Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.

Identifieur interne : 001458 ( PubMed/Corpus ); précédent : 001457; suivant : 001459

The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.

Auteurs : Ystein Arlov ; Finn L. Aachmann ; Emadoldin Feyzi ; Anders Sundan ; Gudmund Skj K-Br K

Source :

RBID : pubmed:26406104

English descriptors

Abstract

Alginate is a promising polysaccharide for use in biomaterials as it is biologically inert. One way to functionalize alginate is by chemical sulfation to emulate sulfated glycosaminoglycans, which interact with a variety of proteins critical for tissue development and homeostasis. In the present work we studied the impact of chain length and flexibility of sulfated alginates for interactions with FGF-2 and HGF. Both growth factors interact with defined sequences of heparan sulfate (HS) at the cell surface or in the extracellular matrix. Whereas FGF-2 interacts with a pentasaccharide sequence containing a critical 2-O-sulfated iduronic acid, HGF has been suggested to require a highly sulfated HS/heparin octasaccharide. Here, oligosaccharides of alternating mannuronic and guluronic acid (MG) were sulfated and assessed by their relative efficacy at releasing growth factor bound to the surface of myeloma cells. 8-mers of sulfated MG (SMG) alginate showed significant HGF release compared to shorter fragments, while the maximum efficacy was achieved at a chain length average of 14 monosaccharides. FGF-2 release required a higher concentration of the SMG fragments, and the 14-mer was less potent compared to an equally sulfated high-molecular weight SMG. Sulfated mannuronan (SM) was subjected to periodate oxidation to increase chain flexibility. To assess the change in flexibility, the persistence length was estimated by SEC-MALLS analysis and the Bohdanecky approach to the worm-like chain model. A high degree of oxidation of SM resulted in approximately twice as potent HGF release compared to the nonoxidized SM alginate. The release of FGF-2 also increased with the degree of oxidation, but to a lower degree compared to that of HGF. It was found that the SM alginates were more efficient at releasing FGF-2 than the SMG alginates, indicating a greater dependence on monosaccharide identity and charge orientation over chain flexibility and charge density.

