Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.

Identifieur interne : 000D72 ( Main/Corpus ); précédent : 000D71; suivant : 000D73

Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.

Auteurs : Praveen Kumar Tripathi ; Saurabh Upadhyay ; Manju Singh ; Siva Raghavendhar ; Mohit Bhardwaj ; Pradeep Sharma ; Ashok Kumar Patel

Source :

RBID : pubmed:32853604

English descriptors

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a global catastrophe. The virus requires main protease for processing the viral polyproteins PP1A and PP1AB translated from the viral RNA. In search of a quick, safe and successful therapeutic agent; we screened various clinically approved drugs for the in-vitro inhibitory effect on 3CLPro which may be able to halt virus replication. The methods used includes protease activity assay, fluorescence quenching, surface plasmon resonance (SPR), Thermofluor® Assay, Size exclusion chromatography and in-silico docking studies. We found that Teicoplanin as most effective drug with IC50 ~ 1.5 μM. Additionally, through fluorescence quenching Stern-Volmer quenching constant (KSV) for Teicoplanin was estimated as 2.5 × 105 L·mol-1, which suggests a relatively high affinity between Teicoplanin and 3CLPro protease. The SPR shows good interaction between Teicoplanin and 3CLPro with KD ~ 1.6 μM. Our results provide critical insights into the mechanism of action of Teicoplanin as a potential therapeutic against COVID-19. We found that Teicoplanin is about 10-20 fold more potent in inhibiting protease activity than other drugs in use, such as lopinavir, hydroxychloroquine, chloroquine, azithromycin, atazanavir etc. Therefore, Teicoplanin emerged as the best inhibitor among all drug molecules we screened against 3CLPro of SARS-CoV-2.

