effective prevention and treatment strategies need to be developed urgently.</p>
<p>Pathogens, or disease-causing infection agents, are all over the world in which we live.
<sup>
<xref ref-type="bibr" rid="ref11">11</xref>
,
<xref ref-type="bibr" rid="ref12">12</xref>
</sup>
Although these microbes can come in different forms, they all have one thing in common: to cause infection, they must invade a host.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
,
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
The cell membrane is one of the major barriers that pathogens need to conquer.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
</sup>
For example, a virus first needs to attach itself to the cell membrane and then injects its genetic material into the host cell prior to replication.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
Such structural similarity provides the opportunity to develop new therapeutic platforms for broad-spectrum anti-infection applications. Recent efforts have shown multiple anti-infection applications by utilizing cell-membrane-based nanostructures.
<sup>
<xref ref-type="bibr" rid="ref16">16</xref>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
These novel formulations take advantage of the fact that, despite their different infection modes, pathogens must interact with host cell membranes at some point. Furthermore, biomimetic nanoparticles have many inherent properties that can benefit anti-infection applications, including long systemic circulation and multivalent pathogen interaction.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
<xref ref-type="bibr" rid="ref22">22</xref>
</sup>
</p>
<p>In light of these recent advances, in this Perspective, we review the evolution of cellular-membrane-based nanodecoys with a specific focus on infectious-disease-related studies. We first discuss multiple pathogen–membrane interactions to elucidate the fundamental action mechanism of such biomimetic nanodecoys against pathogen infections. We then provide an overview of the design and preparation of cell-membrane-mimicking formulations as nanodecoys to trap and to detain pathogens. Finally, we discuss the implication of utilizing nanodecoy–pathogen complexes for vaccination. We believe this Perspective can provide new insights on the development of new and effective prevention and treatment strategies for infectious diseases.</p>
<sec id="sec2">
<title>Pathogen–Membrane Interactions</title>
<p>According to their morphology and structure, pathogens can generally be divided into four main categories: viruses, bacteria, fungi, and parasites.
<sup>
<xref ref-type="bibr" rid="ref23">23</xref>
</sup>
Despite the diversity of pathogens, one similarity they share is how they cause infectious disease: these pathogens usually invade the host by interacting with the host cell membrane first.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
</sup>
Here, we briefly review the interactions between different pathogens and hosts at the cell–membrane interface.</p>
<p>Viruses are small infectious agents that do not grow by cell division but instead use the host metabolism to complete self-replication. Viruses can infect all types of life forms on Earth, from animals and plants to microorganisms. The modes of viral infection and replication differ greatly between species, but attachment is the basic stage, in which viral capsid proteins specifically bind to the receptors on the host cellular membrane.
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
For example, HIV infects human leukocytes through the specific interaction between its surface protein gp120 and the CD4 receptor and the CCR5 or CXCR4 co-receptors on CD4
<sup>+</sup>
T cells.
<sup>
<xref ref-type="bibr" rid="ref24">24</xref>
</sup>
</p>
<p>Bacteria are one kind of biological cell that compose a wide range of prokaryotic microorganisms. The relationship between bacteria and humans is complex. Sometimes bacteria offer us a helping hand. For example, probiotics help us digest. In other cases, bacteria are subversive, causing infectious diseases like methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA).
<sup>
<xref ref-type="bibr" rid="ref25">25</xref>
</sup>
Typically, pathogenic bacteria express and/or release a large domain of molecules that target the host membrane and facilitate many individual host responses.
<sup>
<xref ref-type="bibr" rid="ref16">16</xref>
</sup>
The molecular mechanisms of the interactions between bacteria and hosts are different across different species. For example, many Gram-positive pathogens secrete pore-forming toxins that can form pores in the cell membranes and lead to cell lysis, whereas Gram-negative pathogens secrete endotoxins that can activate macrophages to produce inflammatory cytokines.
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
</p>
<p>A fungus is any member of eukaryotic organisms, including mushrooms and microorganisms such as molds and yeasts. According to their different structures, sizes, surface properties, and ability to secrete pathogenicity factors, fungi can attack host cells in different ways, including membrane disruption by mechanical forces and membrane remodeling by fungal lipases.
<sup>
<xref ref-type="bibr" rid="ref27">27</xref>
</sup>
In addition, Moyes
<italic>et al.</italic>
discovered that
<italic>Candida albicans</italic>
is able to produce a peptide toxin that can directly damage host membranes and activate host immunity.
<sup>
<xref ref-type="bibr" rid="ref28">28</xref>
</sup>
</p>
<p>Parasitism is a relationship between different species in evolutionary biology, where one life form, the parasite, lives on or in another life form, the host. Although the parasite may cause the host some harm, the host is adapted structurally to live with the parasite. For example, to complete their life cycle in the blood circulation, the malaria parasite produces merozoite that can attach to and enter into red blood cells (RBCs) where the parasite asexually divides to form many copies of itself. The parasite copy then exits the infected RBC and infects more RBCs.
<sup>
<xref ref-type="bibr" rid="ref29">29</xref>
</sup>
</p>
</sec>
<sec id="sec3">
<title>Trapping and Detention of Pathogens with Nanodecoys</title>
<p>Due to the close interactions between pathogens and cell membranes, various cell-membrane-mimicking nanostructures have been employed as decoys to mitigate pathogen infection.
<sup>
<xref ref-type="bibr" rid="ref16">16</xref>
,
<xref ref-type="bibr" rid="ref17">17</xref>
,
<xref ref-type="bibr" rid="ref26">26</xref>
,
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
In the following section, we review previous infectious disease research involving cell-membrane mimics, with a special emphasis on the platforms developed for pathogen trap and detention.</p>
<sec id="sec3.1">
<title>Liposomes</title>
<p>Liposomes are artificial vesicles composed of one or more hydrophobic phospholipid bilayers; they have been used extensively for systemic delivery of therapeutic compounds. Because liposomes imitate the capabilities of cell membranes in several ways, they have been widely utilized as model membranes to study the infection mechanisms of many pathogens at the biomembrane interface (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
a).
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
</sup>
Research on the interaction between pathogens and liposomes can be traced back to the 1960s, when Bangham
<italic>et al.</italic>
found that streptolysin-S is able to regulate the cationic permeability of multilayer liposomes.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
</sup>
Following the early mechanistic studies, researchers further applied liposomes as pathogen substrates in the emerging infectious disease area. For example, liposome microarrays can be used for ultrasensitive detection of various types of pathogens including viruses, bacteria, and fungi.
<sup>
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
These cell-membrane mimics, consisting of synthetical lipids along with functional ligands, promote the formation of pathogen–liposome complexes that effectively improve the detection sensitivity in various electrochemical and immunological assays. Another example that utilizes the liposome–pathogen interaction is direct inhibition of the pathogen infection with liposomes. The pathogens were trapped and detained by cell-membrane-mimicking liposomes, thereby preventing them from attacking their cellular targets.
<sup>
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
In viral and bacterial infection models, treatment with functionalized liposomes was demonstrated to improve subject survival as well as to reduce the overall infection.
