Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequencing of megabase plus DNA by hybridization: theory of the method.

Identifieur interne : 002A47 ( PubMed/Corpus ); précédent : 002A46; suivant : 002A48

Sequencing of megabase plus DNA by hybridization: theory of the method.

Auteurs : R. Drmanac ; I. Labat ; I. Brukner ; R. Crkvenjakov

Source :

RBID : pubmed:2737674

English descriptors

Abstract

A mismatch-free hybridization of oligonucleotides containing from 11 to 20 monomers to unknown DNA represents, in essence, a sequencing of a complementary target. Realizing this, we have used probability calculations and, in part, computer simulations to estimate the types and numbers of oligonucleotides that would have to be synthesized in order to sequence a megabase plus segment of DNA. We estimate that 95,000 specific mixes of 11-mers, mainly of the 5'(A,T,C,G)(A,T,C,G)N8(A,T,C,G)3' type, hybridized consecutively to dot blots of cloned genomic DNA fragments would provide primary data for the sequence assembly. An optimal mixture of representative libraries in M13 vector, having inserts of (i) 7 kb, (ii) 0.5 kb genomic fragments randomly ligated in up to 10-kb inserts, and (iii) tandem "jumping" fragments 100 kb apart in the genome, will be needed. To sequence each million base pairs of DNA, one would need hybridization data from about 2100 separate hybridization sample dots. Inevitable gaps and uncertainties in alignment of sequenced fragments arising from nonrandom or repetitive sequence organization of complex genomes and difficulties in cloning "poisonous" sequences in Escherichia coli, inherent to large sequencing by any method, have been considered and minimized by choice of libraries and number of subclones used for hybridization. Because it is based on simpler biochemical procedures, our method is inherently easier to automate than existing sequencing methods. The sequence can be derived from simple primary data only by extensive computing. Phased experimental tests and computer simulations increasing in complexity are needed before accurate estimates can be made in terms of cost and speed of sequencing by the new approach. Nevertheless, sequencing by hybridization should show advantages over existing methods because of the inherent redundancy and parallelism in its data gathering.

