Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.

Identifieur interne : 001938 ( PubMed/Corpus ); précédent : 001937; suivant : 001939

C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.

Auteurs : Nan Zhong ; Shengnan Zhang ; Fei Xue ; Xue Kang ; Peng Zou ; Jiaxuan Chen ; Chao Liang ; Zihe Rao ; Changwen Jin ; Zhiyong Lou ; Bin Xia

Source :

RBID : pubmed:19319935

English descriptors

Abstract

SARS coronavirus main protease (M(pro)) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the M(pro) C-terminal domain alone (M(pro)-C) and the N-finger deletion mutant of M(pro) (M(pro)-Delta7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both M(pro)-C monomer and dimer. The structure of the M(pro)-C monomer is almost identical to that of the C-terminal domain in the crystal structure of M(pro). Interestingly, the M(pro)-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the M(pro)-C domain-swapped dimer still has the same general fold as that of the M(pro)-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of M(pro)-C and M(pro)-Delta7.

DOI: 10.1002/pro.76
PubMed: 19319935

Links to Exploration step

pubmed:19319935

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.</title>
<author>
<name sortKey="Zhong, Nan" sort="Zhong, Nan" uniqKey="Zhong N" first="Nan" last="Zhong">Nan Zhong</name>
<affiliation>
<nlm:affiliation>Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, People' Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shengnan" sort="Zhang, Shengnan" uniqKey="Zhang S" first="Shengnan" last="Zhang">Shengnan Zhang</name>
</author>
<author>
<name sortKey="Xue, Fei" sort="Xue, Fei" uniqKey="Xue F" first="Fei" last="Xue">Fei Xue</name>
</author>
<author>
<name sortKey="Kang, Xue" sort="Kang, Xue" uniqKey="Kang X" first="Xue" last="Kang">Xue Kang</name>
</author>
<author>
<name sortKey="Zou, Peng" sort="Zou, Peng" uniqKey="Zou P" first="Peng" last="Zou">Peng Zou</name>
</author>
<author>
<name sortKey="Chen, Jiaxuan" sort="Chen, Jiaxuan" uniqKey="Chen J" first="Jiaxuan" last="Chen">Jiaxuan Chen</name>
</author>
<author>
<name sortKey="Liang, Chao" sort="Liang, Chao" uniqKey="Liang C" first="Chao" last="Liang">Chao Liang</name>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
</author>
<author>
<name sortKey="Lou, Zhiyong" sort="Lou, Zhiyong" uniqKey="Lou Z" first="Zhiyong" last="Lou">Zhiyong Lou</name>
</author>
<author>
<name sortKey="Xia, Bin" sort="Xia, Bin" uniqKey="Xia B" first="Bin" last="Xia">Bin Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19319935</idno>
<idno type="pmid">19319935</idno>
<idno type="doi">10.1002/pro.76</idno>
<idno type="wicri:Area/PubMed/Corpus">001938</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001938</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.</title>
<author>
<name sortKey="Zhong, Nan" sort="Zhong, Nan" uniqKey="Zhong N" first="Nan" last="Zhong">Nan Zhong</name>
<affiliation>
<nlm:affiliation>Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, People' Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Shengnan" sort="Zhang, Shengnan" uniqKey="Zhang S" first="Shengnan" last="Zhang">Shengnan Zhang</name>
</author>
<author>
<name sortKey="Xue, Fei" sort="Xue, Fei" uniqKey="Xue F" first="Fei" last="Xue">Fei Xue</name>
</author>
<author>
<name sortKey="Kang, Xue" sort="Kang, Xue" uniqKey="Kang X" first="Xue" last="Kang">Xue Kang</name>
</author>
<author>
<name sortKey="Zou, Peng" sort="Zou, Peng" uniqKey="Zou P" first="Peng" last="Zou">Peng Zou</name>
</author>
<author>
<name sortKey="Chen, Jiaxuan" sort="Chen, Jiaxuan" uniqKey="Chen J" first="Jiaxuan" last="Chen">Jiaxuan Chen</name>
</author>
<author>
<name sortKey="Liang, Chao" sort="Liang, Chao" uniqKey="Liang C" first="Chao" last="Liang">Chao Liang</name>
</author>
<author>
<name sortKey="Rao, Zihe" sort="Rao, Zihe" uniqKey="Rao Z" first="Zihe" last="Rao">Zihe Rao</name>
</author>
<author>
<name sortKey="Jin, Changwen" sort="Jin, Changwen" uniqKey="Jin C" first="Changwen" last="Jin">Changwen Jin</name>
</author>
<author>
<name sortKey="Lou, Zhiyong" sort="Lou, Zhiyong" uniqKey="Lou Z" first="Zhiyong" last="Lou">Zhiyong Lou</name>
</author>
<author>
<name sortKey="Xia, Bin" sort="Xia, Bin" uniqKey="Xia B" first="Bin" last="Xia">Bin Xia</name>
</author>
</analytic>
<series>
<title level="j">Protein science : a publication of the Protein Society</title>
<idno type="eISSN">1469-896X</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Humans</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Core Proteins (chemistry)</term>
<term>Viral Core Proteins (metabolism)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Core Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Core Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Humans</term>
<term>Protein Conformation</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS coronavirus main protease (M(pro)) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the M(pro) C-terminal domain alone (M(pro)-C) and the N-finger deletion mutant of M(pro) (M(pro)-Delta7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both M(pro)-C monomer and dimer. The structure of the M(pro)-C monomer is almost identical to that of the C-terminal domain in the crystal structure of M(pro). Interestingly, the M(pro)-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the M(pro)-C domain-swapped dimer still has the same general fold as that of the M(pro)-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of M(pro)-C and M(pro)-Delta7.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19319935</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1469-896X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Protein science : a publication of the Protein Society</Title>
<ISOAbbreviation>Protein Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.</ArticleTitle>
<Pagination>
<MedlinePgn>839-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/pro.76</ELocationID>
<Abstract>
<AbstractText>SARS coronavirus main protease (M(pro)) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the M(pro) C-terminal domain alone (M(pro)-C) and the N-finger deletion mutant of M(pro) (M(pro)-Delta7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both M(pro)-C monomer and dimer. The structure of the M(pro)-C monomer is almost identical to that of the C-terminal domain in the crystal structure of M(pro). Interestingly, the M(pro)-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the M(pro)-C domain-swapped dimer still has the same general fold as that of the M(pro)-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of M(pro)-C and M(pro)-Delta7.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, People' Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shengnan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xue</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Xue</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jiaxuan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Zihe</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Changwen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Zhiyong</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2K7X</AccessionNumber>
<AccessionNumber>3EBN</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Protein Sci</MedlineTA>
<NlmUniqueID>9211750</NlmUniqueID>
<ISSNLinking>0961-8368</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014758">Viral Core Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014758" MajorTopicYN="N">Viral Core Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19319935</ArticleId>
<ArticleId IdType="doi">10.1002/pro.76</ArticleId>
<ArticleId IdType="pmc">PMC2762595</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2002 May 24;319(1):209-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12051947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1999 Mar;13(3):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 12;45(49):14632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Mar;4(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Feb 18;31(6):1647-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1737021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Mar;8(3):211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11224563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Aug 14;349(7):709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):323-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001938 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001938 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19319935
   |texte=   C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19319935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021