<sup>
<xref ref-type="bibr" rid="ref34">34</xref>
,
<xref ref-type="bibr" rid="ref35">35</xref>
</sup>
Engineered liposomes have also been used as a secondary therapeutic to supplement traditional anti-infective drugs. Systemic administration of nanoscale liposomes along with penicillin effectively protected animals from
<italic>S. pneumoniae</italic>
- and
<italic>S. aureus</italic>
-caused septicemia.
<sup>
<xref ref-type="bibr" rid="ref36">36</xref>
</sup>
Moreover, researchers have also exploited the liposome–pathogen interaction for infection-triggered drug release. Motivated by targeting therapeutic drugs to the specific site, pore-forming toxins are able to bore holes on the synthetic liposomal vehicles, resulting in the selective release of vancomycin at the infection sites.
<sup>
<xref ref-type="bibr" rid="ref37">37</xref>
</sup>
Surface engineering of liposomes with specific molecules may further promote the applicability of synthetic liposomes against infectious diseases. Magee
<italic>et al.</italic>
, for instance, successfully modified liposomes with antiviral antibodies for effective protection against coxsackie A-21 virus infection.
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
</sup>
With the rapid developments of biotechnology and nanotechnology, the physical and chemical properties of phospholipid bilayers may be tuned finely to improve their efficacy in various anti-infection applications.</p>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Trapping and detention of pathogens/toxins with nanodecoys. (a) Artificial liposomes sequester bacterial exotoxins and rescue mice from septicemia. Reprinted with permission from refs (
<xref ref-type="bibr" rid="ref16">16</xref>
) (copyright 2015 Elsevier B.V.) and (
<xref ref-type="bibr" rid="ref34">34</xref>
) (copyright 2015 Nature Publishing Group). (b) Modified reconstituted high-density lipoproteins (rHDL) effectively inhibit the cholera toxin attachment to epithelial cells and prevent toxin-associated negative outcomes. Reprinted with permission from ref (
<xref ref-type="bibr" rid="ref41">41</xref>
). Copyright 2010 American Society for Biochemistry & Molecular Biology. (c) Cell-membrane-coated nanodecoys (NDs) effectively trap Zika virus (ZIKV) and mitigate the ZIKV-caused fetal microcephaly
<italic>in vivo</italic>
. Reprinted from ref (
<xref ref-type="bibr" rid="ref17">17</xref>
). Copyright 2019 American Chemical Society.</p>
</caption>
<graphic xlink:href="nn0c01665_0001" id="gr1" position="float"></graphic>
</fig>
</sec>
<sec id="sec3.2">
<title>Reconstituted Lipoproteins</title>
<p>In addition to liposomes, reconstituted lipoproteins have also been extensively employed in the development of anti-infection decoys. Lipoproteins are inherently present in the human body as a disk-like patch of phospholipids bound by apolipoproteins. By using their constructing ingredients, these proteins can be controllably reconstituted.
<sup>
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
This method promises the controllable functionalization of lipoprotein components at the molecular level, opening the door for any lipid-compatible ingredients to be incorporated into the lipoprotein nanostructure. Proton pumps, signaling proteins, and membrane-associating enzymes have all been integrated into the reconstituted lipoproteins.
<sup>
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
</p>
<p>Engineered lipoproteins have been demonstrated to interact frequently with pathogens, leading to the effective suppression of pathogen infectivity. This inhibition can be ascribed to the lipoproteins’ microdomains, which are also rich in pathogen/toxin receptors such as sphingomyelin and cholesterol.
<sup>
<xref ref-type="bibr" rid="ref40">40</xref>
</sup>
Furthermore, to develop anti-infection nanostructures for clinical use, Bricarello
<italic>et al.</italic>
prepared reconstituted high-density lipoprotein (rHDL) to integrate ganglioside GM1 to improve affinity to certain pathogenic molecules (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
b).
<sup>
<xref ref-type="bibr" rid="ref41">41</xref>
</sup>
The modified rHDL effectively inhibited the cholera toxin attachment to epithelial cells and prevented toxin-associated negative outcomes. Although promising, further work along the lines of how to alleviate the toxicity of such nanostructures and how to improve the rHDL–host interaction is necessary before successful translation of rHDL as an anti-infection candidate.</p>
</sec>
<sec id="sec3.3">
<title>Cell-Membrane-Derived Nanostructures</title>
<p>Cell-membrane-derived nanoparticles present an attractive platform for anti-infection applications because pathogens have evolved to utilize abundant molecules on the cell membrane.
<sup>
<xref ref-type="bibr" rid="ref42">42</xref>
</sup>
Although synthetic liposomes can be straightforwardly functionalized with specific ligands, it has proven difficult to replicate or to mimic the complicated protein compositions and functions in natural cell membranes. Natural cell-membrane-derived vesicles possess a unique advantage of maintaining most of the natural compositions and functions of source cell membranes, thereby enabling each platform to exhibit properties that would otherwise be hard to accomplish.
<sup>
<xref ref-type="bibr" rid="ref43">43</xref>
,
<xref ref-type="bibr" rid="ref44">44</xref>
</sup>
Moreover, emerging genetic editing technology can be further employed to amend the antigen profile of natural cellular membranes to fit different purposes.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
</sup>
</p>
<p>To develop biomimetic anti-infection nanodecoys, de Carvalho
<italic>et al.</italic>
demonstrated that CD4
<sup>+</sup>
T-cell-derived exosomes could efficiently suppress HIV-1 infection
<italic>in vitro</italic>
.
<sup>
<xref ref-type="bibr" rid="ref45">45</xref>
</sup>
These exosomes exhibited the same completed membrane protein composition as their source CD4
<sup>+</sup>
T cells, ensuring that they attached effectively to HIV-1, thereby preventing the HIV-1 from binding to and entering healthy CD4
<sup>+</sup>
T cells. In addition, exosomes released from certain host cells have also been utilized to suppress bacterial and parasitic invasion of specific host cells, as well.
<sup>
<xref ref-type="bibr" rid="ref46">46</xref>
</sup>
</p>
<p>Because many exotoxins secreted by bacteria and fungi are known for their unique capability to lyse erythrocytes (RBCs), RBC-derived nanovesicles have been widely employed as a model to examine the kinetics of these exotoxins.
<sup>
<xref ref-type="bibr" rid="ref47">47</xref>
</sup>
After removal of the intracellular contents, these cell-membrane-derived nanovesicles inherit the lipids, glycans, and proteins from their source cells, enabling the pathogen–nanoparticle interaction to occur in a natural manner.</p>
<p>In developing a biomimetic formulation that traps exotoxins secreted by bacteria, Hu
<italic>et al.</italic>
demonstrated that poly(lactic-
<italic>co</italic>
-glycolic acid) (PLGA) nanoparticles camouflaged with RBC membranes are able to serve as toxin “nanosponges”, absorbing pore-forming toxins and diverting them away from their intended targets.
