Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.

Identifieur interne : 000568 ( Main/Corpus ); précédent : 000567; suivant : 000569

COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.

Auteurs : Hussain Ahmed Raza ; Javeria Tariq ; Vikas Agarwal ; Latika Gupta

Source :

RBID : pubmed:33386447

English descriptors

Abstract

Sudden cardiac death is commonly seen due to arrhythmias, which is a common cardiac manifestation seen in COVID-19 patients, especially those with underlying cardiovascular disease (CVD). Administration of hydroxychloroquine (HCQ) as a potential treatment option during SARS-CoV-2, initially gained popularity, but later, its safe usage became questionable due to its cardiovascular safety, largely stemming from instances of cardiac arrhythmias in COVID-19. Moreover, in the setting of rheumatic diseases, in which patients are usually on HCQ for their primary disease, there is a need to scale the merits and demerits of HCQ usage for the treatment of COVID-19. In this narrative review, we aim to address the association between usage of HCQ and sudden cardiac death in COVID-19 patients. MEDLINE, EMBASE, ClinicalTrials.gov and SCOPUS databases were used to review articles in English ranging from case reports, case series, letter to editors, systematic reviews, narrative reviews, observational studies and randomized control trials. HCQ is a potential cause of sudden cardiac death in COVID-19 patients. As opposed to the reduction in CVD with HCQ in treatment of systemic lupus erythematous, rheumatoid arthritis, and other rheumatic diseases, safe usage of HCQ in COVID-19 patients is unclear; whereby, it is observed to result in QTc prolongation and Torsades de pointes even in patients with no underlying cardiovascular comorbidity. This is occasionally associated with sudden cardiac death or cardiac arrest; hence, its clinical efficacy needs further investigation by large-scale clinical trials.

DOI: 10.1007/s00296-020-04759-2
PubMed: 33386447
PubMed Central: PMC7775739

Links to Exploration step

pubmed:33386447

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.</title>
<author>
<name sortKey="Raza, Hussain Ahmed" sort="Raza, Hussain Ahmed" uniqKey="Raza H" first="Hussain Ahmed" last="Raza">Hussain Ahmed Raza</name>
<affiliation>
<nlm:affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tariq, Javeria" sort="Tariq, Javeria" uniqKey="Tariq J" first="Javeria" last="Tariq">Javeria Tariq</name>
<affiliation>
<nlm:affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Agarwal, Vikas" sort="Agarwal, Vikas" uniqKey="Agarwal V" first="Vikas" last="Agarwal">Vikas Agarwal</name>
<affiliation>
<nlm:affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Latika" sort="Gupta, Latika" uniqKey="Gupta L" first="Latika" last="Gupta">Latika Gupta</name>
<affiliation>
<nlm:affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India. drlatikagupta@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33386447</idno>
<idno type="pmid">33386447</idno>
<idno type="doi">10.1007/s00296-020-04759-2</idno>
<idno type="pmc">PMC7775739</idno>
<idno type="wicri:Area/Main/Corpus">000568</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000568</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.</title>
<author>
<name sortKey="Raza, Hussain Ahmed" sort="Raza, Hussain Ahmed" uniqKey="Raza H" first="Hussain Ahmed" last="Raza">Hussain Ahmed Raza</name>
<affiliation>
<nlm:affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tariq, Javeria" sort="Tariq, Javeria" uniqKey="Tariq J" first="Javeria" last="Tariq">Javeria Tariq</name>
<affiliation>
<nlm:affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Agarwal, Vikas" sort="Agarwal, Vikas" uniqKey="Agarwal V" first="Vikas" last="Agarwal">Vikas Agarwal</name>
<affiliation>
<nlm:affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Latika" sort="Gupta, Latika" uniqKey="Gupta L" first="Latika" last="Gupta">Latika Gupta</name>
<affiliation>
<nlm:affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India. drlatikagupta@gmail.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Rheumatology international</title>
<idno type="eISSN">1437-160X</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antirheumatic Agents (administration & dosage)</term>
<term>Antirheumatic Agents (adverse effects)</term>
<term>COVID-19 (complications)</term>
<term>COVID-19 (drug therapy)</term>
<term>Death, Sudden, Cardiac (etiology)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (administration & dosage)</term>
<term>Hydroxychloroquine (adverse effects)</term>
<term>Pandemics (MeSH)</term>
<term>Rheumatic Diseases (drug therapy)</term>
<term>Risk Assessment (MeSH)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Antirheumatic Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Antirheumatic Agents</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
<term>Rheumatic Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Death, Sudden, Cardiac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Pandemics</term>
<term>Risk Assessment</term>
<term>SARS-CoV-2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sudden cardiac death is commonly seen due to arrhythmias, which is a common cardiac manifestation seen in COVID-19 patients, especially those with underlying cardiovascular disease (CVD). Administration of hydroxychloroquine (HCQ) as a potential treatment option during SARS-CoV-2, initially gained popularity, but later, its safe usage became questionable due to its cardiovascular safety, largely stemming from instances of cardiac arrhythmias in COVID-19. Moreover, in the setting of rheumatic diseases, in which patients are usually on HCQ for their primary disease, there is a need to scale the merits and demerits of HCQ usage for the treatment of COVID-19. In this narrative review, we aim to address the association between usage of HCQ and sudden cardiac death in COVID-19 patients. MEDLINE, EMBASE, ClinicalTrials.gov and SCOPUS databases were used to review articles in English ranging from case reports, case series, letter to editors, systematic reviews, narrative reviews, observational studies and randomized control trials. HCQ is a potential cause of sudden cardiac death in COVID-19 patients. As opposed to the reduction in CVD with HCQ in treatment of systemic lupus erythematous, rheumatoid arthritis, and other rheumatic diseases, safe usage of HCQ in COVID-19 patients is unclear; whereby, it is observed to result in QTc prolongation and Torsades de pointes even in patients with no underlying cardiovascular comorbidity. This is occasionally associated with sudden cardiac death or cardiac arrest; hence, its clinical efficacy needs further investigation by large-scale clinical trials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33386447</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>02</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1437-160X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2021</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Rheumatology international</Title>
<ISOAbbreviation>Rheumatol Int</ISOAbbreviation>
</Journal>
<ArticleTitle>COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.</ArticleTitle>
<Pagination>
<MedlinePgn>257-273</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00296-020-04759-2</ELocationID>
<Abstract>
<AbstractText>Sudden cardiac death is commonly seen due to arrhythmias, which is a common cardiac manifestation seen in COVID-19 patients, especially those with underlying cardiovascular disease (CVD). Administration of hydroxychloroquine (HCQ) as a potential treatment option during SARS-CoV-2, initially gained popularity, but later, its safe usage became questionable due to its cardiovascular safety, largely stemming from instances of cardiac arrhythmias in COVID-19. Moreover, in the setting of rheumatic diseases, in which patients are usually on HCQ for their primary disease, there is a need to scale the merits and demerits of HCQ usage for the treatment of COVID-19. In this narrative review, we aim to address the association between usage of HCQ and sudden cardiac death in COVID-19 patients. MEDLINE, EMBASE, ClinicalTrials.gov and SCOPUS databases were used to review articles in English ranging from case reports, case series, letter to editors, systematic reviews, narrative reviews, observational studies and randomized control trials. HCQ is a potential cause of sudden cardiac death in COVID-19 patients. As opposed to the reduction in CVD with HCQ in treatment of systemic lupus erythematous, rheumatoid arthritis, and other rheumatic diseases, safe usage of HCQ in COVID-19 patients is unclear; whereby, it is observed to result in QTc prolongation and Torsades de pointes even in patients with no underlying cardiovascular comorbidity. This is occasionally associated with sudden cardiac death or cardiac arrest; hence, its clinical efficacy needs further investigation by large-scale clinical trials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raza</LastName>
