Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

Identifieur interne : 001460 ( PubMed/Corpus ); précédent : 001459; suivant : 001461

Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

Auteurs : Aurore L. Seredynski ; Jacques Balthazart ; Gregory F. Ball ; Charlotte A. Cornil

Source :

RBID : pubmed:26400941

English descriptors

Abstract

In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior.

DOI: 10.1523/JNEUROSCI.2056-15.2015
PubMed: 26400941

Links to Exploration step

pubmed:26400941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.</title>
<author>
<name sortKey="Seredynski, Aurore L" sort="Seredynski, Aurore L" uniqKey="Seredynski A" first="Aurore L" last="Seredynski">Aurore L. Seredynski</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balthazart, Jacques" sort="Balthazart, Jacques" uniqKey="Balthazart J" first="Jacques" last="Balthazart">Jacques Balthazart</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ball, Gregory F" sort="Ball, Gregory F" uniqKey="Ball G" first="Gregory F" last="Ball">Gregory F. Ball</name>
<affiliation>
<nlm:affiliation>Department of Psychology, University of Maryland, College Park, Maryland 20742-7201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornil, Charlotte A" sort="Cornil, Charlotte A" uniqKey="Cornil C" first="Charlotte A" last="Cornil">Charlotte A. Cornil</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and charlotte.cornil@ulg.ac.be.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26400941</idno>
<idno type="pmid">26400941</idno>
<idno type="doi">10.1523/JNEUROSCI.2056-15.2015</idno>
<idno type="wicri:Area/PubMed/Corpus">001460</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.</title>
<author>
<name sortKey="Seredynski, Aurore L" sort="Seredynski, Aurore L" uniqKey="Seredynski A" first="Aurore L" last="Seredynski">Aurore L. Seredynski</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Balthazart, Jacques" sort="Balthazart, Jacques" uniqKey="Balthazart J" first="Jacques" last="Balthazart">Jacques Balthazart</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ball, Gregory F" sort="Ball, Gregory F" uniqKey="Ball G" first="Gregory F" last="Ball">Gregory F. Ball</name>
<affiliation>
<nlm:affiliation>Department of Psychology, University of Maryland, College Park, Maryland 20742-7201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cornil, Charlotte A" sort="Cornil, Charlotte A" uniqKey="Cornil C" first="Charlotte A" last="Cornil">Charlotte A. Cornil</name>
<affiliation>
<nlm:affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and charlotte.cornil@ulg.ac.be.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Aromatase (metabolism)</term>
<term>Coturnix</term>
<term>Dose-Response Relationship, Drug</term>
<term>Enzyme Inhibitors (pharmacology)</term>
<term>Estradiol (pharmacology)</term>
<term>Estrogen Receptor beta (metabolism)</term>
<term>Excitatory Amino Acid Agents (pharmacology)</term>
<term>Hormones (pharmacology)</term>
<term>Male</term>
<term>Motivation (drug effects)</term>
<term>Motivation (physiology)</term>
<term>Nitriles (pharmacology)</term>
<term>Propionates (pharmacology)</term>
<term>Receptors, Metabotropic Glutamate (metabolism)</term>
<term>Sexual Behavior, Animal (drug effects)</term>
<term>Sexual Behavior, Animal (physiology)</term>
<term>Time Factors</term>
<term>Triazoles (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aromatase</term>
<term>Estrogen Receptor beta</term>
<term>Receptors, Metabotropic Glutamate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Enzyme Inhibitors</term>
<term>Estradiol</term>
<term>Excitatory Amino Acid Agents</term>
<term>Hormones</term>
<term>Nitriles</term>
<term>Propionates</term>
<term>Triazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Motivation</term>
<term>Sexual Behavior, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Motivation</term>
<term>Sexual Behavior, Animal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Coturnix</term>
<term>Dose-Response Relationship, Drug</term>
<term>Male</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26400941</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>38</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.</ArticleTitle>
<Pagination>
<MedlinePgn>13110-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.2056-15.2015</ELocationID>
<Abstract>
<AbstractText>In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute intracerebroventricular injections of specific agonists and antagonists following blockade of brain aromatase, we show here that brain-derived estrogens acutely facilitate male sexual motivation through the activation of estrogen receptor β interacting with the metabotropic glutamate receptor 1a. This behavioral effect occurring within minutes provides a mechanistic explanation of how an estrogen receptor not intrinsically coupled to intracellular effectors can signal from the membrane to govern behavior in a very rapid fashion. It suggests that different subtypes of estrogen receptors could regulate the motivation versus performance aspects of behavior.</AbstractText>
<CopyrightInformation>Copyright © 2015 the authors 0270-6474/15/3313110-14$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Seredynski</LastName>
<ForeName>Aurore L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Balthazart</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9492-2126</Identifier>
<AffiliationInfo>
<Affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ball</LastName>
<ForeName>Gregory F</ForeName>
<Initials>GF</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4784-0520</Identifier>
<AffiliationInfo>
<Affiliation>Department of Psychology, University of Maryland, College Park, Maryland 20742-7201.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cornil</LastName>
<ForeName>Charlotte A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, 4000 Liège, Belgium, and charlotte.cornil@ulg.ac.be.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 MH050388</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01MH50388</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047629">Estrogen Receptor beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018683">Excitatory Amino Acid Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006728">Hormones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009570">Nitriles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018094">Receptors, Metabotropic Glutamate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014230">Triazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C492519">diarylpropionitrile</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104077">metabotropic glutamate receptor type 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1E2S9YXV2A</RegistryNumber>
<NameOfSubstance UI="C060523">vorozole</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4TI98Z838E</RegistryNumber>
<NameOfSubstance UI="D004958">Estradiol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.1</RegistryNumber>
<NameOfSubstance UI="D001141">Aromatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001141" MajorTopicYN="N">Aromatase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003370" MajorTopicYN="N">Coturnix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004958" MajorTopicYN="N">Estradiol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047629" MajorTopicYN="N">Estrogen Receptor beta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018683" MajorTopicYN="N">Excitatory Amino Acid Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006728" MajorTopicYN="N">Hormones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009042" MajorTopicYN="N">Motivation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009570" MajorTopicYN="N">Nitriles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018094" MajorTopicYN="N">Receptors, Metabotropic Glutamate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012726" MajorTopicYN="N">Sexual Behavior, Animal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014230" MajorTopicYN="N">Triazoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ERβ</Keyword>
<Keyword MajorTopicYN="N">estrogens</Keyword>
<Keyword MajorTopicYN="N">membrane-initiated effects</Keyword>
<Keyword MajorTopicYN="N">sexual motivation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26400941</ArticleId>
<ArticleId IdType="pii">35/38/13110</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.2056-15.2015</ArticleId>
