Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.

Identifieur interne : 000508 ( Main/Corpus ); précédent : 000507; suivant : 000509

Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.

Auteurs : Dingzhong Li ; Jianbing Hu ; Dian Li ; Weijun Yang ; Shuang-Feng Yin ; Renhua Qiu

Source :

RBID : pubmed:33428032

English descriptors

Abstract

COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, Mpro inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.

DOI: 10.1007/s41061-020-00318-2
PubMed: 33428032
PubMed Central: PMC7797499

Links to Exploration step

pubmed:33428032

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.</title>
<author>
<name sortKey="Li, Dingzhong" sort="Li, Dingzhong" uniqKey="Li D" first="Dingzhong" last="Li">Dingzhong Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianbing" sort="Hu, Jianbing" uniqKey="Hu J" first="Jianbing" last="Hu">Jianbing Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. 378704627@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Dian" sort="Li, Dian" uniqKey="Li D" first="Dian" last="Li">Dian Li</name>
<affiliation>
<nlm:affiliation>Department of Modern Economy and Trade, Hunan Vocational College of Engineering, Changsha, 410151, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Weijun" sort="Yang, Weijun" uniqKey="Yang W" first="Weijun" last="Yang">Weijun Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. wjyang@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Shuang Feng" sort="Yin, Shuang Feng" uniqKey="Yin S" first="Shuang-Feng" last="Yin">Shuang-Feng Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Renhua" sort="Qiu, Renhua" uniqKey="Qiu R" first="Renhua" last="Qiu">Renhua Qiu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. qiurh@qq.com.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33428032</idno>
<idno type="pmid">33428032</idno>
<idno type="doi">10.1007/s41061-020-00318-2</idno>
<idno type="pmc">PMC7797499</idno>
<idno type="wicri:Area/Main/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.</title>
<author>
<name sortKey="Li, Dingzhong" sort="Li, Dingzhong" uniqKey="Li D" first="Dingzhong" last="Li">Dingzhong Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianbing" sort="Hu, Jianbing" uniqKey="Hu J" first="Jianbing" last="Hu">Jianbing Hu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. 378704627@qq.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Dian" sort="Li, Dian" uniqKey="Li D" first="Dian" last="Li">Dian Li</name>
<affiliation>
<nlm:affiliation>Department of Modern Economy and Trade, Hunan Vocational College of Engineering, Changsha, 410151, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Weijun" sort="Yang, Weijun" uniqKey="Yang W" first="Weijun" last="Yang">Weijun Yang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. wjyang@hnu.edu.cn.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yin, Shuang Feng" sort="Yin, Shuang Feng" uniqKey="Yin S" first="Shuang-Feng" last="Yin">Shuang-Feng Yin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Renhua" sort="Qiu, Renhua" uniqKey="Qiu R" first="Renhua" last="Qiu">Renhua Qiu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. qiurh@qq.com.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Topics in current chemistry (Cham)</title>
<idno type="eISSN">2364-8961</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimalarials (therapeutic use)</term>
<term>Antiviral Agents (chemical synthesis)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>COVID-19 (drug therapy)</term>
<term>Clinical Trials as Topic (MeSH)</term>
<term>Drug Repositioning (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Janus Kinase Inhibitors (therapeutic use)</term>
<term>Small Molecule Libraries (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
<term>Antiviral Agents</term>
<term>Janus Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Clinical Trials as Topic</term>
<term>Drug Repositioning</term>
<term>Humans</term>
<term>Small Molecule Libraries</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, M
<sup>pro</sup>
inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">33428032</PMID>
<DateCompleted>
<Year>2021</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>02</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2364-8961</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>379</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Topics in current chemistry (Cham)</Title>
<ISOAbbreviation>Top Curr Chem (Cham)</ISOAbbreviation>
</Journal>
<ArticleTitle>Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s41061-020-00318-2</ELocationID>
<Abstract>
<AbstractText>COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, M
<sup>pro</sup>
inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Dingzhong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jianbing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. 378704627@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Dian</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Modern Economy and Trade, Hunan Vocational College of Engineering, Changsha, 410151, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Weijun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. wjyang@hnu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Shuang-Feng</ForeName>
