Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.

Identifieur interne : 002A46 ( PubMed/Corpus ); précédent : 002A45; suivant : 002A47

Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.

Auteurs : S B Lin ; K R Blake ; P S Miller ; P O Ts'O

Source :

RBID : pubmed:2469462

English descriptors

Abstract

EDTA-derivatized oligonucleoside methylphosphonates were prepared and used to characterize hybridization between the oligomers and single-stranded DNA or RNA. The melting temperatures of duplexes formed between an oligodeoxyribonucleotide 35-mer and complementary methylphosphonate 12-mers were 4-12 degrees C higher than those of duplexes formed by oligodeoxyribonucleotide 12-mers as determined by spectrophotometric measurements. Derivatization of the methylphosphonate oligomers with EDTA reduced the melting temperature by 5 degrees C. Methylphosphonate oligomer-nucleic acid complexes were stabilized by base stacking interactions between the terminal bases of the two oligomers binding to adjacent binding sites on the target. In the presence of Fe2+ and DTT, the EDTA-derivatized oligomers produce hydroxyl radicals that cause degradation of the sugar-phosphate backbone of both targeted DNA and RNA. Degradation occurs specifically in the region of the oligomer binding site and is approximately 20-fold more efficient for single-stranded DNA than for RNA. In comparison to the presence of one oligomer, the extent of target degradation was increased considerably by additions of two oligomers that bind at adjacent sites on the target. For example, the extent of degradation of a single-stranded DNA 35-mer caused by two contiguously binding oligomers, one of which was derivatized by EDTA, was approximately 2 times greater than that caused by the EDTA-derivatized oligomer alone. Although EDTA-derivatized oligomers are stable for long periods of time in aqueous solution, they undergo rapid autodegradation in the presence of Fe2+ and DTT with half-lives of approximately 30 min. This autodegradation reaction renders the EDTA-derivatized oligomers unable to cause degradation of their complementary target nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)