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
Moreover, Rao
<italic>et al.</italic>
showed that mosquito host-cell-membrane-wrapped nanodecoys effectively trap Zika virus (ZIKV) and divert it away from its healthy cellular targets (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
c).
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
In mouse models, the research team further demonstrated that these nanodecoys successfully mitigate the ZIKV-caused inflammatory responses and fetal microcephaly. Compared to cell-membrane-derived vesicles, the cell-membrane-coated nanostructures are not prone to membrane fusion and therefore do not transfer detained pathogens to host cells.
<sup>
<xref ref-type="bibr" rid="ref48">48</xref>
,
<xref ref-type="bibr" rid="ref49">49</xref>
</sup>
In addition, due to the core–shell structure, the lipid membrane shell is stabilized by the nanoparticle core, benefiting
<italic>in vivo</italic>
applications.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
,
<xref ref-type="bibr" rid="ref50">50</xref>
</sup>
</p>
</sec>
</sec>
<sec id="sec4">
<title>Nanodecoy–Pathogen Complex for Vaccination</title>
<p>Considering that cell-membrane-mimicking nanodecoys are able to trap pathogens in a natural manner, the obtained nanoparticle–pathogen complexes can be applied to develop vaccines.
<sup>
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
Typically, vaccine preparation relies on heat or chemical treatments to destruct the protein’s tertiary structure, leading to antigen alteration and reduced immunogenicity.
<sup>
<xref ref-type="bibr" rid="ref51">51</xref>
</sup>
However, the inherent balance between efficacy and safety presents a great limitation to vaccine development. Recently, more efforts have focused on weakening a pathogen’s infectivity while maintaining its original structure, thus enhancing both the efficacy and safety of vaccines.
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
</sup>
Trapping and detention of pathogens/exotoxins by nanodecoys offer the chance to denude the pathogens’ infectious capabilities without compromising immunogenicity. Demonstrating a novel concept of pathogen/toxin sequestration by cell-membrane-mimicking nanodecoys for vaccination, Hu
<italic>et al.</italic>
showed that the spontaneous interactions between RBC membrane-coated nanodecoys and pore-forming toxins presented a facile approach for developing safe and effective vaccines.
<sup>
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
The nanoparticle vehicles are endowed with many properties that are beneficial to antigen processing: the pathogens/toxins were displayed on immune cells in their native manner; the nanoparticles’ small size and long circulation promoted antigen presentation; and the nanoparticle carriers were primarily absorbed by cells through endocytosis, thereby promoting the localization and metabolism of pathogens/exotoxins in endolysosomal sections. These properties together contributed to the improved safety and efficiency by nanoparticle-trapped pathogens/toxins.</p>
</sec>
<sec id="sec5">
<title>Conclusions and Outlook</title>
<p>Conventional anti-infection strategies primarily depend on structure-customized platforms such as antibodies and antisera. Although effective, these formulations often require accurate identification of the pathogenic species and have proven to be impractical to administer at times. Amidst the increasing awareness of emerging virus epidemics as well as the rising threat of drug-resistant bacteria, broadly applicable platforms have tremendous potential for the treatment of infectious diseases. In-depth biological research has elucidated different mechanisms of pathogen infection, most of which involve attaching to the cellular membrane biointerface and invading the host cells. Recent nanotechnology developments have resulted in a variety of nanoscale cell-membrane-mimicking formulations, including liposomes, reconstituted lipoproteins, and cell-membrane nanostructures. Much effort has been directed toward exploring the interactions between these biomimetic nanodecoys and pathogens/exotoxins, and researchers have demonstrated successful protection against major pathogenic infections through nanoparticle functionalization.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
,
<xref ref-type="bibr" rid="ref18">18</xref>
,
<xref ref-type="bibr" rid="ref26">26</xref>
,
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
These nanoformulations can be infused
<italic>in vivo</italic>
to alleviate the disease burden in multiple infectious diseases. Moreover, pathogen/toxin trapping and detention by cellular-membrane-based nanostructures have wider implications in the development of safe and effective vaccines.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
,
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
</p>
<p>Cell-membrane-mimicking nanodecoys represent a promising technology that has enormous translation potential.
<sup>
<xref ref-type="bibr" rid="ref16">16</xref>
</sup>
To realize this potential, further exploration and detailed study are required. Scalability is a crucial factor that is required for any clinical translational nanostructures. Previous work on the robust preparation of liposomes, lipoproteins, and cell-membrane nanoparticles indicates the need for further explorations on the large-scale production of these biomimetic nanodecoys.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
Moving forward, the host–pathogen affinity is a key issue that needs to be further considered. For many pathogens with clear infection mechanisms, strategies including bioconjugate chemistry and genetic editing can be employed to enhance the specific protein expression, resulting in enhanced platform efficacy.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
,
<xref ref-type="bibr" rid="ref52">52</xref>
</sup>
A promising property of these bioinspired nanodecoys is that they are highly customizable, especially for cell-membrane-coated nanoparticles. Although most of the previous designs employed a PLGA nanoparticle as the core, it is easy to imagine such cell-membrane-coated platforms can be formed with many other types of nanoparticle cores,
<sup>
<xref ref-type="bibr" rid="ref43">43</xref>
,
<xref ref-type="bibr" rid="ref47">47</xref>
,
<xref ref-type="bibr" rid="ref53">53</xref>
<xref ref-type="bibr" rid="ref55">55</xref>
</sup>
such as magnetic nanoparticles. With an additional magnet, cell-membrane-wrapped magnetic particles can be localized to targeted sites and away from susceptible tissues.
<sup>
<xref ref-type="bibr" rid="ref54">54</xref>
</sup>
Finally, although nanoparticle-trapped pathogens have many advantages over traditional vaccine developments, the nanocomplexes containing nondenatured pathogens unavoidably increase safety risks. Further in-depth studies are needed prior to successful clinical translation of these novel nanotechnologies.</p>
</sec>
</body>
<back>
<notes notes-type="COI-statement" id="notes1">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>We would like to thank Prof. Liangfang Zhang at University of California, San Diego, for manuscript discussion and editing. This work was supported by the Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH).</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1">
<name>
<surname>Cohen</surname>
<given-names>M. L.</given-names>
</name>
<article-title>Changing Patterns of Infectious Disease</article-title>
.
<source>Nature</source>
<year>2000</year>
,
<volume>406</volume>
,
<fpage>762</fpage>
<lpage>767</lpage>
.
<pub-id pub-id-type="doi">10.1038/35021206</pub-id>
.
<pub-id pub-id-type="pmid">10963605</pub-id>
</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="journal" id="cit2">
<name>
<surname>Braden</surname>
<given-names>C. R.</given-names>
</name>
;
<name>
<surname>Dowell</surname>
<given-names>S. F.</given-names>
</name>
;
<name>
<surname>Jernigan</surname>
<given-names>D. B.</given-names>
</name>
;
<name>
<surname>Hughes</surname>
<given-names>J. M.</given-names>
</name>
<article-title>Progress in Global Surveillance and Response Capacity 10 Years after Severe Acute Respiratory Syndrome</article-title>
.