<ForeName>Hussain Ahmed</ForeName>
<Initials>HA</Initials>
<Identifier Source="ORCID">0000-0002-0346-894X</Identifier>
<AffiliationInfo>
<Affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tariq</LastName>
<ForeName>Javeria</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-9771-9449</Identifier>
<AffiliationInfo>
<Affiliation>Medical College, The Aga Khan University, National Stadium Road, Karachi, 74800, Pakistan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Agarwal</LastName>
<ForeName>Vikas</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0002-4508-1233</Identifier>
<AffiliationInfo>
<Affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Latika</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-2753-2990</Identifier>
<AffiliationInfo>
<Affiliation>Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, India. drlatikagupta@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Rheumatol Int</MedlineTA>
<NlmUniqueID>8206885</NlmUniqueID>
<ISSNLinking>0172-8172</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018501">Antirheumatic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018501" MajorTopicYN="N">Antirheumatic Agents</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016757" MajorTopicYN="N">Death, Sudden, Cardiac</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012216" MajorTopicYN="N">Rheumatic Diseases</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Antimalarials</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">Cardiovascular risk</Keyword>
<Keyword MajorTopicYN="Y">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="Y">Pandemic</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>18</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33386447</ArticleId>
<ArticleId IdType="doi">10.1007/s00296-020-04759-2</ArticleId>
<ArticleId IdType="pii">10.1007/s00296-020-04759-2</ArticleId>
<ArticleId IdType="pmc">PMC7775739</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dixon DL, Van Tassell BW, Vecchié A et al (2020) Cardiovascular considerations in treating patients with coronavirus disease 2019 (COVID-19). J Cardiovasc Pharmacol 75:359–367. https://doi.org/10.1097/FJC.0000000000000836</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1097/FJC.0000000000000836</ArticleId>
<ArticleId IdType="pubmed">32282502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li X, Wang Y, Agostinis P et al (2020) Is hydroxychloroquine beneficial for COVID-19 patients? Cell Death Dis 11:512. https://doi.org/10.1038/s41419-020-2721-8</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41419-020-2721-8</ArticleId>
<ArticleId IdType="pubmed">32641681</ArticleId>
<ArticleId IdType="pmcid">7341710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Misra DP, Gasparyan AY, Zimba O (2020) Benefits and adverse effects of hydroxychloroquine, methotrexate and colchicine: searching for repurposable drug candidates. Rheumatol Int 40:1741–1751. https://doi.org/10.1007/s00296-020-04694-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00296-020-04694-2</ArticleId>
<ArticleId IdType="pubmed">32880032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Venerito V, Lopalco G, Iannone F (2020) COVID-19, rheumatic diseases and immunosuppressive drugs: an appeal for medication adherence. Rheumatol Int 40:827–828. https://doi.org/10.1007/s00296-020-04566-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00296-020-04566-9</ArticleId>
<ArticleId IdType="pubmed">32232551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Misra DP, Agarwal V, Gasparyan AY, Zimba O (2020) Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol 39:2055–2062. https://doi.org/10.1007/s10067-020-05073-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05073-9</ArticleId>
<ArticleId IdType="pubmed">32277367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pablos JL, Galindo M, Carmona L et al (2020) Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: a multicentric matched cohort study. Ann Rheum Dis 79:1544–1549. https://doi.org/10.1136/annrheumdis-2020-218296</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/annrheumdis-2020-218296</ArticleId>
<ArticleId IdType="pubmed">32796045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>D’Silva KM, Serling-Boyd N, Wallwork R et al (2020) Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: a comparative cohort study from a US “hot spot.” Ann Rheum Dis 79:1156–1162. https://doi.org/10.1136/annrheumdis-2020-217888</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/annrheumdis-2020-217888</ArticleId>
<ArticleId IdType="pubmed">32457048</ArticleId>
<ArticleId IdType="pmcid">7456555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cau R, Bassareo P, Saba L (2020) Cardiac involvement in COVID-19-assessment with echocardiography and cardiac magnetic resonance imaging. SN Compr Clin Med. https://doi.org/10.1007/s42399-020-00344-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s42399-020-00344-7</ArticleId>
<ArticleId IdType="pubmed">32838139</ArticleId>
<ArticleId IdType="pmcid">7286214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parohan M, Yaghoubi S, Seraji A (2020) Cardiac injury is associated with severe outcome and death in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Eur Heart J Acute Cardiovasc Care. https://doi.org/10.1177/2048872620937165</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/2048872620937165</ArticleId>
<ArticleId IdType="pubmed">32567326</ArticleId>
<ArticleId IdType="pmcid">7678334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wu L, O’Kane AM, Peng H et al (2020) SARS-CoV-2 and cardiovascular complications: from molecular mechanisms to pharmaceutical management. Biochem Pharmacol 178:114114. https://doi.org/10.1016/j.bcp.2020.114114</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.bcp.2020.114114</ArticleId>
<ArticleId IdType="pubmed">32579957</ArticleId>
<ArticleId IdType="pmcid">7306106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kunal S, Gupta K, Sharma SM et al (2020) Cardiovascular system and COVID-19: perspectives from a developing country. Monaldi Arch Chest Dis. https://doi.org/10.4081/monaldi.2020.1305</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4081/monaldi.2020.1305</ArticleId>
<ArticleId IdType="pubmed">32380802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ranard LS, Fried JA, Abdalla M et al (2020) Approach to acute cardiovascular complications in COVID-19 infection. Circ Heart Fail 13:e007220. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007220</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/CIRCHEARTFAILURE.120.007220</ArticleId>
<ArticleId IdType="pubmed">32500721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Freaney PM, Shah SJ, Khan SS (2020) COVID-19 and heart failure with preserved ejection fraction. JAMA. https://doi.org/10.1001/jama.2020.17445</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.17445</ArticleId>
<ArticleId IdType="pubmed">33001179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30183-5</ArticleId>
<ArticleId IdType="pubmed">31986264</ArticleId>
<ArticleId IdType="pmcid">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu PP, Blet A, Smyth D, Li H (2020) The science underlying COVID-19: implications for the cardiovascular system. Circulation 142:68–78. https://doi.org/10.1161/CIRCULATIONAHA.120.047549</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/CIRCULATIONAHA.120.047549</ArticleId>
<ArticleId IdType="pubmed">32293910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alsaied T, Aboulhosn JA, Cotts TB et al (2020) Coronavirus disease 2019 (COVID-19) Pandemic Implications in pediatric and adult congenital heart disease. J Am Heart Assoc 9:e017224. https://doi.org/10.1161/JAHA.120.017224</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/JAHA.120.017224</ArticleId>
