Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predictive medicinal metabolites from Momordica dioica against comorbidity related proteins of SARS-CoV-2 infections.

Identifieur interne : 000509 ( Main/Corpus ); précédent : 000508; suivant : 000510

Predictive medicinal metabolites from Momordica dioica against comorbidity related proteins of SARS-CoV-2 infections.

Auteurs : Chavan Sakshi ; A. Harikrishnan ; Selvakumar Jayaraman ; Ahana Roy Choudhury ; V. Veena

Source :

RBID : pubmed:33427588

Abstract

Momordica dioica have proven medicinal potential of antidiabetic, antiviral and immune stimulating properties. Flavonoids and triterpenoids from M. dioica were more extensively investigated for antiviral, antidiabetic and immunomodulatory activities. In this present study, we have predicted the reported bioactive flavonoids and triterpenoids of the plant against the SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), spike protein, angiotensin converting enzyme (ACE-2) receptor and dipeptidyl peptidase (DPP4) receptor through molecular docking and in silico ADME predictions methods. According to the binding affinities, the two triterpenoids, hederagenin and oleanolic acid exhibited the best docking scores with these proteins than the catechin and quercetin with compared to standard remdesivir, favipiravir and hydroxychloroquine. The in vitro protein-drug studies have also showed significant interaction of catechin and quercetin compounds than standard drugs. The in silico binding studies correlated with the in silico binding studies. Further, M. dioica being used as antidiabetic and its metabolite had significant interaction with DDP4, a comorbidity protein involved in aiding the viral entry. Out of all the natural ligands, quercetin was reported relatively good and safe for humans with high gastrointestinal tract permeability and poor blood brain barrier crossing abilities. Hence, M. dioica phytocompounds reflects promising therapeutic properties against SARS-CoV-2 infections under comorbid conditions such as diabetes, cardiovascular disease and kidney disorders. Communicated by Ramaswamy H. Sarma.