DOI: 10.1016/j.ijbiomac.2020.08.166
PubMed: 32853604
PubMed Central: PMC7444494

Links to Exploration step

pubmed:32853604

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.</title>
<author>
<name sortKey="Tripathi, Praveen Kumar" sort="Tripathi, Praveen Kumar" uniqKey="Tripathi P" first="Praveen Kumar" last="Tripathi">Praveen Kumar Tripathi</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Upadhyay, Saurabh" sort="Upadhyay, Saurabh" uniqKey="Upadhyay S" first="Saurabh" last="Upadhyay">Saurabh Upadhyay</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Manju" sort="Singh, Manju" uniqKey="Singh M" first="Manju" last="Singh">Manju Singh</name>
<affiliation>
<nlm:affiliation>Morarji Desai National Institute of Yoga, New Delhi 110 001, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raghavendhar, Siva" sort="Raghavendhar, Siva" uniqKey="Raghavendhar S" first="Siva" last="Raghavendhar">Siva Raghavendhar</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhardwaj, Mohit" sort="Bhardwaj, Mohit" uniqKey="Bhardwaj M" first="Mohit" last="Bhardwaj">Mohit Bhardwaj</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Pradeep" sort="Sharma, Pradeep" uniqKey="Sharma P" first="Pradeep" last="Sharma">Pradeep Sharma</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Ashok Kumar" sort="Patel, Ashok Kumar" uniqKey="Patel A" first="Ashok Kumar" last="Patel">Ashok Kumar Patel</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India. Electronic address: ashokpatel@bioschool.iitd.ac.in.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32853604</idno>
<idno type="pmid">32853604</idno>
<idno type="doi">10.1016/j.ijbiomac.2020.08.166</idno>
<idno type="pmc">PMC7444494</idno>
<idno type="wicri:Area/Main/Corpus">000D72</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.</title>
<author>
<name sortKey="Tripathi, Praveen Kumar" sort="Tripathi, Praveen Kumar" uniqKey="Tripathi P" first="Praveen Kumar" last="Tripathi">Praveen Kumar Tripathi</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Upadhyay, Saurabh" sort="Upadhyay, Saurabh" uniqKey="Upadhyay S" first="Saurabh" last="Upadhyay">Saurabh Upadhyay</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, Manju" sort="Singh, Manju" uniqKey="Singh M" first="Manju" last="Singh">Manju Singh</name>
<affiliation>
<nlm:affiliation>Morarji Desai National Institute of Yoga, New Delhi 110 001, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raghavendhar, Siva" sort="Raghavendhar, Siva" uniqKey="Raghavendhar S" first="Siva" last="Raghavendhar">Siva Raghavendhar</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhardwaj, Mohit" sort="Bhardwaj, Mohit" uniqKey="Bhardwaj M" first="Mohit" last="Bhardwaj">Mohit Bhardwaj</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Pradeep" sort="Sharma, Pradeep" uniqKey="Sharma P" first="Pradeep" last="Sharma">Pradeep Sharma</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Patel, Ashok Kumar" sort="Patel, Ashok Kumar" uniqKey="Patel A" first="Ashok Kumar" last="Patel">Ashok Kumar Patel</name>
<affiliation>
<nlm:affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India. Electronic address: ashokpatel@bioschool.iitd.ac.in.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of biological macromolecules</title>
<idno type="eISSN">1879-0003</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (enzymology)</term>
<term>Betacoronavirus (physiology)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus 3C Proteases (MeSH)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cysteine Endopeptidases (MeSH)</term>
<term>Drug Evaluation, Preclinical (methods)</term>
<term>Drug Repositioning (methods)</term>
<term>Humans (MeSH)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Protease Inhibitors (chemistry)</term>
<term>Protease Inhibitors (pharmacology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Teicoplanin (chemistry)</term>
<term>Teicoplanin (pharmacology)</term>
<term>Viral Nonstructural Proteins (antagonists & inhibitors)</term>
<term>Virus Replication (drug effects)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Protease Inhibitors</term>
<term>Teicoplanin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Protease Inhibitors</term>
<term>Teicoplanin</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Evaluation, Preclinical</term>
<term>Drug Repositioning</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>COVID-19</term>
<term>Coronavirus 3C Proteases</term>
<term>Cysteine Endopeptidases</term>
<term>Humans</term>
<term>Molecular Docking Simulation</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a global catastrophe. The virus requires main protease for processing the viral polyproteins PP1A and PP1AB translated from the viral RNA. In search of a quick, safe and successful therapeutic agent; we screened various clinically approved drugs for the in-vitro inhibitory effect on 3CL
<sup>Pro</sup>
which may be able to halt virus replication. The methods used includes protease activity assay, fluorescence quenching, surface plasmon resonance (SPR), Thermofluor® Assay, Size exclusion chromatography and in-silico docking studies. We found that Teicoplanin as most effective drug with IC
<sub>50</sub>
 ~ 1.5 μM. Additionally, through fluorescence quenching Stern-Volmer quenching constant (K
<sub>SV</sub>
) for Teicoplanin was estimated as 2.5 × 10
<sup>5</sup>
 L·mol
<sup>-1</sup>
, which suggests a relatively high affinity between Teicoplanin and 3CL
<sup>Pro</sup>
protease. The SPR shows good interaction between Teicoplanin and 3CL
<sup>Pro</sup>
with K
<sub>D</sub>
 ~ 1.6 μM. Our results provide critical insights into the mechanism of action of Teicoplanin as a potential therapeutic against COVID-19. We found that Teicoplanin is about 10-20 fold more potent in inhibiting protease activity than other drugs in use, such as lopinavir, hydroxychloroquine, chloroquine, azithromycin, atazanavir etc. Therefore, Teicoplanin emerged as the best inhibitor among all drug molecules we screened against 3CL
<sup>Pro</sup>
of SARS-CoV-2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32853604</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>164</Volume>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>International journal of biological macromolecules</Title>
<ISOAbbreviation>Int J Biol Macromol</ISOAbbreviation>
</Journal>
<ArticleTitle>Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.</ArticleTitle>
<Pagination>
<MedlinePgn>2622-2631</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0141-8130(20)34257-4</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijbiomac.2020.08.166</ELocationID>
<Abstract>
<AbstractText>The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a global catastrophe. The virus requires main protease for processing the viral polyproteins PP1A and PP1AB translated from the viral RNA. In search of a quick, safe and successful therapeutic agent; we screened various clinically approved drugs for the in-vitro inhibitory effect on 3CL
<sup>Pro</sup>
which may be able to halt virus replication. The methods used includes protease activity assay, fluorescence quenching, surface plasmon resonance (SPR), Thermofluor® Assay, Size exclusion chromatography and in-silico docking studies. We found that Teicoplanin as most effective drug with IC
<sub>50</sub>
 ~ 1.5 μM. Additionally, through fluorescence quenching Stern-Volmer quenching constant (K
<sub>SV</sub>