<source>Emerging Infect. Dis.</source>
<year>2013</year>
,
<volume>19</volume>
,
<fpage>864</fpage>
<lpage>869</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid1906.130192</pub-id>
.
<pub-id pub-id-type="pmid">23731871</pub-id>
</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Pati</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Shevtsov</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Sonawane</surname>
<given-names>A.</given-names>
</name>
<article-title>Nanoparticle Vaccines Against Infectious Diseases</article-title>
.
<source>Front. Immunol.</source>
<year>2018</year>
,
<volume>9</volume>
,
<fpage>2224</fpage>
<pub-id pub-id-type="doi">10.3389/fimmu.2018.02224</pub-id>
.
<pub-id pub-id-type="pmid">30337923</pub-id>
</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>Wu</surname>
<given-names>J. T.</given-names>
</name>
;
<name>
<surname>Leung</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Leung</surname>
<given-names>G. M.</given-names>
</name>
<article-title>Nowcasting And Forecasting The Potential Domestic and International Spread of the 2019-Ncov Outbreak Originating in Wuhan, China: A Modelling Study</article-title>
.
<source>Lancet</source>
<year>2020</year>
,
<volume>395</volume>
,
<fpage>689</fpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(20)30260-9</pub-id>
.
<pub-id pub-id-type="pmid">32014114</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="journal" id="cit5">
<name>
<surname>Zhu</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Shi</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>R.</given-names>
</name>
; et al.
<article-title>A Novel Coronavirus from Patients with Pneumonia in China, 2019</article-title>
.
<source>N. Engl. J. Med.</source>
<year>2020</year>
,
<volume>382</volume>
,
<fpage>727</fpage>
<lpage>733</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa2001017</pub-id>
.
<pub-id pub-id-type="pmid">31978945</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6">
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Guan</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Wu</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Tong</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Ren</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Leung</surname>
<given-names>K. S. M.</given-names>
</name>
;
<name>
<surname>Lau</surname>
<given-names>E. H. Y.</given-names>
</name>
;
<name>
<surname>Wong</surname>
<given-names>J. Y.</given-names>
</name>
<article-title>Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia</article-title>
.
<source>N. Engl. J. Med.</source>
<year>2020</year>
,
<pub-id pub-id-type="doi">10.1056/NEJMc2001468</pub-id>
.</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7">
<name>
<surname>Sullivan</surname>
<given-names>N. J.</given-names>
</name>
;
<name>
<surname>Sanchez</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Rollin</surname>
<given-names>P. E.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>Z. Y.</given-names>
</name>
;
<name>
<surname>Nabel</surname>
<given-names>G. J.</given-names>
</name>
<article-title>Development of a Preventive Vaccine for Ebola Virus Infection in Primates</article-title>
.
<source>Nature</source>
<year>2000</year>
,
<volume>408</volume>
,
<fpage>605</fpage>
<lpage>609</lpage>
.
<pub-id pub-id-type="doi">10.1038/35046108</pub-id>
.
<pub-id pub-id-type="pmid">11117750</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Abbink</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Larocca</surname>
<given-names>R. A.</given-names>
</name>
;
<name>
<surname>De La Barrera</surname>
<given-names>R. A.</given-names>
</name>
;
<name>
<surname>Bricault</surname>
<given-names>C. A.</given-names>
</name>
;
<name>
<surname>Moseley</surname>
<given-names>E. T.</given-names>
</name>
;
<name>
<surname>Boyd</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Kirilova</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Nganga</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Nanayakkara</surname>
<given-names>O.</given-names>
</name>
; et al.
<article-title>Protective Efficacy of Multiple Vaccine Platforms Against Zika Virus Challenge in Rhesus Monkeys</article-title>
.
<source>Science</source>
<year>2016</year>
,
<volume>353</volume>
,
<fpage>1129</fpage>
<lpage>1132</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.aah6157</pub-id>
.
<pub-id pub-id-type="pmid">27492477</pub-id>
</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="journal" id="cit9">
<name>
<surname>Wood</surname>
<given-names>A. J.J.</given-names>
</name>
;
<name>
<surname>Iseman</surname>
<given-names>M. D.</given-names>
</name>
<article-title>Treatment of Multidrug-Resistant Tuberculosis</article-title>
.
<source>N. Engl. J. Med.</source>
<year>1993</year>
,
<volume>329</volume>
,
<fpage>784</fpage>
<lpage>791</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJM199309093291108</pub-id>
.
<pub-id pub-id-type="pmid">8350889</pub-id>
</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<name>
<surname>Giles</surname>
<given-names>J.</given-names>
</name>
<article-title>Superbug Genome Excels at Passing on Drug Resistance</article-title>
.
<source>Nature</source>
<year>2004</year>
,
<volume>430</volume>
,
<fpage>126</fpage>
<pub-id pub-id-type="doi">10.1038/430126a</pub-id>
.</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11">
<name>
<surname>Palella</surname>
<given-names>F. J.</given-names>
</name>
;
<name>
<surname>Delaney</surname>
<given-names>K. M.</given-names>
</name>
;
<name>
<surname>Moorman</surname>
<given-names>A. C.</given-names>
</name>
;
<name>
<surname>Loveless</surname>
<given-names>M. O.</given-names>
</name>
;
<name>
<surname>Fuhrer</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Satten</surname>
<given-names>G. A.</given-names>
</name>
;
<name>
<surname>Aschman</surname>
<given-names>D. J.</given-names>
</name>
;
<name>
<surname>Holmberg</surname>
<given-names>S. D.</given-names>
</name>
<article-title>Declining Morbidity and Mortality Among Patients with Advanced Human Immunodeficiency Virus Infection</article-title>
.
<source>N. Engl. J. Med.</source>
<year>1998</year>
,
<volume>338</volume>
,
<fpage>853</fpage>
<lpage>860</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJM199803263381301</pub-id>
.
<pub-id pub-id-type="pmid">9516219</pub-id>
</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12">
<name>
<surname>Costerton</surname>
<given-names>J. W.</given-names>
</name>
;
<name>
<surname>Stewart</surname>
<given-names>P. S.</given-names>
</name>
;
<name>
<surname>Greenberg</surname>
<given-names>E. P.</given-names>
</name>
<article-title>Bacterial Biofilms: A Common Cause of Persistent Infections</article-title>
.
<source>Science</source>
<year>1999</year>
,
<volume>284</volume>
,
<fpage>1318</fpage>
<lpage>1322</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.284.5418.1318</pub-id>
.
<pub-id pub-id-type="pmid">10334980</pub-id>
</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13">
<name>
<surname>Akira</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Uematsu</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Takeuchi</surname>
<given-names>O.</given-names>
</name>
<article-title>Pathogen Recognition and Innate Immunity</article-title>
.
<source>Cell</source>
<year>2006</year>
,
<volume>124</volume>
,
<fpage>783</fpage>
<lpage>801</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.015</pub-id>
.