<ArticleId IdType="pubmed">32441586</ArticleId>
<ArticleId IdType="pmcid">7429046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X (2020) COVID-19 and the cardiovascular system. Nat Rev Cardiol 17:259–260. https://doi.org/10.1038/s41569-020-0360-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41569-020-0360-5</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00296-011-1999-3</ArticleId>
<ArticleId IdType="pubmed">21800117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mortality, Risk Factors of Patients With Cardiac Injury and COVID-19. https://www.ajmc.com/view/mortality-risk-factors-of-patients-with-cardiac-injury-and-covid19 . Accessed 16 Nov 2020</Citation>
</Reference>
<Reference>
<Citation>Kwong JC, Schwartz KL, Campitelli MA et al (2018) Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 378:345–353. https://doi.org/10.1056/NEJMoa1702090</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa1702090</ArticleId>
<ArticleId IdType="pubmed">29365305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Smeeth L, Thomas SL, Hall AJ et al (2004) Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 351:2611–2618. https://doi.org/10.1056/NEJMoa041747</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa041747</ArticleId>
<ArticleId IdType="pubmed">15602021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bonow RO, Fonarow GC, O’Gara PT, Yancy CW (2020) Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 5:751–753</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shi S, Qin M, Shen B et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 5:802–810. https://doi.org/10.1001/jamacardio.2020.0950</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.0950</ArticleId>
<ArticleId IdType="pubmed">7097841</ArticleId>
<ArticleId IdType="pmcid">7097841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wu C, Hu X, Song J et al (2020) Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). medRxiv. https://doi.org/ https://doi.org/10.1101/2020.02.26.20028589 . Accessed 16 November 2020</Citation>
</Reference>
<Reference>
<Citation>Dhakal BP, Sweitzer NK, Indik JH et al (2020) SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ 29:973–987. https://doi.org/10.1016/j.hlc.2020.05.101</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hlc.2020.05.101</ArticleId>
<ArticleId IdType="pubmed">32601020</ArticleId>
<ArticleId IdType="pmcid">7274628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kohli U, Lodha R (2020) Cardiac involvement in children with COVID-19. Indian Pediatr 57:936–939</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s13312-020-1998-0</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chan JF-W, Yuan S, Kok K-H et al (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395:514–523. https://doi.org/10.1016/S0140-6736(20)30154-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30154-9</ArticleId>
<ArticleId IdType="pubmed">7159286</ArticleId>
<ArticleId IdType="pmcid">7159286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li B, Yang J, Zhao F et al (2020) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 109:531–538. https://doi.org/10.1007/s00392-020-01626-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00392-020-01626-9</ArticleId>
<ArticleId IdType="pubmed">32161990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Groß S, Jahn C, Cushman S et al (2020) SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol 144:47–53. https://doi.org/10.1016/j.yjmcc.2020.04.031</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.yjmcc.2020.04.031</ArticleId>
<ArticleId IdType="pubmed">32360703</ArticleId>
<ArticleId IdType="pmcid">7191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nishiga M, Wang DW, Han Y et al (2020) COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 17:543–558. https://doi.org/10.1038/s41569-020-0413-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41569-020-0413-9</ArticleId>
<ArticleId IdType="pubmed">32690910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu X, Long C, Xiong Q et al (2020) Association of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with risk of COVID-19, inflammation level, severity, and death in patients with COVID-19: a rapid systematic review and meta-analysis. Clin Cardiol. https://doi.org/10.1002/clc.23421</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/clc.23421</ArticleId>
<ArticleId IdType="pubmed">33382482</ArticleId>
<ArticleId IdType="pmcid">7803360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bozkurt B, Kovacs R, Harrington B (2020) Joint HFSA/ACC/AHA statement addresses concerns Re: using RAAS antagonists in COVID-19. J Card Fail 26:370. https://doi.org/10.1016/j.cardfail.2020.04.013</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cardfail.2020.04.013</ArticleId>
<ArticleId IdType="pubmed">32439095</ArticleId>
<ArticleId IdType="pmcid">7234783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao C, Cai Y, Zhang K et al (2020) Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur Heart J 41:2058–2066. https://doi.org/10.1093/eurheartj/ehaa433</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/eurheartj/ehaa433</ArticleId>
<ArticleId IdType="pubmed">32498076</ArticleId>
<ArticleId IdType="pmcid">7314067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talasaz AH, Kakavand H, Van Tassell B et al (2020) Cardiovascular complications of COVID-19: pharmacotherapy perspective. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-020-07037-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10557-020-07037-2</ArticleId>
<ArticleId IdType="pubmed">32671601</ArticleId>
<ArticleId IdType="pmcid">7360896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xiong T-Y, Redwood S, Prendergast B, Chen M (2020) Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J 41:1798–1800. https://doi.org/10.1093/eurheartj/ehaa231</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/eurheartj/ehaa231</ArticleId>
<ArticleId IdType="pubmed">32186331</ArticleId>
<ArticleId IdType="pmcid">7454513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Topol EJ (2020) COVID-19 can affect the heart. Science 370:408–409. https://doi.org/10.1126/science.abe2813</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.abe2813</ArticleId>
<ArticleId IdType="pubmed">32967937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhang H, Penninger JM, Li Y et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46:586–590. https://doi.org/10.1007/s00134-020-05985-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00134-020-05985-9</ArticleId>
<ArticleId IdType="pubmed">32125455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW (2020) Cardiac involvement in COVID-19 patients: risk factors, predictors, and complications: a review. J Card Surg 35:1302–1305. https://doi.org/10.1111/jocs.14538</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/jocs.14538</ArticleId>
<ArticleId IdType="pubmed">32306491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Guzik TJ, Mohiddin SA, Dimarco A et al (2020) COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 116:1666–1687. https://doi.org/10.1093/cvr/cvaa106</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cvr/cvaa106</ArticleId>
<ArticleId IdType="pubmed">32352535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Babapoor-Farrokhran S, Gill D, Walker J et al (2020) Myocardial injury and COVID-19: possible mechanisms. Life Sci 253:117723. https://doi.org/10.1016/j.lfs.2020.117723</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.lfs.2020.117723</ArticleId>
<ArticleId IdType="pubmed">32360126</ArticleId>
<ArticleId IdType="pmcid">7194533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Libby P (2020) The Heart in COVID-19: primary target or secondary bystander? JACC Basic Transl Sci 5:537–542. https://doi.org/10.1016/j.jacbts.2020.04.001</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jacbts.2020.04.001</ArticleId>
<ArticleId IdType="pubmed">32292847</ArticleId>
<ArticleId IdType="pmcid">7151324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitrani RD, Dabas N, Goldberger JJ (2020) COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm 17:1984–1990. https://doi.org/10.1016/j.hrthm.2020.06.026</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2020.06.026</ArticleId>