<Initials>SF</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Renhua</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8423-9988</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China. qiurh@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>21676076</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>21878071</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>21971060</GrantID>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018RS3042</GrantID>
<Agency>Hu-Xiang High Talent in Hunan Province</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>WQ20164300353</GrantID>
<Agency>State Administration of Foreign Experts Affairs (CN)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Top Curr Chem (Cham)</MedlineTA>
<NlmUniqueID>101691301</NlmUniqueID>
<ISSNLinking>2364-8961</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000075242">Janus Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002986" MajorTopicYN="N">Clinical Trials as Topic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058492" MajorTopicYN="N">Drug Repositioning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000075242" MajorTopicYN="N">Janus Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="Y">Small Molecule Libraries</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Favipiravir</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Remdesivir</Keyword>
<Keyword MajorTopicYN="N">Ruxolitinib</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>12</Hour>
<Minute>19</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33428032</ArticleId>
<ArticleId IdType="doi">10.1007/s41061-020-00318-2</ArticleId>
<ArticleId IdType="pii">10.1007/s41061-020-00318-2</ArticleId>
<ArticleId IdType="pmc">PMC7797499</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Hussin AR, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. https://doi.org/10.1016/j.jaut.2020.102433</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jaut.2020.102433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K, Zhang Y (2020) The important role of polysaccharides from a traditional Chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116346</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.carbpol.2020.116346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eriko PR (2020) Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther. https://doi.org/10.1007/s40121-020-00300-x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s40121-020-00300-x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W (2020) COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vacc Immunother. https://doi.org/10.1080/21645515.2020.1735227</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1080/21645515.2020.1735227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Duan K, Liu BD, Li CS, Zhang HJ, Yu T, Qu JM, Zhoug M, Chen L, Meng SL, Hu Y, Peng C, Yuan MC, Huang JY, Wang ZJ, Yu JH, Gao XX, Wang D, Yu XQ, Li L, Zhang JY, Wu X, Li B, Xu YP, Chen W, Peng Y, Hu YQ, Lin LZ, Liu XF, Huang SH, Zhou ZJ, Zhang LH, Wang Y, Zhang Z, Deng K, Xia ZW, Gong Q, Zhang W, Zheng XB, Liu Y, Yang HC, Zhou DB, Yu D, Hou JF, Shi ZL, Chen SJ, Chen Z, Zhang XX, Yang XM (2020) Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 117(17):9490–9494</Citation>
</Reference>
<Reference>
<Citation>Zhao Q, He Y (2020) Challenges of convalescent plasma therapy on COVID-19. J Clin Virol 127:104358–104363</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7146649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen L, Xiong J, Bao L, Shi Y (2020) Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 20(4):398–400</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7128218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu C, Zhou QQ, Li YZ, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D (2020) Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci 6(3):315–331</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7094090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang J, Martin S, Zand MD (2020) The potential for antibody-dependent enhancement of SARS-CoV-2 infection: translational implications for vaccine development. Infect Control Hosp Epidemiol. https://doi.org/10.1017/cts.2020.39</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1017/cts.2020.39</ArticleId>
<ArticleId IdType="pmcid">7691647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>He R, Lu Z, Zhang L, Fan T, Xiong R, Shen X, Feng H, Meng H, Lin W, Jiang W, Geng Q (2020) The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol. https://doi.org/10.1016/j.jcv.2020.104361</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jcv.2020.104361</ArticleId>
<ArticleId IdType="pmcid">7194834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cao XT (2020) COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. https://doi.org/10.1038/s41577-020-0308-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41577-020-0308-3</ArticleId>
<ArticleId IdType="pmcid">7143200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lythgoe MP, Middleton P (2020) Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2020.03.006</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.tips.2020.03.006</ArticleId>
<ArticleId IdType="pmcid">7144665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gao J, Tian Z, Yang X (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14(1):72–73</Citation>
</Reference>
<Reference>