DOI: 10.1021/bi00429a020
PubMed: 2469462

Links to Exploration step

pubmed:2469462

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.</title>
<author>
<name sortKey="Lin, S B" sort="Lin, S B" uniqKey="Lin S" first="S B" last="Lin">S B Lin</name>
<affiliation>
<nlm:affiliation>Division of Biophysics, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blake, K R" sort="Blake, K R" uniqKey="Blake K" first="K R" last="Blake">K R Blake</name>
</author>
<author>
<name sortKey="Miller, P S" sort="Miller, P S" uniqKey="Miller P" first="P S" last="Miller">P S Miller</name>
</author>
<author>
<name sortKey="Ts O, P O" sort="Ts O, P O" uniqKey="Ts O P" first="P O" last="Ts'O">P O Ts'O</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1989">1989</date>
<idno type="RBID">pubmed:2469462</idno>
<idno type="pmid">2469462</idno>
<idno type="doi">10.1021/bi00429a020</idno>
<idno type="wicri:Area/PubMed/Corpus">002A46</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.</title>
<author>
<name sortKey="Lin, S B" sort="Lin, S B" uniqKey="Lin S" first="S B" last="Lin">S B Lin</name>
<affiliation>
<nlm:affiliation>Division of Biophysics, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blake, K R" sort="Blake, K R" uniqKey="Blake K" first="K R" last="Blake">K R Blake</name>
</author>
<author>
<name sortKey="Miller, P S" sort="Miller, P S" uniqKey="Miller P" first="P S" last="Miller">P S Miller</name>
</author>
<author>
<name sortKey="Ts O, P O" sort="Ts O, P O" uniqKey="Ts O P" first="P O" last="Ts'O">P O Ts'O</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1989" type="published">1989</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Chemical Phenomena</term>
<term>Chemistry</term>
<term>DNA</term>
<term>Edetic Acid</term>
<term>Indicators and Reagents</term>
<term>Nucleic Acid Denaturation</term>
<term>Oligodeoxyribonucleotides (chemical synthesis)</term>
<term>Organophosphorus Compounds</term>
<term>Poly T</term>
<term>Poly U</term>
<term>Polydeoxyribonucleotides</term>
<term>RNA</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA</term>
<term>Edetic Acid</term>
<term>Indicators and Reagents</term>
<term>Organophosphorus Compounds</term>
<term>Poly T</term>
<term>Poly U</term>
<term>Polydeoxyribonucleotides</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chemical Phenomena</term>
<term>Chemistry</term>
<term>Nucleic Acid Denaturation</term>
<term>Thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">EDTA-derivatized oligonucleoside methylphosphonates were prepared and used to characterize hybridization between the oligomers and single-stranded DNA or RNA. The melting temperatures of duplexes formed between an oligodeoxyribonucleotide 35-mer and complementary methylphosphonate 12-mers were 4-12 degrees C higher than those of duplexes formed by oligodeoxyribonucleotide 12-mers as determined by spectrophotometric measurements. Derivatization of the methylphosphonate oligomers with EDTA reduced the melting temperature by 5 degrees C. Methylphosphonate oligomer-nucleic acid complexes were stabilized by base stacking interactions between the terminal bases of the two oligomers binding to adjacent binding sites on the target. In the presence of Fe2+ and DTT, the EDTA-derivatized oligomers produce hydroxyl radicals that cause degradation of the sugar-phosphate backbone of both targeted DNA and RNA. Degradation occurs specifically in the region of the oligomer binding site and is approximately 20-fold more efficient for single-stranded DNA than for RNA. In comparison to the presence of one oligomer, the extent of target degradation was increased considerably by additions of two oligomers that bind at adjacent sites on the target. For example, the extent of degradation of a single-stranded DNA 35-mer caused by two contiguously binding oligomers, one of which was derivatized by EDTA, was approximately 2 times greater than that caused by the EDTA-derivatized oligomer alone. Although EDTA-derivatized oligomers are stable for long periods of time in aqueous solution, they undergo rapid autodegradation in the presence of Fe2+ and DTT with half-lives of approximately 30 min. This autodegradation reaction renders the EDTA-derivatized oligomers unable to cause degradation of their complementary target nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">2469462</PMID>
<DateCompleted>
<Year>1989</Year>
<Month>06</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>28</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1989</Year>
<Month>Feb</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.</ArticleTitle>
<Pagination>
<MedlinePgn>1054-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>EDTA-derivatized oligonucleoside methylphosphonates were prepared and used to characterize hybridization between the oligomers and single-stranded DNA or RNA. The melting temperatures of duplexes formed between an oligodeoxyribonucleotide 35-mer and complementary methylphosphonate 12-mers were 4-12 degrees C higher than those of duplexes formed by oligodeoxyribonucleotide 12-mers as determined by spectrophotometric measurements. Derivatization of the methylphosphonate oligomers with EDTA reduced the melting temperature by 5 degrees C. Methylphosphonate oligomer-nucleic acid complexes were stabilized by base stacking interactions between the terminal bases of the two oligomers binding to adjacent binding sites on the target. In the presence of Fe2+ and DTT, the EDTA-derivatized oligomers produce hydroxyl radicals that cause degradation of the sugar-phosphate backbone of both targeted DNA and RNA. Degradation occurs specifically in the region of the oligomer binding site and is approximately 20-fold more efficient for single-stranded DNA than for RNA. In comparison to the presence of one oligomer, the extent of target degradation was increased considerably by additions of two oligomers that bind at adjacent sites on the target. For example, the extent of degradation of a single-stranded DNA 35-mer caused by two contiguously binding oligomers, one of which was derivatized by EDTA, was approximately 2 times greater than that caused by the EDTA-derivatized oligomer alone. Although EDTA-derivatized oligomers are stable for long periods of time in aqueous solution, they undergo rapid autodegradation in the presence of Fe2+ and DTT with half-lives of approximately 30 min. This autodegradation reaction renders the EDTA-derivatized oligomers unable to cause degradation of their complementary target nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>S B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Division of Biophysics, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blake</LastName>
<ForeName>K R</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>P S</ForeName>
<Initials>PS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ts'o</LastName>
<ForeName>P O</ForeName>
<Initials>PO</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA 42762</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM 31927</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011089">Polydeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25086-81-1</RegistryNumber>
<NameOfSubstance UI="D011071">Poly T</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27416-86-0</RegistryNumber>
<NameOfSubstance UI="D011072">Poly U</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>329W4YM10Z</RegistryNumber>
<NameOfSubstance UI="C032627">methylphosphonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9G34HU7RV0</RegistryNumber>
<NameOfSubstance UI="D004492">Edetic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055598" MajorTopicYN="N">Chemical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002621" MajorTopicYN="N">Chemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="Y">DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004492" MajorTopicYN="Y">Edetic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007202" MajorTopicYN="N">Indicators and Reagents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009691" MajorTopicYN="N">Nucleic Acid Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="Y">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="Y">Organophosphorus Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011071" MajorTopicYN="Y">Poly T</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011072" MajorTopicYN="Y">Poly U</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011089" MajorTopicYN="Y">Polydeoxyribonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="Y">RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1989</Year>
<Month>2</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1989</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1989</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2469462</ArticleId>
<ArticleId IdType="doi">10.1021/bi00429a020</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A46 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002A46 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:2469462
   |texte=   Use of EDTA derivatization to characterize interactions between oligodeoxyribonucleoside methylphosphonates and nucleic acids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:2469462" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021