Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.

Identifieur interne : 001459 ( PubMed/Corpus ); précédent : 001458; suivant : 001460

The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.

Auteurs : Diego Forni ; Giulia Filippi ; Rachele Cagliani ; Luca De Gioia ; Uberto Pozzoli ; Nasser Al-Daghri ; Mario Clerici ; Manuela Sironi

Source :

RBID : pubmed:26404138

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter- and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function.

DOI: 10.1038/srep14480
PubMed: 26404138

Links to Exploration step

pubmed:26404138

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.</title>
<author>
<name sortKey="Forni, Diego" sort="Forni, Diego" uniqKey="Forni D" first="Diego" last="Forni">Diego Forni</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filippi, Giulia" sort="Filippi, Giulia" uniqKey="Filippi G" first="Giulia" last="Filippi">Giulia Filippi</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cagliani, Rachele" sort="Cagliani, Rachele" uniqKey="Cagliani R" first="Rachele" last="Cagliani">Rachele Cagliani</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Gioia, Luca" sort="De Gioia, Luca" uniqKey="De Gioia L" first="Luca" last="De Gioia">Luca De Gioia</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pozzoli, Uberto" sort="Pozzoli, Uberto" uniqKey="Pozzoli U" first="Uberto" last="Pozzoli">Uberto Pozzoli</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Daghri, Nasser" sort="Al Daghri, Nasser" uniqKey="Al Daghri N" first="Nasser" last="Al-Daghri">Nasser Al-Daghri</name>
<affiliation>
<nlm:affiliation>Biomarkers research program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (KSA).</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clerici, Mario" sort="Clerici, Mario" uniqKey="Clerici M" first="Mario" last="Clerici">Mario Clerici</name>
<affiliation>
<nlm:affiliation>Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sironi, Manuela" sort="Sironi, Manuela" uniqKey="Sironi M" first="Manuela" last="Sironi">Manuela Sironi</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26404138</idno>
<idno type="pmid">26404138</idno>
<idno type="doi">10.1038/srep14480</idno>
<idno type="wicri:Area/PubMed/Corpus">001459</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001459</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.</title>
<author>
<name sortKey="Forni, Diego" sort="Forni, Diego" uniqKey="Forni D" first="Diego" last="Forni">Diego Forni</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Filippi, Giulia" sort="Filippi, Giulia" uniqKey="Filippi G" first="Giulia" last="Filippi">Giulia Filippi</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cagliani, Rachele" sort="Cagliani, Rachele" uniqKey="Cagliani R" first="Rachele" last="Cagliani">Rachele Cagliani</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Gioia, Luca" sort="De Gioia, Luca" uniqKey="De Gioia L" first="Luca" last="De Gioia">Luca De Gioia</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pozzoli, Uberto" sort="Pozzoli, Uberto" uniqKey="Pozzoli U" first="Uberto" last="Pozzoli">Uberto Pozzoli</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Al Daghri, Nasser" sort="Al Daghri, Nasser" uniqKey="Al Daghri N" first="Nasser" last="Al-Daghri">Nasser Al-Daghri</name>
<affiliation>
<nlm:affiliation>Biomarkers research program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (KSA).</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clerici, Mario" sort="Clerici, Mario" uniqKey="Clerici M" first="Mario" last="Clerici">Mario Clerici</name>
<affiliation>
<nlm:affiliation>Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sironi, Manuela" sort="Sironi, Manuela" uniqKey="Sironi M" first="Manuela" last="Sironi">Manuela Sironi</name>
<affiliation>
<nlm:affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Coronavirus (genetics)</term>
<term>Evolution, Molecular</term>
<term>Genes, Viral</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Recombination, Genetic</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Selection, Genetic</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Genes, Viral</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Recombination, Genetic</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Selection, Genetic</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter- and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26404138</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>14480</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep14480</ELocationID>
<Abstract>
<AbstractText>Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter- and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Forni</LastName>
<ForeName>Diego</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Filippi</LastName>
<ForeName>Giulia</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cagliani</LastName>
<ForeName>Rachele</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Gioia</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pozzoli</LastName>
<ForeName>Uberto</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Al-Daghri</LastName>
<ForeName>Nasser</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Biomarkers research program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia (KSA).</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of science, King Saud University, Riyadh, KSA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clerici</LastName>
<ForeName>Mario</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sironi</LastName>
<ForeName>Manuela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005814" MajorTopicYN="N">Genes, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26404138</ArticleId>
<ArticleId IdType="pii">srep14480</ArticleId>
<ArticleId IdType="doi">10.1038/srep14480</ArticleId>
<ArticleId IdType="pmc">PMC4585914</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Sep 10;16(3):328-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Oct;22(10):573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(24):13134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24067982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24131722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3067</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24473083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2014;5(1). pii: e01062-13. doi: 10.1128/mBio.01062-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2014;11:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Nov;10(11):e1004395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25375777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2015 Feb;17(2):142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25456101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(21):10194-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Nov;74(22):10852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Jun;19(6):950-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jul;164(3):1229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(22):10909-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 May;24(5):1219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W473-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(1):346-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17959679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;537:113-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19378142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(7):e6130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19572016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 25;284(39):26941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19617355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2010 Jun;31(6):675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20232415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W23-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2010;6(8). pii: e1000885. doi: 10.1371/journal.pcbi.1000885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2455-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011;12:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jan;29(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21772063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(7):e1002764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Sep 9;365(6442):113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8371754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 May;22(5):1208-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 20;280(20):19852-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(12):7629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Dec;22(12):2472-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1411-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Oct;23(10):1891-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2013 May;66(5):464-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23266463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jul;30(7):1675-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Aug 8;500(7461):227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Oct;88(19):11297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25031349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001459 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001459 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26404138
   |texte=   The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26404138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021