DOI: 10.1016/0888-7543(89)90290-5
PubMed: 2737674

Links to Exploration step

pubmed:2737674

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequencing of megabase plus DNA by hybridization: theory of the method.</title>
<author>
<name sortKey="Drmanac, R" sort="Drmanac, R" uniqKey="Drmanac R" first="R" last="Drmanac">R. Drmanac</name>
<affiliation>
<nlm:affiliation>Genetic Engineering Center, Belgrade, Yugoslavia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Labat, I" sort="Labat, I" uniqKey="Labat I" first="I" last="Labat">I. Labat</name>
</author>
<author>
<name sortKey="Brukner, I" sort="Brukner, I" uniqKey="Brukner I" first="I" last="Brukner">I. Brukner</name>
</author>
<author>
<name sortKey="Crkvenjakov, R" sort="Crkvenjakov, R" uniqKey="Crkvenjakov R" first="R" last="Crkvenjakov">R. Crkvenjakov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1989">1989</date>
<idno type="RBID">pubmed:2737674</idno>
<idno type="pmid">2737674</idno>
<idno type="doi">10.1016/0888-7543(89)90290-5</idno>
<idno type="wicri:Area/PubMed/Corpus">002A47</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequencing of megabase plus DNA by hybridization: theory of the method.</title>
<author>
<name sortKey="Drmanac, R" sort="Drmanac, R" uniqKey="Drmanac R" first="R" last="Drmanac">R. Drmanac</name>
<affiliation>
<nlm:affiliation>Genetic Engineering Center, Belgrade, Yugoslavia.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Labat, I" sort="Labat, I" uniqKey="Labat I" first="I" last="Labat">I. Labat</name>
</author>
<author>
<name sortKey="Brukner, I" sort="Brukner, I" uniqKey="Brukner I" first="I" last="Brukner">I. Brukner</name>
</author>
<author>
<name sortKey="Crkvenjakov, R" sort="Crkvenjakov, R" uniqKey="Crkvenjakov R" first="R" last="Crkvenjakov">R. Crkvenjakov</name>
</author>
</analytic>
<series>
<title level="j">Genomics</title>
<idno type="ISSN">0888-7543</idno>
<imprint>
<date when="1989" type="published">1989</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Base Sequence</term>
<term>Computer Simulation</term>
<term>DNA</term>
<term>Methods</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Probes</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA</term>
<term>Oligonucleotide Probes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Base Sequence</term>
<term>Computer Simulation</term>
<term>Methods</term>
<term>Nucleic Acid Hybridization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A mismatch-free hybridization of oligonucleotides containing from 11 to 20 monomers to unknown DNA represents, in essence, a sequencing of a complementary target. Realizing this, we have used probability calculations and, in part, computer simulations to estimate the types and numbers of oligonucleotides that would have to be synthesized in order to sequence a megabase plus segment of DNA. We estimate that 95,000 specific mixes of 11-mers, mainly of the 5'(A,T,C,G)(A,T,C,G)N8(A,T,C,G)3' type, hybridized consecutively to dot blots of cloned genomic DNA fragments would provide primary data for the sequence assembly. An optimal mixture of representative libraries in M13 vector, having inserts of (i) 7 kb, (ii) 0.5 kb genomic fragments randomly ligated in up to 10-kb inserts, and (iii) tandem "jumping" fragments 100 kb apart in the genome, will be needed. To sequence each million base pairs of DNA, one would need hybridization data from about 2100 separate hybridization sample dots. Inevitable gaps and uncertainties in alignment of sequenced fragments arising from nonrandom or repetitive sequence organization of complex genomes and difficulties in cloning "poisonous" sequences in Escherichia coli, inherent to large sequencing by any method, have been considered and minimized by choice of libraries and number of subclones used for hybridization. Because it is based on simpler biochemical procedures, our method is inherently easier to automate than existing sequencing methods. The sequence can be derived from simple primary data only by extensive computing. Phased experimental tests and computer simulations increasing in complexity are needed before accurate estimates can be made in terms of cost and speed of sequencing by the new approach. Nevertheless, sequencing by hybridization should show advantages over existing methods because of the inherent redundancy and parallelism in its data gathering.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">2737674</PMID>
<DateCompleted>
<Year>1989</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0888-7543</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1989</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Genomics</Title>
<ISOAbbreviation>Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequencing of megabase plus DNA by hybridization: theory of the method.</ArticleTitle>
<Pagination>
<MedlinePgn>114-28</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A mismatch-free hybridization of oligonucleotides containing from 11 to 20 monomers to unknown DNA represents, in essence, a sequencing of a complementary target. Realizing this, we have used probability calculations and, in part, computer simulations to estimate the types and numbers of oligonucleotides that would have to be synthesized in order to sequence a megabase plus segment of DNA. We estimate that 95,000 specific mixes of 11-mers, mainly of the 5'(A,T,C,G)(A,T,C,G)N8(A,T,C,G)3' type, hybridized consecutively to dot blots of cloned genomic DNA fragments would provide primary data for the sequence assembly. An optimal mixture of representative libraries in M13 vector, having inserts of (i) 7 kb, (ii) 0.5 kb genomic fragments randomly ligated in up to 10-kb inserts, and (iii) tandem "jumping" fragments 100 kb apart in the genome, will be needed. To sequence each million base pairs of DNA, one would need hybridization data from about 2100 separate hybridization sample dots. Inevitable gaps and uncertainties in alignment of sequenced fragments arising from nonrandom or repetitive sequence organization of complex genomes and difficulties in cloning "poisonous" sequences in Escherichia coli, inherent to large sequencing by any method, have been considered and minimized by choice of libraries and number of subclones used for hybridization. Because it is based on simpler biochemical procedures, our method is inherently easier to automate than existing sequencing methods. The sequence can be derived from simple primary data only by extensive computing. Phased experimental tests and computer simulations increasing in complexity are needed before accurate estimates can be made in terms of cost and speed of sequencing by the new approach. Nevertheless, sequencing by hybridization should show advantages over existing methods because of the inherent redundancy and parallelism in its data gathering.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Drmanac</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Genetic Engineering Center, Belgrade, Yugoslavia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Labat</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brukner</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Crkvenjakov</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genomics</MedlineTA>
<NlmUniqueID>8800135</NlmUniqueID>
<ISSNLinking>0888-7543</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015345">Oligonucleotide Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="Y">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="Y">DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008722" MajorTopicYN="N">Methods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="Y">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015345" MajorTopicYN="N">Oligonucleotide Probes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1989</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1989</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1989</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2737674</ArticleId>
<ArticleId IdType="doi">10.1016/0888-7543(89)90290-5</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:2737674
   |texte=   Sequencing of megabase plus DNA by hybridization: theory of the method.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:2737674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021