<pub-id pub-id-type="pmid">16497588</pub-id>
</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14">
<name>
<surname>Bricarello</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>Patel</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Parikh</surname>
<given-names>A. N.</given-names>
</name>
<article-title>Inhibiting Host–Pathogen Interactions Using Membrane-Based Nanostructures</article-title>
.
<source>Trends Biotechnol.</source>
<year>2012</year>
,
<volume>30</volume>
,
<fpage>323</fpage>
<lpage>330</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tibtech.2012.03.002</pub-id>
.
<pub-id pub-id-type="pmid">22464596</pub-id>
</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Lindenbach</surname>
<given-names>B. D.</given-names>
</name>
;
<name>
<surname>Evans</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Syder</surname>
<given-names>A. J.</given-names>
</name>
;
<name>
<surname>Wolk</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Tellinghuisen</surname>
<given-names>T. L.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>C. C.</given-names>
</name>
;
<name>
<surname>Maruyama</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Hynes</surname>
<given-names>R. O.</given-names>
</name>
;
<name>
<surname>Burton</surname>
<given-names>D. R.</given-names>
</name>
;
<name>
<surname>McKeating</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Rice</surname>
<given-names>C. M.</given-names>
</name>
<article-title>Complete Replication of Hepatitis C Virus in Cell Culture</article-title>
.
<source>Science</source>
<year>2005</year>
,
<volume>309</volume>
,
<fpage>623</fpage>
<lpage>626</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1114016</pub-id>
.
<pub-id pub-id-type="pmid">15947137</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16">
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Luk</surname>
<given-names>B. T.</given-names>
</name>
;
<name>
<surname>Hu</surname>
<given-names>C.-M. J.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Engineered Nanoparticles Mimicking Cell Membranes For Toxin Neutralization</article-title>
.
<source>Adv. Drug Delivery Rev.</source>
<year>2015</year>
,
<volume>90</volume>
,
<fpage>69</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2015.04.001</pub-id>
.</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Meng</surname>
<given-names>Q.-F.</given-names>
</name>
;
<name>
<surname>Tian</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Cai</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Zan</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Xiao</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
; et al.
<article-title>A Biomimetic Nanodecoy Traps Zika Virus To Prevent Viral Infection and Fetal Microcephaly Development</article-title>
.
<source>Nano Lett.</source>
<year>2019</year>
,
<volume>19</volume>
,
<fpage>2215</fpage>
<lpage>2222</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.nanolett.8b03913</pub-id>
.
<pub-id pub-id-type="pmid">30543300</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18">
<name>
<surname>Zhang</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Zeng</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Shen</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Zheng</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Chu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Zheng</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Tian</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Ge</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Xia</surname>
<given-names>N.-S.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
<article-title>Virus-Mimetic Nanovesicles as a Versatile Antigen-Delivery System</article-title>
.
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2015</year>
,
<volume>112</volume>
,
<fpage>E6129</fpage>
<lpage>E6138</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1505799112</pub-id>
.
<pub-id pub-id-type="pmid">26504197</pub-id>
</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Wan</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>J.-F.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>W.-F.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
;
<name>
<surname>Sun</surname>
<given-names>Z.-J.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<article-title>Platelet-Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma</article-title>
.
<source>Angew. Chem., Int. Ed.</source>
<year>2018</year>
,
<volume>57</volume>
,
<fpage>986</fpage>
<lpage>991</lpage>
.
<pub-id pub-id-type="doi">10.1002/anie.201709457</pub-id>
.</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20">
<name>
<surname>Hu</surname>
<given-names>C.-M. J.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Aryal</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Cheung</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform</article-title>
.
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2011</year>
,
<volume>108</volume>
,
<fpage>10980</fpage>
<lpage>10985</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1106634108</pub-id>
.
<pub-id pub-id-type="pmid">21690347</pub-id>
</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21">
<name>
<surname>Hu</surname>
<given-names>C.-M. J.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Luk</surname>
<given-names>B. T.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Nanoparticle-Detained Toxins for Safe and Effective Vaccination</article-title>
.
<source>Nat. Nanotechnol.</source>
<year>2013</year>
,
<volume>8</volume>
,
<fpage>933</fpage>
<lpage>938</lpage>
.
<pub-id pub-id-type="doi">10.1038/nnano.2013.254</pub-id>
.
<pub-id pub-id-type="pmid">24292514</pub-id>
</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>J.-H.</given-names>
</name>
;
<name>
<surname>Cai</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Yu</surname>
<given-names>G.-T.</given-names>
</name>
;
<name>
<surname>Yu</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
; et al.
<article-title>Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance</article-title>
.
<source>Small</source>
<year>2015</year>
,
<volume>11</volume>
,
<fpage>6225</fpage>
<lpage>6236</lpage>
.
<pub-id pub-id-type="doi">10.1002/smll.201502388</pub-id>
.
<pub-id pub-id-type="pmid">26488923</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Khezerlou</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Alizadeh-Sani</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Azizi-Lalabadi</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Ehsani</surname>
<given-names>A.</given-names>
</name>
<article-title>Nanoparticles and their Antimicrobial Properties Against Pathogens Including Bacteria, Fungi, Parasites and Viruses</article-title>
.
<source>Microb. Pathog.</source>
<year>2018</year>
,
<volume>123</volume>
,
<fpage>505</fpage>
<lpage>526</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.micpath.2018.08.008</pub-id>
.
<pub-id pub-id-type="pmid">30092260</pub-id>
</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Trkola</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Dragic</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Arthos</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Binley</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Olson</surname>
<given-names>W. C.</given-names>
</name>
;
<name>
<surname>Allaway</surname>
<given-names>G. P.</given-names>
</name>
;
<name>
<surname>ChengMayer</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Robinson</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Maddon</surname>
<given-names>P. J.</given-names>
</name>
;
<name>
<surname>Moore</surname>
<given-names>J. P.</given-names>
</name>
<article-title>CD4-Dependent, Antibody-Sensitive Interactions between HIV-1 and its Co-Receptor CCR-5</article-title>
.
<source>Nature</source>
<year>1996</year>
,
<volume>384</volume>
,
<fpage>184</fpage>
<lpage>187</lpage>
.
<pub-id pub-id-type="doi">10.1038/384184a0</pub-id>
.
<pub-id pub-id-type="pmid">8906796</pub-id>
</mixed-citation>
</ref>
<ref id="ref25">
<mixed-citation publication-type="journal" id="cit25">
<name>
<surname>Hooper</surname>
<given-names>L. V.</given-names>
</name>
;
<name>
<surname>Midtvedt</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Gordon</surname>
<given-names>J. I.</given-names>
</name>
<article-title>How Host–Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine</article-title>
.
<source>Annu. Rev. Nutr.</source>
<year>2002</year>
,
<volume>22</volume>
,
<fpage>283</fpage>
<lpage>307</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.nutr.22.011602.092259</pub-id>
.
<pub-id pub-id-type="pmid">12055347</pub-id>
</mixed-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26">
<name>
<surname>Hu</surname>
<given-names>C.-M. J.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Copp</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Luk</surname>
<given-names>B. T.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>A Biomimetic Nanosponge that Absorbs Pore-Forming Toxins</article-title>
.