<ArticleId IdType="pubmed">32599178</ArticleId>
<ArticleId IdType="pmcid">7319645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ferrario CM, Chappell MC, Tallant EA et al (1997) Counterregulatory actions of angiotensin-(1–7). Hypertension 30:535–541. https://doi.org/10.1161/01.hyp.30.3.535</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/01.hyp.30.3.535</ArticleId>
<ArticleId IdType="pubmed">9322978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kang Y, Chen T, Mui D et al (2020) Cardiovascular manifestations and treatment considerations in COVID-19. Heart 106:1132–1141. https://doi.org/10.1136/heartjnl-2020-317056</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/heartjnl-2020-317056</ArticleId>
<ArticleId IdType="pubmed">32354800</ArticleId>
<ArticleId IdType="pmcid">7211105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao XH, Li TY, He ZC et al (2020) A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi 49:411–417. https://doi.org/10.3760/cma.j.cn112151-20200312-00193</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3760/cma.j.cn112151-20200312-00193</ArticleId>
<ArticleId IdType="pubmed">32172546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shirazi S, Mami S, Mohtadi N et al (2020) Sudden cardiac death in COVID-19 patients, a report of three cases. Future Cardiol. https://doi.org/10.2217/fca-2020-0082</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2217/fca-2020-0082</ArticleId>
<ArticleId IdType="pubmed">32615807</ArticleId>
<ArticleId IdType="pmcid">7337161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Inciardi RM, Lupi L, Zaccone G et al (2020) Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5:819–824. https://doi.org/10.1001/jamacardio.2020.1096</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1096</ArticleId>
<ArticleId IdType="pubmed">32219357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fox SE, Akmatbekov A, Harbert JL et al (2020) Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 8:681–686. https://doi.org/10.1016/S2213-2600(20)30243-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S2213-2600(20)30243-5</ArticleId>
<ArticleId IdType="pubmed">32473124</ArticleId>
<ArticleId IdType="pmcid">7255143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr (2020) Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation 141:1903–1914. https://doi.org/10.1161/CIRCULATIONAHA.120.047349</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/CIRCULATIONAHA.120.047349</ArticleId>
<ArticleId IdType="pubmed">32297796</ArticleId>
<ArticleId IdType="pmcid">7314493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soy M, Keser G, Atagündüz P et al (2020) Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 39:2085–2094. https://doi.org/10.1007/s10067-020-05190-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05190-5</ArticleId>
<ArticleId IdType="pubmed">32474885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xu H, Hou K, Xu R et al (2020) Clinical characteristics and risk factors of cardiac involvement in COVID-19. J Am Heart Assoc 9:e016807. https://doi.org/10.1161/JAHA.120.016807</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/JAHA.120.016807</ArticleId>
<ArticleId IdType="pubmed">32806998</ArticleId>
<ArticleId IdType="pmcid">7726994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sanna G, Serrau G, Bassareo PP et al (2020) Children’s heart and COVID-19: Up-to-date evidence in the form of a systematic review. Eur J Pediatr 179:1079–1087. https://doi.org/10.1007/s00431-020-03699-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00431-020-03699-0</ArticleId>
<ArticleId IdType="pubmed">32474800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dunga SK, Sundaram TG, Kavadichanda CG (2020) Pathogenesis of muscle weakness in inflammatory myositis. Indian Journal of Rheumatology. https://www.indianjrheumatol.com/preprintarticle.asp?id=291069 . Accessed 16 Nov 2020</Citation>
</Reference>
<Reference>
<Citation>Guo T, Fan Y, Chen M et al (2020) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5:811–818. https://doi.org/10.1001/jamacardio.2020.1017</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1017</ArticleId>
<ArticleId IdType="pubmed">32219356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lazzerini PE, Boutjdir M, Capecchi PL (2020) COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation 142:7–9. https://doi.org/10.1161/CIRCULATIONAHA.120.047293</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/CIRCULATIONAHA.120.047293</ArticleId>
<ArticleId IdType="pubmed">32286863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Driggin E, Madhavan MV, Bikdeli B et al (2020) Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 75:2352–2371. https://doi.org/10.1016/j.jacc.2020.03.031</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jacc.2020.03.031</ArticleId>
<ArticleId IdType="pubmed">32201335</ArticleId>
<ArticleId IdType="pmcid">7198856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang D, Hu B, Hu C et al (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069. https://doi.org/10.1001/jama.2020.1585</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.1585</ArticleId>
<ArticleId IdType="pubmed">7042881</ArticleId>
<ArticleId IdType="pmcid">7042881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kwenandar F, Japar KV, Damay V et al (2020) Coronavirus disease 2019 and cardiovascular system: a narrative review. Int J Cardiol Heart Vasc 29:100557. https://doi.org/10.1016/j.ijcha.2020.100557</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijcha.2020.100557</ArticleId>
<ArticleId IdType="pubmed">32550259</ArticleId>
<ArticleId IdType="pmcid">7266760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bansal M (2020) Cardiovascular disease and COVID-19. Diabetes Metab Syndr 14:247–250. https://doi.org/10.1016/j.dsx.2020.03.013</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.dsx.2020.03.013</ArticleId>
<ArticleId IdType="pubmed">32247212</ArticleId>
<ArticleId IdType="pmcid">7102662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Varga Z, Flammer AJ, Steiger P et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30937-5</ArticleId>
<ArticleId IdType="pubmed">7172722</ArticleId>
<ArticleId IdType="pmcid">7172722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ahmed S, Zimba O, Gasparyan AY (2020) Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clin Rheumatol 39:2529–2543. https://doi.org/10.1007/s10067-020-05275-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05275-1</ArticleId>
<ArticleId IdType="pubmed">32654082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>O’Sullivan JM, Gonagle DM, Ward SE et al (2020) Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol 7:e553–e555</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S2352-3026(20)30215-5</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen D, Li X, Song Q et al (2020) Hypokalemia and Clinical Implications in Patients with Coronavirus Disease 2019 (COVID-19). medRxiv. https://doi.org/ https://doi.org/10.1101/2020.02.27.20028530 . Accessed 15 November 2020</Citation>
</Reference>
<Reference>
<Citation>Rozanski A, Blumenthal JA, Kaplan J (1999) Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99:2192–2217. https://doi.org/10.1161/01.cir.99.16.2192</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/01.cir.99.16.2192</ArticleId>
<ArticleId IdType="pubmed">10217662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yaribeygi H, Panahi Y, Sahraei H et al (2017) The impact of stress on body function: a review. EXCLI J 16:1057–1072. https://doi.org/10.17179/excli2017-480</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.17179/excli2017-480</ArticleId>
<ArticleId IdType="pubmed">28900385</ArticleId>
<ArticleId IdType="pmcid">5579396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Manolis AS, Manolis AA, Manolis TA et al (2020) COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2020.08.002</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tcm.2020.08.002</ArticleId>
<ArticleId IdType="pubmed">32814095</ArticleId>