DOI: 10.1021/acs.biomac.5b01125
PubMed: 26406104

Links to Exploration step

pubmed:26406104

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.</title>
<author>
<name sortKey="Arlov, Ystein" sort="Arlov, Ystein" uniqKey="Arlov " first=" Ystein" last="Arlov"> Ystein Arlov</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aachmann, Finn L" sort="Aachmann, Finn L" uniqKey="Aachmann F" first="Finn L" last="Aachmann">Finn L. Aachmann</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feyzi, Emadoldin" sort="Feyzi, Emadoldin" uniqKey="Feyzi E" first="Emadoldin" last="Feyzi">Emadoldin Feyzi</name>
<affiliation>
<nlm:affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sundan, Anders" sort="Sundan, Anders" uniqKey="Sundan A" first="Anders" last="Sundan">Anders Sundan</name>
<affiliation>
<nlm:affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Skj K Br K, Gudmund" sort="Skj K Br K, Gudmund" uniqKey="Skj K Br K G" first="Gudmund" last="Skj K-Br K">Gudmund Skj K-Br K</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26406104</idno>
<idno type="pmid">26406104</idno>
<idno type="doi">10.1021/acs.biomac.5b01125</idno>
<idno type="wicri:Area/PubMed/Corpus">001458</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.</title>
<author>
<name sortKey="Arlov, Ystein" sort="Arlov, Ystein" uniqKey="Arlov " first=" Ystein" last="Arlov"> Ystein Arlov</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Aachmann, Finn L" sort="Aachmann, Finn L" uniqKey="Aachmann F" first="Finn L" last="Aachmann">Finn L. Aachmann</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feyzi, Emadoldin" sort="Feyzi, Emadoldin" uniqKey="Feyzi E" first="Emadoldin" last="Feyzi">Emadoldin Feyzi</name>
<affiliation>
<nlm:affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sundan, Anders" sort="Sundan, Anders" uniqKey="Sundan A" first="Anders" last="Sundan">Anders Sundan</name>
<affiliation>
<nlm:affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Skj K Br K, Gudmund" sort="Skj K Br K, Gudmund" uniqKey="Skj K Br K G" first="Gudmund" last="Skj K-Br K">Gudmund Skj K-Br K</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomacromolecules</title>
<idno type="eISSN">1526-4602</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alginates (chemistry)</term>
<term>Cell Line, Tumor</term>
<term>Fibroblast Growth Factor 2 (metabolism)</term>
<term>Glucuronic Acid (chemistry)</term>
<term>Glycosaminoglycans (chemistry)</term>
<term>Heparitin Sulfate (chemistry)</term>
<term>Hepatocyte Growth Factor (metabolism)</term>
<term>Hexuronic Acids (chemistry)</term>
<term>Hexuronic Acids (pharmacology)</term>
<term>Humans</term>
<term>Multiple Myeloma (drug therapy)</term>
<term>Oligosaccharides (chemistry)</term>
<term>Oligosaccharides (pharmacology)</term>
<term>Sulfates (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alginates</term>
<term>Glucuronic Acid</term>
<term>Glycosaminoglycans</term>
<term>Heparitin Sulfate</term>
<term>Hexuronic Acids</term>
<term>Oligosaccharides</term>
<term>Sulfates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fibroblast Growth Factor 2</term>
<term>Hepatocyte Growth Factor</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hexuronic Acids</term>
<term>Oligosaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Multiple Myeloma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line, Tumor</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alginate is a promising polysaccharide for use in biomaterials as it is biologically inert. One way to functionalize alginate is by chemical sulfation to emulate sulfated glycosaminoglycans, which interact with a variety of proteins critical for tissue development and homeostasis. In the present work we studied the impact of chain length and flexibility of sulfated alginates for interactions with FGF-2 and HGF. Both growth factors interact with defined sequences of heparan sulfate (HS) at the cell surface or in the extracellular matrix. Whereas FGF-2 interacts with a pentasaccharide sequence containing a critical 2-O-sulfated iduronic acid, HGF has been suggested to require a highly sulfated HS/heparin octasaccharide. Here, oligosaccharides of alternating mannuronic and guluronic acid (MG) were sulfated and assessed by their relative efficacy at releasing growth factor bound to the surface of myeloma cells. 8-mers of sulfated MG (SMG) alginate showed significant HGF release compared to shorter fragments, while the maximum efficacy was achieved at a chain length average of 14 monosaccharides. FGF-2 release required a higher concentration of the SMG fragments, and the 14-mer was less potent compared to an equally sulfated high-molecular weight SMG. Sulfated mannuronan (SM) was subjected to periodate oxidation to increase chain flexibility. To assess the change in flexibility, the persistence length was estimated by SEC-MALLS analysis and the Bohdanecky approach to the worm-like chain model. A high degree of oxidation of SM resulted in approximately twice as potent HGF release compared to the nonoxidized SM alginate. The release of FGF-2 also increased with the degree of oxidation, but to a lower degree compared to that of HGF. It was found that the SM alginates were more efficient at releasing FGF-2 than the SMG alginates, indicating a greater dependence on monosaccharide identity and charge orientation over chain flexibility and charge density. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26406104</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4602</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Biomacromolecules</Title>
<ISOAbbreviation>Biomacromolecules</ISOAbbreviation>
</Journal>
<ArticleTitle>The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.</ArticleTitle>