<Citation>Yao XT, Ye F, Zhang M, Cui C, Huang BY, Niu PH, Liu X, Zhao L, Dong ED, Song CL, Zhan SY, Lu RJ, Li HY, Tan WJ, Liu DY (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome main point: hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vitro. Clin Infect Dis 2:1–25</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honoré S, Colson P, Chabriére E, Scola BL, Rolain JM, Brouqui P, Raoult D (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 1:1. https://doi.org/10.1016/j.ijantimicag.2020.105949</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.105949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Olano J, Howland MA, Su MK, Hoffman RS, Biary R (2019) Toxicokinetics of hydroxychloroquine following a massive overdose. J Am Emerg Med 37(12):2264–2264</Citation>
</Reference>
<Reference>
<Citation>Shah B, Modi P, Sagar SR (2020) In silico studies on therapeutic agents for COVID-19: drug repurposing approach. Life Sci. https://doi.org/10.1016/j.lfs.2020.117652</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.lfs.2020.117652</ArticleId>
<ArticleId IdType="pmcid">7194845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anson BJ, Chapman ME, Lendy EK, Pshenychnyi S, Aquila RTD, Satchell KJF, Mesecar AD (2020) Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs. Res Square. https://doi.org/10.21203/rs.3.rs-26344/v1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.21203/rs.3.rs-26344/v1</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liu SF, Lien CZ, Selvaraj P, Wang TT (2020) Evaluation of 19 antiviral drugs against SARS-CoV-2 infection. BioRxiv. https://doi.org/10.1101/2020.04.29.067983</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.29.067983</ArticleId>
<ArticleId IdType="pmcid">7781316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, Dias SDSG, Ferreira AC, Mattos M, Pão CRR, Freitas CSD, Soares VC, Bozza FA, Bou-Habib DC, Bozza PT, Souza TML (2020) The in vitro antiviral activity of the anti-hepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2. BioRxiv. https://doi.org/10.1101/2020.06.15.153411</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.06.15.153411</ArticleId>
<ArticleId IdType="pmcid">7724658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gurung AB (2020) In silico structure modelling of SARS-CoV-2 Nsp13 helicase and Nsp14 and repurposing of FDA approved antiviral drugs as dual inhibitors. Gene Rep 21:100860–100871</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7452913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lo HS, Hui KPY, Lai HM, Khan KS, Kaur S, Huang JZ, Li ZQ, Chan AKN, Cheung HHY, Ng KC, Ho JCW, Chen YW, Ma BW, Cheung PMH, Shin D, Wang KD, Lee MH, Selisko B, Eydoux C, Guillemot JC, Canard B, Wu KP, Liang PH, Dikic I, Zuo Z, Chan FKL, Hui DSC, Mok VCT, Wong KB, Aik WS, Chan MCW, Ng WL (2020) Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir. BioRxiv. https://doi.org/10.1101/2020.05.26.116020</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.05.26.116020</ArticleId>
<ArticleId IdType="pmcid">7276055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xie XP, Muruato AE, Zhang XW, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu JY, Ren P, Balakrishnan M, Cihlar T, Tseng CTK, Makino S, Menachery VD, Bilello JP, Shi PY (2020) A Nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. BioRxiv. https://doi.org/10.1101/2020.06.22.165712</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.06.22.165712</ArticleId>
<ArticleId IdType="pmcid">7724657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ramirez S, Fernandez-Antunez C, Phama LC, Ryberga LA, Fenga S, Pedersena MS, Mikkelsena LS, Belouzardc S, Dubuissonc J, Gottweina JM, Fahnøe U, Bukh J (2020) Efficient culture of SARS-CoV-2 in human hepatoma cells enhances viability of the virus in human lung cancer cell lines permitting the screening of antiviral compounds. BioRxiv. https://doi.org/10.1101/2020.10.04.325316</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.10.04.325316</ArticleId>
<ArticleId IdType="pmcid">7805444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N (2020) Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. BioRxiv. https://doi.org/10.1101/2020.04.06.026476</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.06.026476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hu F, Jiang JX, Yin P (2020) Prediction of potential commercially inhibitors against SARS-CoV-2 by multi-task deep model. ARxiv</Citation>
</Reference>
<Reference>
<Citation>Meyer SD, Bojkova D, Cinatl J, Dammea EV, Buyck C, Loock MV, Woodfall B, Ciesek S (2020) Lack of antiviral activity of darunavir against SARS-CoV-2. Int J Infect Dis 97:7–10</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7258847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Risner KH, Tieu KV, Wang YF, Bakovic A, Alem F, Bhalla N, Nathan S, Conway DE, Macklin P, Narayanan A (2020) Maraviroc inhibits SARS-CoV-2 multiplication and S-protein mediated cell fusion in cell culture. BioRxiv. https://doi.org/10.1101/2020.08.12.246389</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.08.12.246389</ArticleId>