<ArticleId IdType="pmcid">7429078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Abena PM, Decloedt EH, Bottieau E et al (2020) Chloroquine and hydroxychloroquine for the prevention or treatment of COVID-19 in Africa: caution for inappropriate off-label use in healthcare settings. Am J Trop Med Hyg 102:1184–1188. https://doi.org/10.4269/ajtmh.20-0290</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4269/ajtmh.20-0290</ArticleId>
<ArticleId IdType="pubmed">32323646</ArticleId>
<ArticleId IdType="pmcid">32323646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ingraham NE, Boulware D, Sparks MA et al (2020) Shining a light on the evidence for hydroxychloroquine in SARS-CoV-2. Crit Care 24:182. https://doi.org/10.1186/s13054-020-02894-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s13054-020-02894-7</ArticleId>
<ArticleId IdType="pubmed">32345336</ArticleId>
<ArticleId IdType="pmcid">7187670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pereira BB (2020) Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. J Toxicol Environ Health B Crit Rev 23:177–181. https://doi.org/10.1080/10937404.2020.1752340</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1080/10937404.2020.1752340</ArticleId>
<ArticleId IdType="pubmed">32281481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cairoli E, Espinosa G (2020) Hydroxychloroquine in the treatment of COVID-19: how to use it waiting for conclusive scientific evidence. Med Clin 155:134–135. https://doi.org/10.1016/j.medcle.2020.05.003</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.medcle.2020.05.003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M et al (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71:732–739</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cid/ciaa237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Najafi S, Rajaei E, Moallemian R, Nokhostin F (2020) The potential similarities of COVID-19 and autoimmune disease pathogenesis and therapeutic options: new insights approach. Clin Rheumatol 39:3223–3235. https://doi.org/10.1007/s10067-020-05376-x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05376-x</ArticleId>
<ArticleId IdType="pubmed">32885345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nittari G, Pallotta G, Amenta F, Tayebati SK (2020) Current pharmacological treatments for SARS-COV-2: a narrative review. Eur J Pharmacol 882:173328. https://doi.org/10.1016/j.ejphar.2020.173328</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ejphar.2020.173328</ArticleId>
<ArticleId IdType="pubmed">32603692</ArticleId>
<ArticleId IdType="pmcid">7320862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Meyerowitz EA, Vannier AGL, Friesen MGN et al (2020) Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J 34:6027–6037. https://doi.org/10.1096/fj.202000919</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1096/fj.202000919</ArticleId>
<ArticleId IdType="pubmed">32350928</ArticleId>
<ArticleId IdType="pmcid">7267640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ibáñez S, Martínez O, Valenzuela F et al (2020) Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Clin Rheumatol 39:2461–2465. https://doi.org/10.1007/s10067-020-05202-4</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05202-4</ArticleId>
<ArticleId IdType="pubmed">32495226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hashem AM, Alghamdi BS, Algaissi AA et al (2020) Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: a narrative review. Travel Med Infect Dis 35:101735. https://doi.org/10.1016/j.tmaid.2020.101735</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tmaid.2020.101735</ArticleId>
<ArticleId IdType="pubmed">32387694</ArticleId>
<ArticleId IdType="pmcid">7202851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Baildya N, Ghosh NN, Chattopadhyay AP (2020) Inhibitory activity of hydroxychloroquine on COVID-19 main protease: an insight from MD-simulation studies. J Mol Struct 1219:128595. https://doi.org/10.1016/j.molstruc.2020.128595</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.molstruc.2020.128595</ArticleId>
<ArticleId IdType="pubmed">32834108</ArticleId>
<ArticleId IdType="pmcid">7266611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Palmeira VA, Costa LB, Perez LG et al (2020) Do we have enough evidence to use chloroquine/hydroxychloroquine as a public health panacea for COVID-19? Clinics 75:e1928. https://doi.org/10.6061/clinics/2020/e1928</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.6061/clinics/2020/e1928</ArticleId>
<ArticleId IdType="pubmed">32401962</ArticleId>
<ArticleId IdType="pmcid">7199295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alanagreh ’ai L, Alzoughool F, Atoum M (2020) Risk of using hydroxychloroquine as a treatment of COVID-19. Int J Risk Saf Med 31:111–116. https://doi.org/10.3233/JRS-200024</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3233/JRS-200024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>An J, Woodward JJ, Sasaki T et al (2015) Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol 194:4089–4093. https://doi.org/10.4049/jimmunol.1402793</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4049/jimmunol.1402793</ArticleId>
<ArticleId IdType="pubmed">25821216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Taylor MA, Bennett M, Kumar V, Schatzle JD (2000) Functional defects of NK cells treated with chloroquine mimic the lytic defects observed in perforin-deficient mice. J Immunol 165:5048–5053. https://doi.org/10.4049/jimmunol.165.9.5048</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4049/jimmunol.165.9.5048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rahman MT, Idid SZ (2020) Can Zn Be a critical element in COVID-19 treatment? Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02194-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s12011-020-02194-9</ArticleId>
<ArticleId IdType="pubmed">33216319</ArticleId>
<ArticleId IdType="pmcid">7250542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xue J, Moyer A, Peng B et al (2014) Chloroquine is a zinc ionophore. PLoS ONE 9:e109180. https://doi.org/10.1371/journal.pone.0109180</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0109180</ArticleId>
<ArticleId IdType="pubmed">25271834</ArticleId>
<ArticleId IdType="pmcid">4182877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhou D, Dai S-M, Tong Q (2020) COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 75:1667–1670. https://doi.org/10.1093/jac/dkaa114</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/jac/dkaa114</ArticleId>
<ArticleId IdType="pubmed">32196083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Juurlink DN (2020) Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ 192:E450–E453. https://doi.org/10.1503/cmaj.200528</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1503/cmaj.200528</ArticleId>
<ArticleId IdType="pubmed">32269021</ArticleId>
<ArticleId IdType="pmcid">7207200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acharya Y, Sayed A (2020) Chloroquine and hydroxychloroquine as a repurposed agent against COVID-19: a narrative review. Ther Adv Infect Dis 7:2049936120947517. https://doi.org/10.1177/2049936120947517</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/2049936120947517</ArticleId>
<ArticleId IdType="pubmed">32821381</ArticleId>
<ArticleId IdType="pmcid">7404096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paumgartten FJR, Delgado IF, da Pitta LR, de Oliveira ACAX (2020) Chloroquine and hydroxychloroquine repositioning in times of COVID-19 pandemics, all that glitters is not gold. Cad Saude Publica 36:e00088520. https://doi.org/10.1590/0102-311x00088520</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1590/0102-311x00088520</ArticleId>
<ArticleId IdType="pubmed">32428074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nina PB, Dash AP (2020) Hydroxychloroquine as prophylaxis or treatment for COVID-19: What does the evidence say? Indian J Public Health 64:S125–S127. https://doi.org/10.4103/ijph.IJPH_496_20</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4103/ijph.IJPH_496_20</ArticleId>
<ArticleId IdType="pubmed">32496241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hydroxychloroquine: Drug information. UpToDate. https://www.uptodate.com/contents/hydroxychloroquine-drug-information . Accessed 15 November 2020</Citation>
</Reference>
<Reference>