) for Teicoplanin was estimated as 2.5 × 10
<sup>5</sup>
 L·mol
<sup>-1</sup>
, which suggests a relatively high affinity between Teicoplanin and 3CL
<sup>Pro</sup>
protease. The SPR shows good interaction between Teicoplanin and 3CL
<sup>Pro</sup>
with K
<sub>D</sub>
 ~ 1.6 μM. Our results provide critical insights into the mechanism of action of Teicoplanin as a potential therapeutic against COVID-19. We found that Teicoplanin is about 10-20 fold more potent in inhibiting protease activity than other drugs in use, such as lopinavir, hydroxychloroquine, chloroquine, azithromycin, atazanavir etc. Therefore, Teicoplanin emerged as the best inhibitor among all drug molecules we screened against 3CL
<sup>Pro</sup>
of SARS-CoV-2.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tripathi</LastName>
<ForeName>Praveen Kumar</ForeName>
<Initials>PK</Initials>
<AffiliationInfo>
<Affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Upadhyay</LastName>
<ForeName>Saurabh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Manju</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Morarji Desai National Institute of Yoga, New Delhi 110 001, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raghavendhar</LastName>
<ForeName>Siva</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhardwaj</LastName>
<ForeName>Mohit</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Pradeep</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Ashok Kumar</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India. Electronic address: ashokpatel@bioschool.iitd.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Int J Biol Macromol</MedlineTA>
<NlmUniqueID>7909578</NlmUniqueID>
<ISSNLinking>0141-8130</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>61036-62-2</RegistryNumber>
<NameOfSubstance UI="D017334">Teicoplanin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.28</RegistryNumber>
<NameOfSubstance UI="D000086782">Coronavirus 3C Proteases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086782" MajorTopicYN="N">Coronavirus 3C Proteases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="N">Drug Repositioning</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017334" MajorTopicYN="N">Teicoplanin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3CL-protease</Keyword>
<Keyword MajorTopicYN="N">Activity inhibition</Keyword>
<Keyword MajorTopicYN="N">Drug repurposing</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest Authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32853604</ArticleId>
<ArticleId IdType="pii">S0141-8130(20)34257-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.ijbiomac.2020.08.166</ArticleId>
<ArticleId IdType="pmc">PMC7444494</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 7;382(19):1787-1799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32187464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Enzyme Inhib Med Chem. 2016;31(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25683083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Oct;11(10):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Control Hosp Epidemiol. 2020 Sep;41(9):1124-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32317036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Aug;56(2):106029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32454071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165878</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32544429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 May 4;43(17):4906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2018 Jul 30;7:1151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30345026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2020 Jun;80(6):646-655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32277967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):409-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32198291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2020 Oct 22;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33093684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 2006 Dec;11(8):915-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(8):1435-1455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2020 Mar 13;477(5):1009-1019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32083638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2020 Jul;506:145-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32178975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Aug;30(8):678-692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32541865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 Dec 05;15(12):22518-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25490136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1417-1418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32325026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 3;285(36):28134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 May;92(5):491-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32056249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Feb 23;366(3):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2008 Sep 17;(19):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2020 Jun 26;40(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32441299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12997-13002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2020 Mar;19(3):149-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32127666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thorac Dis. 2013 Aug;5 Suppl 2:S103-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Apr 22;291(17):9218-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26953343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2015 Feb 02;79:28.9.1-28.9.14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25640896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2010 May;82(5):817-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 29;368(6494):1016-1020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2019 May 24;63(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30962341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 Jul - Aug;14(4):407-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32335367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Oct 22;576(3):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Apr;55(4):105944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32179150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Feb;7(2):e1001084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21390281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jun;582(7811):289-293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32272481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Apr 7;98(7):1327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asian Pac J Allergy Immunol. 2020 Mar;38(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32105090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2017 Dec 1;72(12):3382-3389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28962026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 May;280(9):2002-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452147</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32853604
   |texte=   Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:32853604" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021