<source>Nat. Nanotechnol.</source>
<year>2013</year>
,
<volume>8</volume>
,
<fpage>336</fpage>
<lpage>340</lpage>
.
<pub-id pub-id-type="doi">10.1038/nnano.2013.54</pub-id>
.
<pub-id pub-id-type="pmid">23584215</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<mixed-citation publication-type="journal" id="cit27">
<name>
<surname>Westman</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Hube</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Fairn</surname>
<given-names>G. D.</given-names>
</name>
<article-title>Integrity under Stress: Host Membrane Remodelling and Damage by Fungal Pathogens</article-title>
.
<source>Cell. Microbiol.</source>
<year>2019</year>
,
<volume>21</volume>
,
<elocation-id>e13016</elocation-id>
<pub-id pub-id-type="doi">10.1111/cmi.13016</pub-id>
.
<pub-id pub-id-type="pmid">30740852</pub-id>
</mixed-citation>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Moyes</surname>
<given-names>D. L.</given-names>
</name>
;
<name>
<surname>Wilson</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Richardson</surname>
<given-names>J. P.</given-names>
</name>
;
<name>
<surname>Mogavero</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Tang</surname>
<given-names>S. X.</given-names>
</name>
;
<name>
<surname>Wernecke</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Höfs</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Gratacap</surname>
<given-names>R. L.</given-names>
</name>
;
<name>
<surname>Robbins</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Runglall</surname>
<given-names>M.</given-names>
</name>
; et al.
<article-title>Candidalysin is a Fungal Peptide Toxin Critical for Mucosal Infection</article-title>
.
<source>Nature</source>
<year>2016</year>
,
<volume>532</volume>
,
<fpage>64</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature17625</pub-id>
.
<pub-id pub-id-type="pmid">27027296</pub-id>
</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Cowman</surname>
<given-names>A. F.</given-names>
</name>
;
<name>
<surname>Crabb</surname>
<given-names>B. S.</given-names>
</name>
<article-title>Invasion of Red Blood Cells by Malaria Parasites</article-title>
.
<source>Cell</source>
<year>2006</year>
,
<volume>124</volume>
,
<fpage>755</fpage>
<lpage>766</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.006</pub-id>
.
<pub-id pub-id-type="pmid">16497586</pub-id>
</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Yuan</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Mu</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Lv</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Cheng</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Yuan</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Xia</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>G.</given-names>
</name>
<article-title>Bioinspired Artificial Nanodecoys for Hepatitis B Virus</article-title>
.
<source>Angew. Chem., Int. Ed.</source>
<year>2018</year>
,
<volume>57</volume>
,
<fpage>12499</fpage>
<lpage>12503</lpage>
.
<pub-id pub-id-type="doi">10.1002/anie.201807212</pub-id>
.</mixed-citation>
</ref>
<ref id="ref31">
<mixed-citation publication-type="journal" id="cit31">
<name>
<surname>Goyal</surname>
<given-names>A. K.</given-names>
</name>
;
<name>
<surname>Rawat</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Mahor</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Gupta</surname>
<given-names>P. N.</given-names>
</name>
;
<name>
<surname>Khatri</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Vyas</surname>
<given-names>S. P.</given-names>
</name>
<article-title>Nanodecoy System: A Novel Approach To Design Hepatitis B Vaccine for Immunopotentiation</article-title>
.
<source>Int. J. Pharm.</source>
<year>2006</year>
,
<volume>309</volume>
,
<fpage>227</fpage>
<lpage>233</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.ijpharm.2005.11.037</pub-id>
.
<pub-id pub-id-type="pmid">16406404</pub-id>
</mixed-citation>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>Bangham</surname>
<given-names>A. D.</given-names>
</name>
;
<name>
<surname>Standish</surname>
<given-names>M. M.</given-names>
</name>
;
<name>
<surname>Weissmann</surname>
<given-names>G.</given-names>
</name>
<article-title>The Action of Steroids and Streptolysin S on the Permeability of Phospholipid Structures to Cations</article-title>
.
<source>J. Mol. Biol.</source>
<year>1965</year>
,
<volume>13</volume>
,
<fpage>253</fpage>
<lpage>259</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0022-2836(65)80094-8</pub-id>
.
<pub-id pub-id-type="pmid">5859040</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>Tallury</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Malhotra</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Byrne</surname>
<given-names>L. M.</given-names>
</name>
;
<name>
<surname>Santra</surname>
<given-names>S.</given-names>
</name>
<article-title>Nanobioimaging and Sensing of Infectious Diseases</article-title>
.
<source>Adv. Drug Delivery Rev.</source>
<year>2010</year>
,
<volume>62</volume>
,
<fpage>424</fpage>
<lpage>437</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.addr.2009.11.014</pub-id>
.</mixed-citation>
</ref>
<ref id="ref34">
<mixed-citation publication-type="journal" id="cit34">
<name>
<surname>Henry</surname>
<given-names>B. D.</given-names>
</name>
;
<name>
<surname>Neill</surname>
<given-names>D. R.</given-names>
</name>
;
<name>
<surname>Becker</surname>
<given-names>K. A.</given-names>
</name>
;
<name>
<surname>Gore</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Bricio-Moreno</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Ziobro</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Edwards</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Mühlemann</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Steinmann</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Kleuser</surname>
<given-names>B.</given-names>
</name>
; et al.
<article-title>Engineered Liposomes Sequester Bacterial Exotoxins and Protect from Severe Invasive Infections in Mice</article-title>
.
<source>Nat. Biotechnol.</source>
<year>2015</year>
,
<volume>33</volume>
,
<fpage>81</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1038/nbt.3037</pub-id>
.
<pub-id pub-id-type="pmid">25362245</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<mixed-citation publication-type="journal" id="cit35">
<name>
<surname>Nussbaum</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Lapidot</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Loyter</surname>
<given-names>A.</given-names>
</name>
<article-title>Reconstitution of Functional Influenza Virus Envelopes and Fusion with Membranes and Liposomes Lacking Virus Receptors</article-title>
.
<source>J. Virol.</source>
<year>1987</year>
,
<volume>61</volume>
,
<fpage>2245</fpage>
<lpage>2252</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.61.7.2245-2252.1987</pub-id>
.
<pub-id pub-id-type="pmid">3586131</pub-id>
</mixed-citation>
</ref>
<ref id="ref36">
<mixed-citation publication-type="journal" id="cit36">
<name>
<surname>Zolnik</surname>
<given-names>B. S.</given-names>
</name>
;
<name>
<surname>González-Fernández</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Sadrieh</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Dobrovolskaia</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Nanoparticles and the Immune System</article-title>
.
<source>Endocrinology</source>
<year>2010</year>
,
<volume>151</volume>
,
<fpage>458</fpage>
<lpage>465</lpage>
.
<pub-id pub-id-type="doi">10.1210/en.2009-1082</pub-id>
.