<ArticleId IdType="pmcid">7430595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Almeida SMVD, Soares JCS, Santos KLD, Alves JEF, Ribeirob AG, Jacob ÍTT, Ferreiraa CJDS, Santos JCD, Oliveirab JFD, Junior LBDC, Lima MDCAD (2020) COVID-19 therapy: what weapons do we bring into battle? Bioorg Med Chem 28:115757–115782</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7481143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ekins S, Mottin M, Ramos PRPS, Sousa BKP, Neves BJ, Foil DH, Zorn KM, Braga RC, Coffee M, Southan C, Puh AC, Andrade CH (2020) Déjà Vu: stimulating open drug discovery for SARS-CoV-2. Drug Discov Today 25:928–941</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7167229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rodon J, Noguera-Julian M, Erkizia I, Valencia A, Guallar V, Carrillo J, Blanco J, Segalés J, Clotet B, Vergara-Alert J, Izquierdo-Useros N (2020) Search for SARS-CoV-2 inhibitors in currently approved drugs to tackle COVID-19 pandemia. BioRxiv. https://doi.org/10.1101/2020.04.23.055756</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.23.055756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wang DD, Huang JS, Yeung AWK, Tzvetkov NT, Horbánczuk JO, Willschke H, Gai ZB, Atanasov AG (2020) The significance of natural product derivatives and traditional medicine for COVID-19. Processes 8:937–961</Citation>
</Reference>
<Reference>
<Citation>Wang ML, Cao R, Zhang L, Yang X, Liu J, Xu M (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7054408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stebbing J, Krishnan V, Bono SD, Ottaviani S, Casalini G, Richardson PJ, Monteil V, Lauschke VM, Mirazimi A, Youhanna S, Tan YJ, Baldanti F, Sarasini A, Terres JAR, Nickoloff BJ, Higgs RE, Rocha G, Byers NL, Schlichting DE, Nirula A, Cardoso A, Corbellino M (2020) Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med 12(8):12697–12731</Citation>
</Reference>
<Reference>
<Citation>Hoffmann M, Hofmann-Winkler H, Smith JC, Krüger N, Sørensen LK, Søgaard OS, Hasselstrøm JB, Winkler M, Hempel T, Raich L, Olsson S, Yamazoe T, Yamatsuta K, Mizuno H, Ludwig S, Noé F, Sheltzer JM, Kjolby M, Pöhlmann S (2020) Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. BioRxiv. https://doi.org/10.1101/2020.08.05.237651</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.08.05.237651</ArticleId>
<ArticleId IdType="pmcid">7605563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amin SA, Jha T (2020) Fight against novel coronavirus: a perspective of medicinal chemists. Eur J Med Chem 201:112559–112570</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7289749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yan VC, Muller FL (2020) Advantages of the parent nucleoside GS-441524 over remdesivir for Covid-19 treatment. ACS Med Chem Lett 11:1361–1366</Citation>
</Reference>
<Reference>
<Citation>Riva L, Yuan SF, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-Muehlbacher S, Jesus PDD, Teriete P, Hull MV, Hang MW, Chan JFW, Cao JL, Poon VKM, Herbert KM, Cheng KY, Nguyen TTH, Rubanov A, Pu Y, Nguyen C, Choi A, Rathnasinghe R, Schotsaert M, Miorin L, Dejosez M, Zwaka TP, Sit KY, Martinez-Sobrido L, Liu WC, White KM, Chapman ME, Emma K, Lendy EK, Glynne RJ, Albrecht R, Ruppin E, Mesecar AD, Johnson JR, Benner C, Ren Sun R, Schultz PG, Su AI, García-Sastre A, Chatterjee AK, Yuen KY, Chanda SK (2020) Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. https://doi.org/10.1038/s41586-020-2577-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2577-1</ArticleId>
<ArticleId IdType="pmcid">7212060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jin ZM, Du XY, Xu YC, Deng YQ, Liu MQ, Zhao Y, Zhang B, Li XF, Zhang LK, Peng C, Duan YK, Yu J, Wang L, Yang KL, LiuFJ JRD, Yang XL, You T, Liu XC, Yang XN, Bai F, Liu H, Liu X, Guddat LW, Xu WQ, Xiao GF, Qin CF, Shi ZL, Jiang HL, Rao ZH, Yang HT (2019) Structure of M
<sup>pro</sup>
from COVID-19 virus and discovery of its inhibitors. Nature. https://doi.org/10.1038/s41586-020-2223-y</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/s41586-020-2223-y</ArticleId>
<ArticleId IdType="pmcid">6858884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jin ZM, Zhao Y, Sun Y, Zhang B, Wang HF, Wu Y, Zhu Y, Zhu C, Hu TY, Du XY, Duan YK, Yu J, Yang XB, Yang XN, Yang KL, Liu X, Guddat LW, Xiao GF, Zhang LK, Yang HT, Rao ZH (2020) Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. BioRxiv. https://doi.org/10.1101/2020.04.09.033233</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.09.033233</ArticleId>
<ArticleId IdType="pmcid">7781315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xie H, Ke CQ, Gao MN, Yu KQ, Liu H, Shen JS, Tang W, Zhang LK, Zuo JP, Jiang HL, Bai F, Wu Y, Ye Y, Xu YC (2020) Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. BioRxiv. https://doi.org/10.1101/2020.04.13.038687</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.13.038687</ArticleId>
<ArticleId IdType="pmcid">7781315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dai WH, Zhang B, Jiang XM, Su HX, Li J, Zhao Y, Xie X, Jin ZM, Peng JJ, Liu FJ, Li CP, Li Y, Bai F, Wang HF, Cheng X, Cen XB, Hu SL, Yang XN, Wang J, Liu X, Xiao GF, Jiang HL, Rao ZH, Zhang LK, Xu YC, Yang HT, Liu H (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. https://doi.org/10.1126/science.abb4489</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1126/science.abb4489</ArticleId>
<ArticleId IdType="pmcid">7379379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhang LL, Lin DZ, Sun XY, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:409–412</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7164518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vitner EB, Avraham R, Achdout H, Tamir H, Agami A, Cherry L, Yahalom-Roen Y, Politi B, Erez N, Melamed S, Paran N, Israely T (2020) Antiviral activity of glucosylceramide synthase inhibitors against SARS-CoV-2 and other RNA virus infections. BioRxiv. https://doi.org/10.1101/2020.05.18.103283</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.05.18.103283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>He F, Deng Y, Li W (2020) Coronavirus disease 2019 (COVID-19): what we know? J Med Virol. https://doi.org/10.1002/jmv.25766</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jmv.25766</ArticleId>