<ArticleId IdType="pmc">PMC4579376</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Horm Behav. 2014 Feb;65(2):154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24368290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2013 Nov;25(11):1070-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23763492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2013 Nov;25(11):1219-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23822769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2014 Mar;81:49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 May 15;509(7500):282-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24834516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1999 Jun 29;877:242-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10415653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1999 Jul 17;835(1):80-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10448199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Nov 24;126(46):15106-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain. 2005 Mar;114(1-2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15733645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2005;131(4):945-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2005 Apr;192(2):420-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2005 Jun;48(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2005 Sep;22(6):1476-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16190901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2006 Jan;49(1):45-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15963995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Feb 8;26(6):1699-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2006 May-Jun;48(6-7):447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2006 May;29(5):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16580076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2007 Feb;28(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurophysiol. 2007 Feb;97(2):1018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2007 Aug 29;27(35):9294-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18268329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2008 Aug 5;191(1):111-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Steroids. 2008 Oct;73(9-10):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2008 Aug;38(1):66-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Reprod Med. 2009 May;27(3):207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2009 Aug;30(3):315-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2009 Sep;56(3):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19560466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychopharmacology. 2010 Jan;35(2):547-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2010 Jan;11(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2010;50:295-322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20055706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2010 Aug;58(3):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ILAR J. 2010;51(4):310-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2011;16:1560-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21196248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2011 Mar;21(3):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2011 Mar;25(3):377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2011 Aug;152(8):3182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychoneuroendocrinology. 2011 Aug;36(7):981-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21247705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2011 Aug;32(4):532-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2011 Nov;89(11):1707-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2012 Jun 7;74(5):801-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2012 Jun;62(1):58-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2012 Jun;62(1):50-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2012 Aug;153(8):3792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Brain Res. 2014 Sep 1;271:39-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24893316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2015 Jan;36:72-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25159586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Horm Behav. 2015 Mar;69:31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25483754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2015 Jul;38:37-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25637753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Struct Funct. 2015 Jul;220(4):2415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24878822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2015 Jul;38(7):408-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26089224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 May 18;25(20):5066-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15901789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Neuroanat. 2011 Dec;42(4):236-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21458561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2011 Nov 30;31(48):17583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22131419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2012 Jan;97(1):165-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22120139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2012 Mar;153(3):1364-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22545142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Endocrinol. 1999 Dec;163(3):379-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2000 Dec 28;43(26):4934-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroendocrinol. 2001 Aug;13(8):670-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2001 Nov 22;44(24):4230-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11708925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Oct 1;22(19):8391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12351713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2004 Jul;145(7):3055-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comp Neurol. 2004 Aug 9;476(1):44-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15236466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2004 Sep;20(6):1633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2004 Oct 7;47(21):5021-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1980 Aug 29;209(4460):1017-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7190730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11162-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:451-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1998 Aug 15;18(16):6512-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9698339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15677-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9861029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2012 Oct;153(10):4616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22865367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neuroendocrinol. 2012 Oct;33(4):425-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2013 Jan 1;591(1):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23090950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Jan 2;33(1):164-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23283331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychoneuroendocrinology. 2013 Jun;38(6):789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22999655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2013 Jul;154(7):2421-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23610132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Sep 18;33(38):15184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24048848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Oct 2;33(40):15964-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2013 Nov;154(11):4293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24008343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2013;255:177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24452062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001460 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001460 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26400941
   |texte=   Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26400941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021