<pub-id pub-id-type="pmid">20016026</pub-id>
</mixed-citation>
</ref>
<ref id="ref37">
<mixed-citation publication-type="journal" id="cit37">
<name>
<surname>Thamphiwatana</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Pornpattananangkul</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Fu</surname>
<given-names>V.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Obonyo</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Phospholipase A2-Responsive Antibiotic Delivery via Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection</article-title>
.
<source>J. Mater. Chem. B</source>
<year>2014</year>
,
<volume>2</volume>
,
<fpage>8201</fpage>
<lpage>8207</lpage>
.
<pub-id pub-id-type="doi">10.1039/C4TB01110D</pub-id>
.
<pub-id pub-id-type="pmid">25544886</pub-id>
</mixed-citation>
</ref>
<ref id="ref38">
<mixed-citation publication-type="journal" id="cit38">
<name>
<surname>Magee</surname>
<given-names>W. E.</given-names>
</name>
;
<name>
<surname>Miller</surname>
<given-names>O. V.</given-names>
</name>
<article-title>Liposomes Containing Antiviral Antibody Can Protect Cells from Virus Infection</article-title>
.
<source>Nature</source>
<year>1972</year>
,
<volume>235</volume>
,
<fpage>339</fpage>
<lpage>341</lpage>
.
<pub-id pub-id-type="doi">10.1038/235339a0</pub-id>
.
<pub-id pub-id-type="pmid">4551525</pub-id>
</mixed-citation>
</ref>
<ref id="ref39">
<mixed-citation publication-type="journal" id="cit39">
<name>
<surname>Bricarello</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>Smilowitz</surname>
<given-names>J. T.</given-names>
</name>
;
<name>
<surname>Zivkovic</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>German</surname>
<given-names>J. B.</given-names>
</name>
;
<name>
<surname>Parikh</surname>
<given-names>A. N.</given-names>
</name>
<article-title>Reconstituted Lipoprotein: A Versatile Class of Biologically-Inspired Nanostructures</article-title>
.
<source>ACS Nano</source>
<year>2011</year>
,
<volume>5</volume>
,
<fpage>42</fpage>
<lpage>57</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn103098m</pub-id>
.
<pub-id pub-id-type="pmid">21182259</pub-id>
</mixed-citation>
</ref>
<ref id="ref40">
<mixed-citation publication-type="journal" id="cit40">
<name>
<surname>Badin</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Barillec</surname>
<given-names>A.</given-names>
</name>
<article-title>Streptolysin O Inhibition by Serum ΓG-Globulin and B-Lipoprotein After Blocking of Nonesterified Cholesterol by Digitonin</article-title>
.
<source>J. Lab. Clin. Med.</source>
<year>1970</year>
,
<volume>75</volume>
,
<fpage>975</fpage>
<lpage>982</lpage>
.
<pub-id pub-id-type="pmid">5421081</pub-id>
</mixed-citation>
</ref>
<ref id="ref41">
<mixed-citation publication-type="journal" id="cit41">
<name>
<surname>Bricarello</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>Mills</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>Petrlova</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Voss</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Parikh</surname>
<given-names>A. N.</given-names>
</name>
<article-title>Ganglioside Embedded in Reconstituted Lipoprotein Binds Cholera Toxin with Elevated Affinity</article-title>
.
<source>J. Lipid Res.</source>
<year>2010</year>
,
<volume>51</volume>
,
<fpage>2731</fpage>
<lpage>2738</lpage>
.
<pub-id pub-id-type="doi">10.1194/jlr.M007401</pub-id>
.
<pub-id pub-id-type="pmid">20472870</pub-id>
</mixed-citation>
</ref>
<ref id="ref42">
<mixed-citation publication-type="journal" id="cit42">
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Gu</surname>
<given-names>Z.</given-names>
</name>
<article-title>Bioinspired and Biomimetic Nanomedicines</article-title>
.
<source>Acc. Chem. Res.</source>
<year>2019</year>
,
<volume>52</volume>
,
<fpage>1255</fpage>
<lpage>1264</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.accounts.9b00079</pub-id>
.
<pub-id pub-id-type="pmid">30977635</pub-id>
</mixed-citation>
</ref>
<ref id="ref43">
<mixed-citation publication-type="journal" id="cit43">
<name>
<surname>Parodi</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Quattrocchi</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>van de Ven</surname>
<given-names>A. L.</given-names>
</name>
;
<name>
<surname>Chiappini</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Evangelopoulos</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Martinez</surname>
<given-names>J. O.</given-names>
</name>
;
<name>
<surname>Brown</surname>
<given-names>B. S.</given-names>
</name>
;
<name>
<surname>Khaled</surname>
<given-names>S. Z.</given-names>
</name>
;
<name>
<surname>Yazdi</surname>
<given-names>I. K.</given-names>
</name>
;
<name>
<surname>Enzo</surname>
<given-names>M. V.</given-names>
</name>
; et al.
<article-title>Synthetic Nanoparticles Functionalized with Biomimetic Leukocyte Membranes Possess Cell-Like Functions</article-title>
.
<source>Nat. Nanotechnol.</source>
<year>2013</year>
,
<volume>8</volume>
,
<fpage>61</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1038/nnano.2012.212</pub-id>
.
<pub-id pub-id-type="pmid">23241654</pub-id>
</mixed-citation>
</ref>
<ref id="ref44">
<mixed-citation publication-type="journal" id="cit44">
<name>
<surname>Hu</surname>
<given-names>C.-M. J.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>K.-C.</given-names>
</name>
;
<name>
<surname>Luk</surname>
<given-names>B. T.</given-names>
</name>
;
<name>
<surname>Thamphiwatana</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Dehaini</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Nguyen</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Angsantikul</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Wen</surname>
<given-names>C. H.</given-names>
</name>
;
<name>
<surname>Kroll</surname>
<given-names>A. V.</given-names>
</name>
<article-title>Nanoparticle Biointerfacing by Platelet Membrane Cloaking</article-title>
.
<source>Nature</source>
<year>2015</year>
,
<volume>526</volume>
,
<fpage>118</fpage>
<lpage>121</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature15373</pub-id>
.
<pub-id pub-id-type="pmid">26374997</pub-id>
</mixed-citation>
</ref>
<ref id="ref45">
<mixed-citation publication-type="journal" id="cit45">
<name>
<surname>de Carvalho</surname>
<given-names>J. V.</given-names>
</name>
;
<name>
<surname>de Castro</surname>
<given-names>R. O.</given-names>
</name>
;
<name>
<surname>da Silva</surname>
<given-names>E. Z. M.</given-names>
</name>
;
<name>
<surname>Silveira</surname>
<given-names>P. P.</given-names>
</name>
;
<name>
<surname>da Silva-Januário</surname>
<given-names>M. E.</given-names>
</name>
;
<name>
<surname>Arruda</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Jamur</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Oliver</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Aguiar</surname>
<given-names>R. S.</given-names>
</name>
;
<name>
<surname>daSilva</surname>
<given-names>L. L. P.</given-names>
</name>
<article-title>Nef Neutralizes the Ability of Exosomes from CD4+ T Cells to Act as Decoys during HIV-1 Infection</article-title>
.