<Citation>Ledingham J, Gullick N, Irving K et al (2017) BSR and BHPR guideline for the prescription and monitoring of non-biologic disease-modifying anti-rheumatic drugs. Rheumatology 56:2257. https://doi.org/10.1093/rheumatology/kex389</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/rheumatology/kex389</ArticleId>
<ArticleId IdType="pubmed">29029272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier J-C, Parola P et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105949</ArticleId>
<ArticleId IdType="pubmed">32205204</ArticleId>
<ArticleId IdType="pmcid">7102549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sen S, Werner A, Shekhar A (2020) Within a large healthcare system, the incidence of positive COVID-19 results and mortality are lower in patients on chronic hydroxychloroquine therapy. Drugs Ther Perspect. https://doi.org/10.1007/s40267-020-00741-x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s40267-020-00741-x</ArticleId>
<ArticleId IdType="pubmed">32837186</ArticleId>
<ArticleId IdType="pmcid">7238396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arshad S, Kilgore P, Chaudhry ZS et al (2020) Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 97:396–403. https://doi.org/10.1016/j.ijid.2020.06.099</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijid.2020.06.099</ArticleId>
<ArticleId IdType="pubmed">7330574</ArticleId>
<ArticleId IdType="pmcid">7330574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chowdhury MDS, Rathod J, Gernsheimer J (2020) A rapid systematic review of clinical trials utilizing chloroquine and hydroxychloroquine as a treatment for COVID-19. Acad Emerg Med 27:493–504. https://doi.org/10.1111/acem.14005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/acem.14005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ferner RE, Aronson JK (2020) Chloroquine and hydroxychloroquine in covid-19. BMJ 369:m1432. https://doi.org/10.1136/bmj.m1432</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/bmj.m1432</ArticleId>
<ArticleId IdType="pubmed">32269046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cohen MS (2020) Hydroxychloroquine for the prevention of covid-19 —searching for evidence. N Engl J Med 383:585–586</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMe2020388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gupta L, Misra DP, Agarwal V et al (2020) Management of rheumatic diseases in the time of covid-19 pandemic: perspectives of rheumatology practitioners from India. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-217509</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/annrheumdis-2020-217509</ArticleId>
<ArticleId IdType="pubmed">32669305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Misra DP, Agarwal V (2020) Blaming the peer reviewer: Don’t shoot the messenger!! Indian Journal of Rheumatology 15:162. https://doi.org/10.4103/injr.injr_187_20</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4103/injr.injr_187_20</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Meo SA, Klonoff DC, Akram J (2020) Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci 24:4539–4547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32373993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao J, Hu S (2020) Update on use of chloroquine/hydroxychloroquine to treat coronavirus disease 2019 (COVID-19). Biosci Trends 14:156–158. https://doi.org/10.5582/bst.2020.03072</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.5582/bst.2020.03072</ArticleId>
<ArticleId IdType="pubmed">32281583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shah S, Das S, Jain A et al (2020) A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease-19 (COVID-19). Int J Rheum Dis 23:613–619. https://doi.org/10.1111/1756-185X.13842</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/1756-185X.13842</ArticleId>
<ArticleId IdType="pubmed">32281213</ArticleId>
<ArticleId IdType="pmcid">7262257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gurjar M, Agarwal V (2020) Usefulness of hydroxychloroquine for COVID-19: Does answer lie in timing to start? Indian J Rheumatol 15:249</Citation>
</Reference>
<Reference>
<Citation>Self WH, Semler MW, Leither LM et al (2020) Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with covid-19: a randomized clinical trial. JAMA. https://doi.org/10.1001/jama.2020.22240</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jama.2020.22240</ArticleId>
<ArticleId IdType="pubmed">33165621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Offerhaus JA, Wilde AAM, Remme CA (2020) Prophylactic (hydroxy)chloroquine in COVID-19: potential relevance for cardiac arrhythmia risk. Heart Rhythm 17:1480–1486</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2020.07.001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kastritis E, Kitas GD, Vassilopoulos D et al (2020) Systemic autoimmune diseases, anti-rheumatic therapies, COVID-19 infection risk and patient outcomes. Rheumatol Int 40:1353–1360. https://doi.org/10.1007/s00296-020-04629-x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00296-020-04629-x</ArticleId>
<ArticleId IdType="pubmed">32654078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prodromos CC, Rumschlag T, Perchyk T (2020) Hydroxychloroquine is protective to the heart, not harmful: a systematic review. New Micro New Infect 37:100747. https://doi.org/10.1016/j.nmni.2020.100747</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.nmni.2020.100747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kamp TJ, Hamdan MH, January CT (2020) Chloroquine or hydroxychloroquine for COVID-19: is cardiotoxicity a concern? J Am Heart Assoc 9:e016887. https://doi.org/10.1161/JAHA.120.016887</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/JAHA.120.016887</ArticleId>
<ArticleId IdType="pubmed">32463308</ArticleId>
<ArticleId IdType="pmcid">7429067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mégarbane B, Scherrmann J-M (2020) Hydroxychloroquine and azithromycin to treat patients with COVID-19: both friends and foes? J Clin Pharmacol 60:808–814. https://doi.org/10.1002/jcph.1646</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jcph.1646</ArticleId>
<ArticleId IdType="pubmed">32434282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kalra RS, Tomar D, Meena AS, Kandimalla R (2020) SARS-CoV-2, ACE2, and hydroxychloroquine: cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens. https://doi.org/10.3390/pathogens9070546</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/pathogens9070546</ArticleId>
<ArticleId IdType="pubmed">32645974</ArticleId>
<ArticleId IdType="pmcid">7400328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stevenson A, Kirresh A, Conway S et al (2020) Hydroxychloroquine use in COVID-19: is the risk of cardiovascular toxicity justified? Open Heart 7:e001362</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/openhrt-2020-001362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Polak S, Wiśniowska B, Brandys J (2009) Collation, assessment and analysis of literaturein vitrodata on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. J Appl Toxicol 29:183–206</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jat.1395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jankelson L, Karam G, Becker ML et al (2020) QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm 17:1472–1479. https://doi.org/10.1016/j.hrthm.2020.05.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2020.05.008</ArticleId>
<ArticleId IdType="pubmed">32438018</ArticleId>
<ArticleId IdType="pmcid">7211688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Singh AP, Tousif S, Umbarkar P, Lal H (2020) A pharmacovigilance study of hydroxychloroquine cardiac safety profile: potential implication in COVID-19 mitigation. J Clin Med 9:1867</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/jcm9061867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Borba MGS, Val FFA, Sampaio VS et al (2020) Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 3:e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamanetworkopen.2020.8857</ArticleId>
<ArticleId IdType="pubmed">32330277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anupama BK, Adhikari S, Chaudhuri D (2020) Prolonged qt interval in a patient with coronavirus disease-2019: beyond hydroxychloroquine and azithromycin. J Investig Med High Impact Case Rep 8:2324709620948407. https://doi.org/10.1177/2324709620948407</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/2324709620948407</ArticleId>