<Pagination>
<MedlinePgn>3417-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.biomac.5b01125</ELocationID>
<Abstract>
<AbstractText>Alginate is a promising polysaccharide for use in biomaterials as it is biologically inert. One way to functionalize alginate is by chemical sulfation to emulate sulfated glycosaminoglycans, which interact with a variety of proteins critical for tissue development and homeostasis. In the present work we studied the impact of chain length and flexibility of sulfated alginates for interactions with FGF-2 and HGF. Both growth factors interact with defined sequences of heparan sulfate (HS) at the cell surface or in the extracellular matrix. Whereas FGF-2 interacts with a pentasaccharide sequence containing a critical 2-O-sulfated iduronic acid, HGF has been suggested to require a highly sulfated HS/heparin octasaccharide. Here, oligosaccharides of alternating mannuronic and guluronic acid (MG) were sulfated and assessed by their relative efficacy at releasing growth factor bound to the surface of myeloma cells. 8-mers of sulfated MG (SMG) alginate showed significant HGF release compared to shorter fragments, while the maximum efficacy was achieved at a chain length average of 14 monosaccharides. FGF-2 release required a higher concentration of the SMG fragments, and the 14-mer was less potent compared to an equally sulfated high-molecular weight SMG. Sulfated mannuronan (SM) was subjected to periodate oxidation to increase chain flexibility. To assess the change in flexibility, the persistence length was estimated by SEC-MALLS analysis and the Bohdanecky approach to the worm-like chain model. A high degree of oxidation of SM resulted in approximately twice as potent HGF release compared to the nonoxidized SM alginate. The release of FGF-2 also increased with the degree of oxidation, but to a lower degree compared to that of HGF. It was found that the SM alginates were more efficient at releasing FGF-2 than the SMG alginates, indicating a greater dependence on monosaccharide identity and charge orientation over chain flexibility and charge density. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Arlov</LastName>
<ForeName>Øystein</ForeName>
<Initials>Ø</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aachmann</LastName>
<ForeName>Finn L</ForeName>
<Initials>FL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feyzi</LastName>
<ForeName>Emadoldin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Hematology, St. Olav University Hospital , Erling Skjalgsons Gate 1, 7030 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundan</LastName>
<ForeName>Anders</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>K.G. Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , Prinsesse Kristinas gate 1, 7030 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Skjåk-Bræk</LastName>
<ForeName>Gudmund</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Norwegian University of Science and Technology , Sem Sælands vei 6/8, 7034 Trondheim, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biomacromolecules</MedlineTA>
<NlmUniqueID>100892849</NlmUniqueID>
<ISSNLinking>1525-7797</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000464">Alginates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006025">Glycosaminoglycans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C066855">HGF protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006603">Hexuronic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009844">Oligosaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013431">Sulfates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>103107-01-3</RegistryNumber>
<NameOfSubstance UI="D016222">Fibroblast Growth Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>15769-56-9</RegistryNumber>
<NameOfSubstance UI="C007896">guluronic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>67256-21-7</RegistryNumber>
<NameOfSubstance UI="D017228">Hepatocyte Growth Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8A5D83Q4RW</RegistryNumber>
<NameOfSubstance UI="D020723">Glucuronic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9050-30-0</RegistryNumber>
<NameOfSubstance UI="D006497">Heparitin Sulfate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>980IT47Y34</RegistryNumber>
<NameOfSubstance UI="C008324">mannuronic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000464" MajorTopicYN="N">Alginates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016222" MajorTopicYN="N">Fibroblast Growth Factor 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020723" MajorTopicYN="N">Glucuronic Acid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006025" MajorTopicYN="N">Glycosaminoglycans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006497" MajorTopicYN="N">Heparitin Sulfate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017228" MajorTopicYN="N">Hepatocyte Growth Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006603" MajorTopicYN="N">Hexuronic Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009101" MajorTopicYN="N">Multiple Myeloma</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009844" MajorTopicYN="N">Oligosaccharides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013431" MajorTopicYN="N">Sulfates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26406104</ArticleId>
<ArticleId IdType="doi">10.1021/acs.biomac.5b01125</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001458 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001458 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26406104
   |texte=   The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26406104" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021