<source>PLoS One</source>
<year>2014</year>
,
<volume>9</volume>
,
<elocation-id>e113691</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0113691</pub-id>
.
<pub-id pub-id-type="pmid">25423108</pub-id>
</mixed-citation>
</ref>
<ref id="ref46">
<mixed-citation publication-type="journal" id="cit46">
<name>
<surname>Inal</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Ansa-Addo</surname>
<given-names>E. A.</given-names>
</name>
;
<name>
<surname>Lange</surname>
<given-names>S.</given-names>
</name>
<article-title>Interplay of Host–Pathogen Microvesicles and their Role in Infectious Disease</article-title>
.
<source>Biochem. Soc. Trans.</source>
<year>2013</year>
,
<volume>41</volume>
,
<fpage>258</fpage>
<lpage>262</lpage>
.
<pub-id pub-id-type="doi">10.1042/BST20120257</pub-id>
.
<pub-id pub-id-type="pmid">23356293</pub-id>
</mixed-citation>
</ref>
<ref id="ref47">
<mixed-citation publication-type="journal" id="cit47">
<name>
<surname>Li</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>J.-H.</given-names>
</name>
;
<name>
<surname>Qi</surname>
<given-names>G.-B.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
;
<name>
<surname>Yu</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<article-title>Core–Shell Supramolecular Gelatin Nanoparticles for Adaptive and “On-Demand” Antibiotic Delivery</article-title>
.
<source>ACS Nano</source>
<year>2014</year>
,
<volume>8</volume>
,
<fpage>4975</fpage>
<lpage>4983</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn501040h</pub-id>
.
<pub-id pub-id-type="pmid">24716550</pub-id>
</mixed-citation>
</ref>
<ref id="ref48">
<mixed-citation publication-type="journal" id="cit48">
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Ran</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Krishnan</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Spector</surname>
<given-names>S. A.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>T-Cell-Mimicking Nanoparticles Can Neutralize HIV Infectivity</article-title>
.
<source>Adv. Mater.</source>
<year>2018</year>
,
<volume>30</volume>
,
<fpage>1802233</fpage>
<pub-id pub-id-type="doi">10.1002/adma.201802233</pub-id>
.</mixed-citation>
</ref>
<ref id="ref49">
<mixed-citation publication-type="journal" id="cit49">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Lo</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Zhuang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Angsantikul</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Wei</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Obonyo</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Inhibition of Pathogen Adhesion by Bacterial Outer Membrane-Coated Nanoparticles</article-title>
.
<source>Angew. Chem., Int. Ed.</source>
<year>2019</year>
,
<volume>58</volume>
,
<fpage>11404</fpage>
<lpage>11408</lpage>
.
<pub-id pub-id-type="doi">10.1002/anie.201906280</pub-id>
.</mixed-citation>
</ref>
<ref id="ref50">
<mixed-citation publication-type="journal" id="cit50">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Cai</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Liao</surname>
<given-names>Q.-Q.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
;
<name>
<surname>Dong</surname>
<given-names>W.-F.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<article-title>Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy</article-title>
.
<source>ACS Nano</source>
<year>2017</year>
,
<volume>11</volume>
,
<fpage>3496</fpage>
<lpage>3505</lpage>
.
<pub-id pub-id-type="doi">10.1021/acsnano.7b00133</pub-id>
.
<pub-id pub-id-type="pmid">28272874</pub-id>
</mixed-citation>
</ref>
<ref id="ref51">
<mixed-citation publication-type="journal" id="cit51">
<name>
<surname>Cryz</surname>
<given-names>S. J.</given-names>
</name>
;
<name>
<surname>Fürer</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Germanier</surname>
<given-names>R.</given-names>
</name>
<article-title>Effect of Chemical and Heat Inactivation On the Antigenicity And Immunogenicity Of Vibrio Cholerae</article-title>
.
<source>Infect. Immun.</source>
<year>1982</year>
,
<volume>38</volume>
,
<fpage>21</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1128/IAI.38.1.21-26.1982</pub-id>
.
<pub-id pub-id-type="pmid">7141690</pub-id>
</mixed-citation>
</ref>
<ref id="ref52">
<mixed-citation publication-type="journal" id="cit52">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Meng</surname>
<given-names>Q.-F.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Yu</surname>
<given-names>G.-T.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Ma</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Yuan</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
<article-title>Platelet–Leukocyte Hybrid Membrane-Coated Immunomagnetic Beads for Highly Efficient and Highly Specific Isolation of Circulating Tumor Cells</article-title>
.
<source>Adv. Funct. Mater.</source>
<year>2018</year>
,
<volume>28</volume>
,
<fpage>1803531</fpage>
<pub-id pub-id-type="doi">10.1002/adfm.201803531</pub-id>
.</mixed-citation>
</ref>
<ref id="ref53">
<mixed-citation publication-type="journal" id="cit53">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Cai</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>J.-H.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>W.-F.</given-names>
</name>
;
<name>
<surname>Sun</surname>
<given-names>Z.-J.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>T.-H.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
<article-title>Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging</article-title>
.
<source>Adv. Mater.</source>
<year>2016</year>
,
<volume>28</volume>
,
<fpage>3460</fpage>
<lpage>3466</lpage>
.
<pub-id pub-id-type="doi">10.1002/adma.201506086</pub-id>
.
<pub-id pub-id-type="pmid">26970518</pub-id>
</mixed-citation>
</ref>
<ref id="ref54">
<mixed-citation publication-type="journal" id="cit54">
<name>
<surname>Rao</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Bu</surname>
<given-names>L.-L.</given-names>
</name>
;
<name>
<surname>Meng</surname>
<given-names>Q.-F.</given-names>
</name>
;
<name>
<surname>Cai</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Deng</surname>
<given-names>W.-W.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Guo</surname>
<given-names>S.-S.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>W.-F.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Sun</surname>
<given-names>Z.-J.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>X.-Z.</given-names>
</name>
<article-title>Antitumor Platelet-Mimicking Magnetic Nanoparticles</article-title>
.
<source>Adv. Funct. Mater.</source>
<year>2017</year>
,
<volume>27</volume>
,
<fpage>1604774</fpage>
<pub-id pub-id-type="doi">10.1002/adfm.201604774</pub-id>
.</mixed-citation>
</ref>
<ref id="ref55">
<mixed-citation publication-type="journal" id="cit55">
<name>
<surname>Fang</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Kroll</surname>
<given-names>A. V.</given-names>
</name>
;
<name>
<surname>Gao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<article-title>Cell Membrane Coating Nanotechnology</article-title>
.
<source>Adv. Mater.</source>
<year>2018</year>
,
<volume>30</volume>
,
<fpage>1706759</fpage>
<pub-id pub-id-type="doi">10.1002/adma.201706759</pub-id>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7094139
   |texte=   Cell-Membrane-Mimicking
Nanodecoys against Infectious
Diseases
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32129977" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021