<ArticleId IdType="pubmed">32762368</ArticleId>
<ArticleId IdType="pmcid">7418230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sinkeler FS, Berger FA, Muntinga HJ, Jansen MMPM (2020) The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine. Neth Heart J 28:418–423. https://doi.org/10.1007/s12471-020-01462-6</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s12471-020-01462-6</ArticleId>
<ArticleId IdType="pubmed">32648153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Park B, Lee Y-J (2018) Metabolic syndrome and its components as risk factors for prolonged corrected QT interval in apparently healthy Korean men and women. J Clin Lipidol 12:1298–1304. https://doi.org/10.1016/j.jacl.2018.07.004</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jacl.2018.07.004</ArticleId>
<ArticleId IdType="pubmed">30100158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Darpö B (2001) Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. Eur Heart J Suppl 3:K70–K80. https://doi.org/10.1016/S1520-765X(01)90009-4</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S1520-765X(01)90009-4</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Belardinelli L, Giles WR, Rajamani S et al (2015) Cardiac late Na current: Proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12:440–448</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2014.11.009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen C-Y, Wang F-L, Lin C-C (2006) Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin Toxicol 44:173–175. https://doi.org/10.1080/15563650500514558</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1080/15563650500514558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Morgan ND, Patel SV, Dvorkina O (2013) Suspected hydroxychloroquine-associated QT-interval prolongation in a patient with systemic lupus erythematosus. J Clin Rheumatol 19:286–288</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1097/RHU.0b013e31829d5e50</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>O’Laughlin JP, Mehta PH, Wong BC (2016) Life threatening severe QTc prolongation in patient with systemic lupus erythematosus due to hydroxychloroquine. Case Rep Cardiol 2016:1–4</Citation>
</Reference>
<Reference>
<Citation>Hooks M, Bart B, Vardeny O et al (2020) Effects of hydroxychloroquine treatment on QT interval. Heart Rhythm 17:1930–1935</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2020.06.029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haeusler IL, Chan XHS, Guérin PJ, White NJ (2018) The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med 16:200. https://doi.org/10.1186/s12916-018-1188-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s12916-018-1188-2</ArticleId>
<ArticleId IdType="pubmed">30400791</ArticleId>
<ArticleId IdType="pmcid">6220451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu D, Li X, Zhang Y et al (2018) Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: a systematic review and meta-analysis. Drug Des Devel Ther 12:1685–1695. https://doi.org/10.2147/DDDT.S166893</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.2147/DDDT.S166893</ArticleId>
<ArticleId IdType="pubmed">29928112</ArticleId>
<ArticleId IdType="pmcid">6001837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rempenault C, Combe B, Barnetche T et al (2018) Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 77:98–103. https://doi.org/10.1136/annrheumdis-2017-211836</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/annrheumdis-2017-211836</ArticleId>
<ArticleId IdType="pubmed">28970215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rempenault C, Combe B, Barnetche T et al (2020) Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis Care Res 72:36–40. https://doi.org/10.1002/acr.23826</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/acr.23826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hung Y-M, Wang Y-H, Lin L et al (2018) Hydroxychloroquine may be associated with reduced risk of coronary artery diseases in patients with rheumatoid arthritis: a nationwide population-based cohort study. Int J Clin Pract 72:e13095</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/ijcp.13095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yang D-H, Leong P-Y, Sia S-K et al (2019) Long-term hydroxychloroquine therapy and risk of coronary artery disease in patients with systemic lupus erythematosus. J Clin Med Res. https://doi.org/10.3390/jcm8060796</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/jcm8060796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rho YH, Oeser A, Chung CP et al (2009) Drugs used in the treatment of rheumatoid arthritis: relationship between current use and cardiovascular risk factors. Arch Drug Inf 2:34–40. https://doi.org/10.1111/j.1753-5174.2009.00019.x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1753-5174.2009.00019.x</ArticleId>
<ArticleId IdType="pubmed">19684849</ArticleId>
<ArticleId IdType="pmcid">2721969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>van Halm VP, Nurmohamed MT, Twisk JWR et al (2006) Disease-modifying antirheumatic drugs are associated with a reduced risk for cardiovascular disease in patients with rheumatoid arthritis: a case control study. Arthritis Res Ther 8:R151. https://doi.org/10.1186/ar2045</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/ar2045</ArticleId>
<ArticleId IdType="pubmed">16984661</ArticleId>
<ArticleId IdType="pmcid">1779436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sharma TS, Wasko MCM, Tang X et al (2016) Hydroxychloroquine use is associated with decreased incident cardiovascular events in rheumatoid arthritis patients. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002867</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/JAHA.115.002867</ArticleId>
<ArticleId IdType="pubmed">28003248</ArticleId>
<ArticleId IdType="pmcid">5210443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shapiro M, Levy Y (2018) The association between hydroxychloroquine treatment and cardiovascular morbidity among rheumatoid arthritis patients. Oncotarget 9:6615–6622. https://doi.org/10.18632/oncotarget.23570</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.18632/oncotarget.23570</ArticleId>
<ArticleId IdType="pubmed">29464097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Roongta R, Ghosh A (2020) Managing rheumatoid arthritis during COVID-19. Clin Rheumatol 39:3237–3244. https://doi.org/10.1007/s10067-020-05358-z</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10067-020-05358-z</ArticleId>
<ArticleId IdType="pubmed">32892311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fernandez-Ruiz R, Bornkamp N, Kim MY et al (2020) Discontinuation of hydroxychloroquine in older patients with systemic lupus erythematosus: a multicenter retrospective study. Arthritis Res Ther 22:191. https://doi.org/10.1186/s13075-020-02282-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s13075-020-02282-0</ArticleId>
<ArticleId IdType="pubmed">32807233</ArticleId>
<ArticleId IdType="pmcid">7430013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang Y, Chen Z, Wang Y et al (2020) Clinical characteristics of 17 patients with COVID-19 and systemic autoimmune diseases: a retrospective study. Ann Rheum Dis 79:1163–1169</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/annrheumdis-2020-217425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aouhab Z, Hong H, Felicelli C et al (2019) Outcomes of systemic lupus erythematosus in patients who discontinue hydroxychloroquine. ACR Open Rheumatol 1:593–599. https://doi.org/10.1002/acr2.11084</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/acr2.11084</ArticleId>
<ArticleId IdType="pubmed">31777844</ArticleId>
<ArticleId IdType="pmcid">6857977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Finkelstein Y, Adler Y, Harel L et al (1997) Anti-Ro (SSA) and anti-La (SSB) antibodies and complete congenital heart block. Ann Med Interne 148:205–208</Citation>
</Reference>
<Reference>
