Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.

Identifieur interne : 001937 ( PubMed/Corpus ); précédent : 001936; suivant : 001938

Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.

Auteurs : Sandrine Belouzard ; Victor C. Chu ; Gary R. Whittaker

Source :

RBID : pubmed:19321428

English descriptors

Abstract

The coronavirus spike protein (S) plays a key role in the early steps of viral infection, with the S1 domain responsible for receptor binding and the S2 domain mediating membrane fusion. In some cases, the S protein is proteolytically cleaved at the S1-S2 boundary. In the case of the severe acute respiratory syndrome coronavirus (SARS-CoV), it has been shown that virus entry requires the endosomal protease cathepsin L; however, it was also found that infection of SARS-CoV could be strongly induced by trypsin treatment. Overall, in terms of how cleavage might activate membrane fusion, proteolytic processing of the SARS-CoV S protein remains unclear. Here, we identify a proteolytic cleavage site within the SARS-CoV S2 domain (S2', R797). Mutation of R797 specifically inhibited trypsin-dependent fusion in both cell-cell fusion and pseudovirion entry assays. We also introduced a furin cleavage site at both the S2' cleavage site within S2 793-KPTKR-797 (S2'), as well as at the junction of S1 and S2. Introduction of a furin cleavage site at the S2' position allowed trypsin-independent cell-cell fusion, which was strongly increased by the presence of a second furin cleavage site at the S1-S2 position. Taken together, these data suggest a novel priming mechanism for a viral fusion protein, with a critical proteolytic cleavage event on the SARS-CoV S protein at position 797 (S2'), acting in concert with the S1-S2 cleavage site to mediate membrane fusion and virus infectivity.

DOI: 10.1073/pnas.0809524106
PubMed: 19321428

Links to Exploration step

pubmed:19321428

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.</title>
<author>
<name sortKey="Belouzard, Sandrine" sort="Belouzard, Sandrine" uniqKey="Belouzard S" first="Sandrine" last="Belouzard">Sandrine Belouzard</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chu, Victor C" sort="Chu, Victor C" uniqKey="Chu V" first="Victor C" last="Chu">Victor C. Chu</name>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19321428</idno>
<idno type="pmid">19321428</idno>
<idno type="doi">10.1073/pnas.0809524106</idno>
<idno type="wicri:Area/PubMed/Corpus">001937</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001937</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.</title>
<author>
<name sortKey="Belouzard, Sandrine" sort="Belouzard, Sandrine" uniqKey="Belouzard S" first="Sandrine" last="Belouzard">Sandrine Belouzard</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chu, Victor C" sort="Chu, Victor C" uniqKey="Chu V" first="Victor C" last="Chu">Victor C. Chu</name>
</author>
<author>
<name sortKey="Whittaker, Gary R" sort="Whittaker, Gary R" uniqKey="Whittaker G" first="Gary R" last="Whittaker">Gary R. Whittaker</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Cell Fusion</term>
<term>Furin</term>
<term>Hydrolysis</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Membrane Glycoproteins (physiology)</term>
<term>Mutagenesis, Site-Directed</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Trypsin (metabolism)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Viral Envelope Proteins (physiology)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Trypsin</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Furin</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Cell Fusion</term>
<term>Hydrolysis</term>
<term>Mutagenesis, Site-Directed</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The coronavirus spike protein (S) plays a key role in the early steps of viral infection, with the S1 domain responsible for receptor binding and the S2 domain mediating membrane fusion. In some cases, the S protein is proteolytically cleaved at the S1-S2 boundary. In the case of the severe acute respiratory syndrome coronavirus (SARS-CoV), it has been shown that virus entry requires the endosomal protease cathepsin L; however, it was also found that infection of SARS-CoV could be strongly induced by trypsin treatment. Overall, in terms of how cleavage might activate membrane fusion, proteolytic processing of the SARS-CoV S protein remains unclear. Here, we identify a proteolytic cleavage site within the SARS-CoV S2 domain (S2', R797). Mutation of R797 specifically inhibited trypsin-dependent fusion in both cell-cell fusion and pseudovirion entry assays. We also introduced a furin cleavage site at both the S2' cleavage site within S2 793-KPTKR-797 (S2'), as well as at the junction of S1 and S2. Introduction of a furin cleavage site at the S2' position allowed trypsin-independent cell-cell fusion, which was strongly increased by the presence of a second furin cleavage site at the S1-S2 position. Taken together, these data suggest a novel priming mechanism for a viral fusion protein, with a critical proteolytic cleavage event on the SARS-CoV S protein at position 797 (S2'), acting in concert with the S1-S2 cleavage site to mediate membrane fusion and virus infectivity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19321428</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.</ArticleTitle>
<Pagination>
<MedlinePgn>5871-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0809524106</ELocationID>
<Abstract>
<AbstractText>The coronavirus spike protein (S) plays a key role in the early steps of viral infection, with the S1 domain responsible for receptor binding and the S2 domain mediating membrane fusion. In some cases, the S protein is proteolytically cleaved at the S1-S2 boundary. In the case of the severe acute respiratory syndrome coronavirus (SARS-CoV), it has been shown that virus entry requires the endosomal protease cathepsin L; however, it was also found that infection of SARS-CoV could be strongly induced by trypsin treatment. Overall, in terms of how cleavage might activate membrane fusion, proteolytic processing of the SARS-CoV S protein remains unclear. Here, we identify a proteolytic cleavage site within the SARS-CoV S2 domain (S2', R797). Mutation of R797 specifically inhibited trypsin-dependent fusion in both cell-cell fusion and pseudovirion entry assays. We also introduced a furin cleavage site at both the S2' cleavage site within S2 793-KPTKR-797 (S2'), as well as at the junction of S1 and S2. Introduction of a furin cleavage site at the S2' position allowed trypsin-independent cell-cell fusion, which was strongly increased by the presence of a second furin cleavage site at the S1-S2 position. Taken together, these data suggest a novel priming mechanism for a viral fusion protein, with a critical proteolytic cleavage event on the SARS-CoV S protein at position 797 (S2'), acting in concert with the S1-S2 cleavage site to mediate membrane fusion and virus infectivity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Belouzard</LastName>
<ForeName>Sandrine</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Victor C</ForeName>
<Initials>VC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whittaker</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R03 AI060946</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.75</RegistryNumber>
<NameOfSubstance UI="D045683">Furin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002459" MajorTopicYN="N">Cell Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045683" MajorTopicYN="N">Furin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19321428</ArticleId>
<ArticleId IdType="pii">0809524106</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0809524106</ArticleId>
<ArticleId IdType="pmc">PMC2660061</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cells. 1999 Jun 30;9(3):235-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10420980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1643-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):14451-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(7):3180-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(8):4174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 5;350(2):358-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2007 Mar-Apr;38(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17296157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jul 20;359(1):174-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2007 Aug;17(4):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17870467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Mar 3;197(5):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Apr;4(4):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46854-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Jul 1;190(1):91-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15195247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10328-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1986 Feb;4(2):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3010595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 1992 Oct-Dec;36(4):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1336663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1993 May 31;680:135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8512214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1994 Feb;2(2):39-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8162439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(24):13378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(1):588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Dec 22;581(30):5807-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(6-7):1111-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18343183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(12):5986-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(12):6078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18568847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 10;454(7201):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Dec;81(Pt 12):2867-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11493675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 21;326(3):554-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001937 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001937 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19321428
   |texte=   Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19321428" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021