<ArticleId IdType="pmcid">7689818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson HLH (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7270045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Seguin A, Galicier L, Boutboul D, Lemiale V, Azoulay E (2016) Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest 149(5):1294–1301</Citation>
</Reference>
<Reference>
<Citation>Ruan Q, Yang K, Wang W, Jiang L, Song J (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46(5):846–848</Citation>
</Reference>
<Reference>
<Citation>Peterson D, Damsky W, King B (2020) The use of Janus kinase inhibitors in the time of SARS-CoV-2. J Am Acad Dermatol 82(6):223–226</Citation>
</Reference>
<Reference>
<Citation>Jung CW, Shih LY, Xiao ZJ, Jie J, Hou HA, Du X, Wang MC, Park S, Eom KS, Oritani K, Okamoto S, Tauchi T, Kim JS, Zhou DB, Saito S, Li JM, Handa H, Li JY, Ohishi K, Hou M, Wu DP, Takenaka K, Liu T, Hu Y, Amagasaki T, Ito K, Gopalakrishna P, Akashi K (2014) Efficacy and safety of ruxolitinib in asian patients with myelofibrosis. Leuk Lymphoma 56(7):2067–2074</Citation>
</Reference>
<Reference>
<Citation>Amirian ES, Levy JK (2020) Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 9:100128–100134</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7118644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paules CI, Marston HD, Fauci AS (2020) Coronavirus infections more than just the common cold. J Am Med Assoc 323(8):707–708</Citation>
</Reference>
<Reference>
<Citation>Browna AJ, Wona JJ, Grahama RL, Dinnon KH III, Sims AC, Feng JY, Cihlar T, Denisonc MR, Barica RS, Sheahan TP (2020) Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic delta-coronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 169:104541–104550</Citation>
</Reference>
<Reference>
<Citation>Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT (2005) Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332:498–510</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7111862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li GD, Clercq ED (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature 19:149–150</Citation>
</Reference>
<Reference>
<Citation>Morse JS, Lalonde T, Shiqing X, Liu WR (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chem Bio Chem. https://doi.org/10.1002/cbic.202000047</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/cbic.202000047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY (2016) Coronaviruses drug discovery and therapeutic options. Nat Rev Drug Discov 15:327–347</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7097181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li F, Li W, Farzan M, Harrison SC (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868</Citation>
</Reference>
<Reference>
<Citation>Kaul D (2020) An overview of coronaviruses including the SARS-2 coronavirus molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10:54–64</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7194867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang XQ, Pearce R, Zhang Y (2020) Computational design of peptides to block binding of the SARS-CoV-2 spike protein to human ACE2. BioRxiv. https://doi.org/10.1101/2020.03.28.013607</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.03.28.013607</ArticleId>
<ArticleId IdType="pmcid">7781300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mercurio I, Tragni V, Busco F, Grassi AD, Pierri CL (2020) Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Cell Mol Life Sci. https://doi.org/10.1101/2020,04(17),pp.046185</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020,04(17),pp.046185</ArticleId>
<ArticleId IdType="pmcid">7334636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Laurini E, Marson D, Aulic S, Fermeglia M, Pricl S (2020) Computational alanine scanning and structural analysis of the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 complex. ACS Nano 14:11821–11830</Citation>
</Reference>
<Reference>
<Citation>Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Pozo CHD, Prosper F, Romero JP, Wirnsberger G, Zhang HB, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181:905–913</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7181998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pooladanda V, Thatikonda S, Godugu C (2020) The current understanding and potential therapeutic options to combat COVID-19. Life Sci 254:117765–117783</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7207108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. J Virol 2:69–78</Citation>
</Reference>
<Reference>
<Citation>Dowall SD, Bosworth A, Watson R, Bewley K, Taylor I, Rayner E, Hunter L, Pearson G, Easterbrook L, Pitman J, Hewson R, Carroll MW (2015) Chloroquine inhibited ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol 96:3484–3492</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">5410110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ooi EE, Chew JSW, Loh JP, Chua RCS (2006) In vitro inhibition of human influenza A virus replication by chloroquine. J Virol 3:39–41</Citation>
</Reference>
<Reference>
<Citation>Romanelli F, Smith KM, Hoven AD (2004) Chloroquine and hydroxychloroquine as inhibitors of human immuno-deficiency virus (HIV-1) activity. Curr Pharm Des 10:2643–2648</Citation>