<Citation>Konig MF, Li J, Petri M (2020) O1 Hydroxychloroquine blood levels and risk of thrombotic events in systemic lupus erythematous. Lupus Sci Med. https://doi.org/10.1136/lupus-2020-eurolupus.15</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/lupus-2020-eurolupus.15</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ruiz-Irastorza G, Egurbide MV, Pijoan JI et al (2006) Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus 15:577–583. https://doi.org/10.1177/0961203306071872</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1177/0961203306071872</ArticleId>
<ArticleId IdType="pubmed">17080912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gupta A (2018) Association of hydroxychloroquine use and incident atrial fibrillation in systemic lupus erythematosus: a retrospective study. 2018 ACR/ARHP Annual Meeting. https://acr.confex.com/acr/2018/meetingapp.cgi/Paper/75155 . Accessed 15 November 2020</Citation>
</Reference>
<Reference>
<Citation>Kabeerdoss J, Danda D (2020) Understanding immunopathological fallout of human coronavirus infections including COVID-19: will they cross the path of rheumatologists? Int J Rheum Dis. https://doi.org/10.1111/1756-185X.13909</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/1756-185X.13909</ArticleId>
<ArticleId IdType="pubmed">32779341</ArticleId>
<ArticleId IdType="pmcid">7436450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Morin DP, Homoud MK, Mark Estes NA (2017) Prediction and prevention of sudden cardiac death. Cardiac Electrophysiol Clin 9:631–638</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ccep.2017.07.012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0140-6736(20)30566-3</ArticleId>
<ArticleId IdType="pubmed">7270627</ArticleId>
<ArticleId IdType="pmcid">7270627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kuriachan VP, Sumner GL, Mitchell LB (2015) Sudden cardiac death. Curr Probl Cardiol 40:133–200. https://doi.org/10.1016/j.cpcardiol.2015.01.002</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.cpcardiol.2015.01.002</ArticleId>
<ArticleId IdType="pubmed">25813838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kuck K-H (2020) Arrhythmias and sudden cardiac death in the COVID-19 pandemic. Herz 45:325–326. https://doi.org/10.1007/s00059-020-04924-0</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00059-020-04924-0</ArticleId>
<ArticleId IdType="pubmed">32333026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14:72–73. https://doi.org/10.5582/bst.2020.01047</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.5582/bst.2020.01047</ArticleId>
<ArticleId IdType="pubmed">32074550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier J-C, Parola P et al (2020) Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis 34:101663. https://doi.org/10.1016/j.tmaid.2020.101663</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tmaid.2020.101663</ArticleId>
<ArticleId IdType="pubmed">32289548</ArticleId>
<ArticleId IdType="pmcid">32289548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen Z, Hu J, Zhang Z et al (2020) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. http://dx.doi.org/ https://doi.org/10.1101/2020.03.22.20040758 . Accessed 15 November 2020</Citation>
</Reference>
<Reference>
<Citation>Million M, Lagier J-C, Gautret P et al (2020) Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille. France Travel Med Infect Dis 35:101738. https://doi.org/10.1016/j.tmaid.2020.101738</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tmaid.2020.101738</ArticleId>
<ArticleId IdType="pubmed">32387409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Barbosa J, Kaitis D, Freedman R et al (2020) Clinical outcomes of hydroxychloroquine in hospitalized patients with COVID-19: a quasi-randomized comparative study. N Engl J Med. https://aslm.org/wp-content/uploads/2020/06/1589740749-NEJM_Clinical-Outcomes-of-Hydroxychlorquine-in-Patients-with-COVID19.pdf?x10839 . Accessed 15 November 2020</Citation>
</Reference>
<Reference>
<Citation>Chen J, Liu D, Liu L et al (2020) A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban 49:215–219. https://doi.org/10.3785/j.issn.1008-9292.2020.03.03</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3785/j.issn.1008-9292.2020.03.03</ArticleId>
<ArticleId IdType="pubmed">32391667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geleris J, Sun Y, Platt J et al (2020) Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med 382:2411–2418. https://doi.org/10.1056/NEJMoa2012410</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2012410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molina JM, Delaugerre C, Le Goff J et al (2020) No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 50:384. https://doi.org/10.1016/j.medmal.2020.03.006</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.medmal.2020.03.006</ArticleId>
<ArticleId IdType="pubmed">32240719</ArticleId>
<ArticleId IdType="pmcid">7195369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magagnoli J, Narendran S, Pereira F et al (2020) Outcomes of hydroxychloroquine usage in united states veterans hospitalized with COVID-19. Med (N Y). https://doi.org/10.1016/j.medj.2020.06.001</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.medj.2020.06.001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cipriani A, Zorzi A, Ceccato D et al (2020) Arrhythmic profile and 24-hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin. Int J Cardiol 316:280–284. https://doi.org/10.1016/j.ijcard.2020.05.036</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijcard.2020.05.036</ArticleId>
<ArticleId IdType="pubmed">32439366</ArticleId>
<ArticleId IdType="pmcid">7235573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Asli R, Abdullah MS, Chong PL et al (2020) Case report: right bundle brunch block and QTc prolongation in a patient with COVID-19 treated with hydroxychloroquine. Am J Trop Med Hyg 103:79–82</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.4269/ajtmh.20-0376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chorin E, Wadhwani L, Magnani S et al (2020) QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm 17:1425–1433. https://doi.org/10.1016/j.hrthm.2020.05.014</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.hrthm.2020.05.014</ArticleId>
<ArticleId IdType="pubmed">32407884</ArticleId>
<ArticleId IdType="pmcid">7214283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mahévas M, Tran V-T, Roumier M et al (2020) Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ 369:m1844. https://doi.org/10.1136/bmj.m1844.2020May;369</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1136/bmj.m1844.2020May;369</ArticleId>
<ArticleId IdType="pubmed">32409486</ArticleId>
<ArticleId IdType="pmcid">7221472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mercuro NJ, Yen CF, Shim DJ et al (2020) Risk of QT Interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 5:1036–1041. https://doi.org/10.1001/jamacardio.2020.1834</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1834</ArticleId>
<ArticleId IdType="pubmed">32936252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bessière F, Roccia H, Delinière A et al (2020) Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit. JAMA Cardiol 5:1067</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1001/jamacardio.2020.1787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lane JCE, Weaver J, Kostka K et al (2020) Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. Lancet Rheumatol 2:e698–e711. https://doi.org/10.1016/S2665-9913(20)30276-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S2665-9913(20)30276-9</ArticleId>
<ArticleId IdType="pubmed">32864627</ArticleId>
<ArticleId IdType="pmcid">7442425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Saleh M, Gabriels J, Chang D et al (2020) Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol 13:e008662. https://doi.org/10.1161/CIRCEP.120.008662</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1161/CIRCEP.120.008662</ArticleId>
<ArticleId IdType="pubmed">32347743</ArticleId>
<ArticleId IdType="pmcid">7299095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000568 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000568 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33386447
   |texte=   COVID-19, hydroxychloroquine and sudden cardiac death: implications for clinical practice in patients with rheumatic diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33386447" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021