DOI: 10.1080/07391102.2020.1868340
PubMed: 33427588
PubMed Central: PMC7814569

Links to Exploration step

pubmed:33427588

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predictive medicinal metabolites from
<i>Momordica dioica</i>
against comorbidity related proteins of SARS-CoV-2 infections.</title>
<author>
<name sortKey="Sakshi, Chavan" sort="Sakshi, Chavan" uniqKey="Sakshi C" first="Chavan" last="Sakshi">Chavan Sakshi</name>
<affiliation>
<nlm:affiliation>Department of Bioanalytical Sciences, Ramnarain Ruia Autonomous College, Mumbai, Maharashtra, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harikrishnan, A" sort="Harikrishnan, A" uniqKey="Harikrishnan A" first="A" last="Harikrishnan">A. Harikrishnan</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jayaraman, Selvakumar" sort="Jayaraman, Selvakumar" uniqKey="Jayaraman S" first="Selvakumar" last="Jayaraman">Selvakumar Jayaraman</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Wright State University, Dayton, OH, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Choudhury, Ahana Roy" sort="Choudhury, Ahana Roy" uniqKey="Choudhury A" first="Ahana Roy" last="Choudhury">Ahana Roy Choudhury</name>
<affiliation>
<nlm:affiliation>Centre for Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veena, V" sort="Veena, V" uniqKey="Veena V" first="V" last="Veena">V. Veena</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33427588</idno>
<idno type="pmid">33427588</idno>
<idno type="doi">10.1080/07391102.2020.1868340</idno>
<idno type="pmc">PMC7814569</idno>
<idno type="wicri:Area/Main/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predictive medicinal metabolites from
<i>Momordica dioica</i>
against comorbidity related proteins of SARS-CoV-2 infections.</title>
<author>
<name sortKey="Sakshi, Chavan" sort="Sakshi, Chavan" uniqKey="Sakshi C" first="Chavan" last="Sakshi">Chavan Sakshi</name>
<affiliation>
<nlm:affiliation>Department of Bioanalytical Sciences, Ramnarain Ruia Autonomous College, Mumbai, Maharashtra, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harikrishnan, A" sort="Harikrishnan, A" uniqKey="Harikrishnan A" first="A" last="Harikrishnan">A. Harikrishnan</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jayaraman, Selvakumar" sort="Jayaraman, Selvakumar" uniqKey="Jayaraman S" first="Selvakumar" last="Jayaraman">Selvakumar Jayaraman</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Wright State University, Dayton, OH, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Choudhury, Ahana Roy" sort="Choudhury, Ahana Roy" uniqKey="Choudhury A" first="Ahana Roy" last="Choudhury">Ahana Roy Choudhury</name>
<affiliation>
<nlm:affiliation>Centre for Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Veena, V" sort="Veena, V" uniqKey="Veena V" first="V" last="Veena">V. Veena</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomolecular structure & dynamics</title>
<idno type="eISSN">1538-0254</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Momordica dioica</i>
have proven medicinal potential of antidiabetic, antiviral and immune stimulating properties. Flavonoids and triterpenoids from
<i>M. dioica</i>
were more extensively investigated for antiviral, antidiabetic and immunomodulatory activities. In this present study, we have predicted the reported bioactive flavonoids and triterpenoids of the plant against the SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), spike protein, angiotensin converting enzyme (ACE-2) receptor and dipeptidyl peptidase (DPP4) receptor through molecular docking and
<i>in silico</i>
ADME predictions methods. According to the binding affinities, the two triterpenoids, hederagenin and oleanolic acid exhibited the best docking scores with these proteins than the catechin and quercetin with compared to standard remdesivir, favipiravir and hydroxychloroquine. The
<i>in vitro</i>
protein-drug studies have also showed significant interaction of catechin and quercetin compounds than standard drugs. The
<i>in silico</i>
binding studies correlated with the
<i>in silico</i>
binding studies. Further,
<i>M. dioica</i>
being used as antidiabetic and its metabolite had significant interaction with DDP4, a comorbidity protein involved in aiding the viral entry. Out of all the natural ligands, quercetin was reported relatively good and safe for humans with high gastrointestinal tract permeability and poor blood brain barrier crossing abilities. Hence,
<i>M. dioica</i>
phytocompounds reflects promising therapeutic properties against SARS-CoV-2 infections under comorbid conditions such as diabetes, cardiovascular disease and kidney disorders. Communicated by Ramaswamy H. Sarma.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33427588</PMID>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1538-0254</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Journal of biomolecular structure & dynamics</Title>
<ISOAbbreviation>J Biomol Struct Dyn</ISOAbbreviation>
</Journal>
<ArticleTitle>Predictive medicinal metabolites from
<i>Momordica dioica</i>
against comorbidity related proteins of SARS-CoV-2 infections.</ArticleTitle>
<Pagination>
<MedlinePgn>1-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/07391102.2020.1868340</ELocationID>
<Abstract>
<AbstractText>
<i>Momordica dioica</i>
have proven medicinal potential of antidiabetic, antiviral and immune stimulating properties. Flavonoids and triterpenoids from
<i>M. dioica</i>
were more extensively investigated for antiviral, antidiabetic and immunomodulatory activities. In this present study, we have predicted the reported bioactive flavonoids and triterpenoids of the plant against the SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), spike protein, angiotensin converting enzyme (ACE-2) receptor and dipeptidyl peptidase (DPP4) receptor through molecular docking and
<i>in silico</i>
ADME predictions methods. According to the binding affinities, the two triterpenoids, hederagenin and oleanolic acid exhibited the best docking scores with these proteins than the catechin and quercetin with compared to standard remdesivir, favipiravir and hydroxychloroquine. The
<i>in vitro</i>
protein-drug studies have also showed significant interaction of catechin and quercetin compounds than standard drugs. The
<i>in silico</i>
binding studies correlated with the
<i>in silico</i>
binding studies. Further,
<i>M. dioica</i>
being used as antidiabetic and its metabolite had significant interaction with DDP4, a comorbidity protein involved in aiding the viral entry. Out of all the natural ligands, quercetin was reported relatively good and safe for humans with high gastrointestinal tract permeability and poor blood brain barrier crossing abilities. Hence,
<i>M. dioica</i>
phytocompounds reflects promising therapeutic properties against SARS-CoV-2 infections under comorbid conditions such as diabetes, cardiovascular disease and kidney disorders. Communicated by Ramaswamy H. Sarma.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sakshi</LastName>
<ForeName>Chavan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioanalytical Sciences, Ramnarain Ruia Autonomous College, Mumbai, Maharashtra, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harikrishnan</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jayaraman</LastName>
<ForeName>Selvakumar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Wright State University, Dayton, OH, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choudhury</LastName>
<ForeName>Ahana Roy</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Centre for Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veena</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Biomol Struct Dyn</MedlineTA>
<NlmUniqueID>8404176</NlmUniqueID>
<ISSNLinking>0739-1102</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N"> Momordica dioica </Keyword>
<Keyword MajorTopicYN="N">ADME</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">comorbid</Keyword>
<Keyword MajorTopicYN="N">molecular docking</Keyword>
<Keyword MajorTopicYN="N">viral proteases</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>12</Hour>
<Minute>15</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33427588</ArticleId>
<ArticleId IdType="doi">10.1080/07391102.2020.1868340</ArticleId>
<ArticleId IdType="pmc">PMC7814569</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Pharmacol. 2020 Aug 07;11:1161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32848769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2020 Jun 22;:1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32567989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Cent Sci. 2020 Mar 25;6(3):315-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evid Based Complement Alternat Med. 2014;2014:806082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25197312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>OMICS. 2009 Aug;13(4):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19645590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Dec;471-473:49-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):601-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32178593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Vaccin Immunother. 2020 Jun 2;16(6):1232-1238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32186952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2019 Apr;14(4):397-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30849247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cureus. 2020 Mar 20;12(3):e7343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32226695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 May;214:108393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32222466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Metab Syndr. 2020 Jul - Aug;14(4):283-287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Pharmacol. 2020 Jan-Feb;52(1):56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32201449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2020 Dec;9(1):727-732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32196410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2020 Mar 16;6(1):14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33723226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Res Clin Pract. 2020 Apr;162:108125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32224164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001-7003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32165541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2014 Jan;101:105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24269477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2013 Jul 1;23(13):3709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2020 May 1;318(5):E736-E741</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 03;7:42717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28256516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Targets. 2020 Feb;24(2):147-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31971463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2020 Mar;19(3):149-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32127666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Jan 30;31(2):455-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2020 Nov 5;886:173448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32768503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2020 Jan 10;11(1):222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31924756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Diabetes Complications. 2020 Sep;34(9):107637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32456846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2020 Jun 24;:1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32579064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Hortic. 2016 Jan 26;198:132-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32287883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2011 Oct 07;3:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21982300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2020 Oct 1;258:118202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32758625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2020 Jun 16;:1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32476574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2020 Apr;38(4):379-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205870</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33427588
   |texte=   Predictive medicinal metabolites from Momordica dioica against comorbidity related proteins of SARS-CoV-2 infections.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33427588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021