</Reference>
<Reference>
<Citation>Yan YW, Zou Z, Sun Y, Li X, Xu KF, Wei YQ, Jin NY, Jiang CY (2013) Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 23:300–302</Citation>
</Reference>
<Reference>
<Citation>Patil VM, Singhal S, Masand N (2020) A Systematic review on use of aminoquinolines for the therapeutic management of COVID-19: efficacy, safety and clinical trials. Life Sci 254:117775</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7211740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Schmidt RLJ, Jutz S, Goldhahn K, Witzeneder N, Gerner MC, Trapin D, Greiner G, Hoermann G, Steiner G, Pickl WF, Burgmann H, Steinberger P, Ratzinger F, Schmetterer KG (2017) Chloroquine inhibits human CD4
<sup>+</sup>
T-cell activation by AP-1 signaling modulation. Sci Rep 7:42191–42204</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">5294581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, Nardo DD, Gohel TD, Emde M, Schmidlethner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrummodel of human macrophage activation. Immunity 40:274–288</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">24530056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Velthuis AJWT, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn
<sup>2+</sup>
inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog 6(11):1001176–1001186</Citation>
</Reference>
<Reference>
<Citation>Fantini J, Scala CD, Chahinian H, Yahi N (2020) Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents 55:105960–105967</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7128678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sun XL, Li SQ, Li KX, Hu X (2020) Pharmaceutical care of chloroquine phosphate in elderly patients with coronavirus pneumonia (COVID-19). Aging Med 3:98–101</Citation>
</Reference>
<Reference>
<Citation>Verscheijden LFM, Van de Zanden TM, Van Bussel LPM, De Hoop-Sommen M, Russel FGM, Johnson TN, De Wildt SN (2020) Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin Pharmacol Ther 108(2):248–252</Citation>
</Reference>
<Reference>
<Citation>Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, Mourao D, Brito-Sousa D, Guerra MVF, Hajjar LA, Pinto RC, Balieiro AAS, Naveca FG, Xavier MS, Salomao A, Siqueira AM, Schwarzbolt A, Croda JHR, Nogueira ML, Romero GAS, Bassat Q, Fontes CJ, Albuqueerque BCA, Daniel-Ribeiro CT, Monteiro WM, Lacerda MVG, CloroCovid-19 Team (2020) Chloroquine diphosphate in two different dosages as adjunctive therapy of hospitalized patients with severe respiratory syndrome in the context of coronavirus (SARS-CoV-2) infection: preliminary safety results of a randomized,double-blinded, phase IIb clinical trial (CloroCovid-19 Study). medRxiv. https://doi.org/10.1101/2020.04.07.20056424</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.07.20056424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang MX, Li M, Xiao F, Liang JB, Pang PF, Tang TT, Liu SX, Chen BH, Shu JX, You YY, Li Y, Tang MW, Zhou JH, Jiang GM, Xiang JF, Hong WX, He SM, Wang ZQ, Feng JH, Lin CQ, Ye YN, Wu ZL, Li YC, Zhong B, Sun RL, Hong ZS, Liu J, Chen HL, Wang XH, Li ZH, Pei DQ, Tian L, Xia JY, Jiang SP, Zhong NS, Shan H (2020) Preliminary evidence fom a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev 7(9):1428–1436</Citation>
</Reference>
<Reference>
<Citation>Smit C, Peeters MYM, Anker JNVD, Knibbe CAJ (2020) Chloroquine for SARS-CoV-2: implications of its unique pharmacokinetic and safety properties. Clin Pharmacokinet 59:659–669</Citation>
</Reference>
<Reference>
<Citation>Sinkeler FS, BergerFA MHJ, Jansen MMPM (2020) The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine. Netherlands Heart J 28:418–423</Citation>
</Reference>
<Reference>
<Citation>Guastalegname M, Vallone A (2020) Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment? Clin Infect Dis. https://doi.org/10.1093/cid/ciaa321</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/cid/ciaa321</ArticleId>
<ArticleId IdType="pmcid">7184345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Surrey AR, Hammer HF (1946) Some 7-substituted 4-aminoquinoline derivatives. J Am Chem Soc 68:113–116</Citation>
</Reference>
<Reference>
<Citation>Jonnson WS, Buell BG (1952) A new synthesis of chloroquine. J Am Chem Soc 74:4513–4516</Citation>
</Reference>
<Reference>
<Citation>Margolis BJ, Long KA, Laird DL, Ruble JC, Pulley SR (2007) Assembly of 4-aminoquinolines via palladium catalysis: a mild and convenient alternative to S
<sub>N</sub>
Ar methodology. J Org Chem 72:2232–2235</Citation>
</Reference>
<Reference>
<Citation>Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, De Clercq E (2006) Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 49(9):2845–2849</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 71(15):732–739</Citation>
</Reference>
<Reference>
<Citation>Zhang XL, Li ZM, Ye JT, Lu J, Ye LYLD, Zhang CX, Liu PQ, Duan DYD (2020) Pharmacological and cardiovascular perspectives on the treatment of COVID-19 with chloroquine derivatives. Acta Pharmacol Sin 41:1377–1386</Citation>
</Reference>
<Reference>
<Citation>Kapoor A, Pandurangi U, Arora V, Gupta A, Jaswal A, Nabar A, Naik N, Namboodiri N, Vora A, Yadav R, Saxena A (2020) Cardiovascular risks of Hydroxychloroquine in treatment and prophylaxis of COVID-19 patients: a scientific statement from the Indian Heart Rhythm Society. Ind Pac Electrophys J. https://doi.org/10.1016/j.ipej.2020.04.003</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ipej.2020.04.003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, Mailhe M, Doudier B, Aubry C, Amrane S, Seng P, Hocquart M, Eldin C, Finance J, Vieira VE, Tissot-Dupont HT, Honoré S, Stein A, Million M, Colson P, Scola BL, Veit V, Jacquier A, Deharo JC, Drancourt M, Fournier PE, Rolain JM, Brouqui P, Raoult D (2020) Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis 34:101663–101669</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7151271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhang Y, Xu QH, Sun ZY, Zhou L (2020) Current targeted therapeutics against COVID-19: based on first-line experience in China. Pharmacol Res 157:104854–104860</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7192075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B, Zhang Z (2020) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv. https://doi.org/10.1101/2020.03.22.20040758</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.03.22.20040758</ArticleId>
<ArticleId IdType="pmcid">7755147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adel FA, Shoughy SS, Tabbara KF (2020) Hydroxychloroquine dosing and toxicity: a real-world experience in Saudi Arabia of 63 patients. Saudi J Ophthalmol. https://doi.org/10.1016/j.sjopt.2020.05.002</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.sjopt.2020.05.002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Derendorf H (2020) Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. Int J Antimicrob Agents 55:106007–106011</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7204663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molina JM, Delaugerre C, Goff JL, Mela-Lima B, Ponscarme D, Goldwirt L, de Castro N (2020) No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Méd Malad Infect 50:382–387</Citation>
</Reference>
<Reference>
<Citation>Sharma AN, Mesinkovska NA, Paravar T (2020) Characterizing the adverse dermatologic effects of hydroxychloroquine: a systematic review. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2020.04.024</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jaad.2020.04.024</ArticleId>
<ArticleId IdType="pmcid">7427617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Singh AK, Singh A, Singh R, Misra A (2020) Hydroxychloroquine in patients with COVID-19: a systematic review and meta-analysis. Diabetes Metab Syndr 14:589–596</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7215156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lauriola M, Pani A, Ippoliti G, Mortara A, Milighetti S, Mazen M, Perseghin G, Pastori D, Grosso P, Scaglione F (2020) Effect of combination therapy of hydroxychloroquine and azithromycin on mortality in COVID-19 patients. Clin Transl Sci. https://doi.org/10.1111/cts.12860</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/cts.12860</ArticleId>
<ArticleId IdType="pmcid">7719367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ndelman O, Amital H, Bragazzi NL, Watad A, Chodick G (2020) Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: insights from a large healthcare database analysis. Autoimmun Rev 19(7):102566–102569</Citation>
</Reference>
<Reference>
<Citation>Alexander R (1951) 7-Chloro-4-[5-(N-ethyl-N-2-hydroxyethylamino)-2-pentyl] aminoquinoline, its acid addition salts, and method of preparation. US2546658</Citation>
</Reference>
<Reference>
<Citation>Ashok K, Dhansukhlal VK, Dharmendra S, Sanjay N, Sanjay B, Atul J (2005) An improved process for the preparation of 7-chloro-4-(5-N-ethyl-N-2-hydroxyethylamine)-2-pentyl aminoquinoline and its intermediates. WO2005062723</Citation>
</Reference>
<Reference>
<Citation>Min YS, Cho HS, Mo KW (2010) New preparation of hydroxychloroquine. WO201002715</Citation>
</Reference>
<Reference>
<Citation>Yu E, Mangunuru HPR, Telang NS, Kong CJ, Verghese J, Gilliland SE, Ahmad S, Dominey RN, Gupton BF (2018) High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine. Beilstein J Org Chem 14:583–592</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">5852550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Frank GB, Saeed A, Mangunure HPR, Telang NS (2019) High-yielding continuous flow synthesis of antimalarial drug hydroxychloroquine. WO2019165337</Citation>
</Reference>
<Reference>
<Citation>Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL (2013) Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Res 100:446–454</Citation>
</Reference>
<Reference>
<Citation>Takahashi K, Furuta Y, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Shiraki K (2003) In vitro and in vivo activities of T-705 and oseltamivir against influenzavirus. Antivir Chem Chemother 14:235–241</Citation>
</Reference>
<Reference>
<Citation>Takahashi K, Sakai-Tagawa Y, Shinya K, Sakabe S, Le QM, Kawaoka Y (2010) T-705 (Favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci USA107:882–887</Citation>
</Reference>
<Reference>
<Citation>Bai CQ, Mu JS, Kargbo D, Song YB, Niu WK, Nie WM, Jiang JF (2014) Clinical and virological characteristics of ebola virus disease patients treated with favipiravir (T-705)-Sierra Leone. Clin Infect Dis 63:1288–1294</Citation>
</Reference>
<Reference>
<Citation>Cao B (2018) A pharmacokinetics study of favipiravir in patients with severe influenza. NCT03394209. https://clinicaltrials.gov/ct2/show/NCT03394209</Citation>
</Reference>
<Reference>
<Citation>Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Shiraki K (2002) In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 46:977–981</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">127093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tanaka T, Kamiyama T, Daikoku T, Takahashi K, Nomura N, Kurokawa M, Shiraki K (2017) T-705 (favipiravir) suppresses tumor necrosis factor alpha production in response to influenza virus infection: a beneficial feature of T-705 as an anti-influenza drug. Acta Virol 61:48–55</Citation>
</Reference>
<Reference>
<Citation>Shiraki K, Daikoku T (2020) Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther 209:107512–107526</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7102570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Janowski AB, Dudley H, Wang D (2019) Antiviral activity of ribavirin and favipiravir against human astroviruses. J Clin Virol 123:104247–104258</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7034780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Shannon A, Selisko B, Le NTT, Huchting J, Touret F, Piorkowski G, Fsttorini V, Ferron F, Decroly E, Meier C, Coutard B, Peersen O, Canard B (2020) Favipiravir strikes the SARS-CoV-2 at its Achilles Heel, the RNA polymerase. BioRxiv. https://doi.org/10.1101/2020.05.15.098731</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.05.15.098731</ArticleId>
<ArticleId IdType="pmcid">7263509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dose-finding study of favipiravir in the treatment of uncomplicated influenza (2020) NCT01068912. https://clinicaltrials.gov/ct2/show/NCT01068912</Citation>
</Reference>
<Reference>
<Citation>Phase 3 Efficacy and safety study of favipiravir for treatment of uncomplicated in-fluenza in adults-T705. (2020) NCT02026349. https://clinicaltrials.gov/ct2/show/NCT02026349</Citation>
</Reference>
<Reference>
<Citation>Lou Y, Liu L, Yao HP, Hu XJ, Su JW, Xu KJ, Luo R, Yang X, He LJ, Lu XY, Zhao QW, Liang TB, Qiu YQ (2020) Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. medRxiv. https://doi.org/10.1101/2020.04.29.20085761</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.29.20085761</ArticleId>
<ArticleId IdType="pmcid">7310644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L (2020) Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering. https://doi.org/10.1016/j.eng.2020.03.007</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.eng.2020.03.007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Takamatsu T, Yonezawa K (2010) Organic amine of 6-fluoro-3-hydroxy-2-pyrazinecarbonitrile and method for producing the same. US20100286394</Citation>
</Reference>
<Reference>
<Citation>Hara T, Norimatsu N, Kurushima H, Kano T (2011) Method for producing dichloropyrazine derivative. US20110275817</Citation>
</Reference>
<Reference>
<Citation>Liu FL, Li CQ (2017) A method for preparation favipiravir. CN106866553</Citation>
</Reference>
<Reference>
<Citation>Li MY (2017) A method for preparation favipiravir. CN107226794</Citation>
</Reference>
<Reference>
<Citation>Wang ML, Cao RY, Zhang LK, Yang YL, Liu J, Xu MY, Shi ZL, Hu ZH, Zhong W, Xiao GF (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–271</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7054408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Holshue ML, Chas DB, Lindquist S, Lofy KH, John W, Hollianne B, Christopher S, Keith E, Sara W, Ahmet T, George D, Amanda C, Fox LA, Patel A, Gerber S, Kin L, Tong SX, Lu XY, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382(10):929–936</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7092802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zeuzem S, Berg T, Moeller B, Hinrichsen H, Mauss S, Wedemeyer H, Sarrazin C, Hueppe D, Zehnter E, Manns MP (2009) Expert opinion on the treatment of patients with chronic hepatitis C. J Viral Hepat 16:75–90</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">2759987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kronenberger B, Zeuzem S (2012) New developments in HCV therapy. J Viral Hepat 19:48–51</Citation>
</Reference>
<Reference>
<Citation>Sofia MJ (2011) Nucleotide prodrugs for HCV therapy. Antivir Chem Chemother 22:23–49</Citation>
</Reference>
<Reference>
<Citation>Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, Eldrup AB, Bhat B, Hall D, Simcoe AL, LaFemina R, Rutkowski CA, Wolanski B, Yang ZC, Migliaccio G, Francesco RD, Kuo LC, MacCoss M, Olsen DB (2003) Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem 278:11979–11984</Citation>
</Reference>
<Reference>
<Citation>Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, Cortese R, Francesco RD, Eldrup AB, Getty KL, Hou XL, LaFemina RL, Ludmerer SW, MacCoss M, McMasters DR, Stahlhut MW, Olsen DB, Hazuda DJ, Flores OA (2003) Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem 278:49164–49170</Citation>
</Reference>
<Reference>
<Citation>Cho A, Zhang L, Xu J, Babusis D, Butler T, Lee R, Saunders OL, Wang T, Parrish J, Perry J, Feng JY, Ray AS, Kim CU (2012) Synthesis and characterization of 2’-C-Me branched C-nucleosides as HCV polymerase inhibitors. Bioorg Med Chem Lett 22:4127–4132</Citation>
</Reference>
<Reference>
<Citation>Cho A, Saunders OL, Butler T, Zhang L, Xu J, Vela JE, Feng JY, Ray AS, Kim CU (2012) Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg Med Chem Lett 22:2705–2707</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7126871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cho A, Zhang LJ, Xu J, Lee R, Butler T, Metobo S, Aktoudianakis V, Lew W, Ye H, Clarke M, Doerffler E, Byun D, Wang T, Babusis D, Carey AC, German P, Sauer D, Zhong WD, Rossi S, Fenaux M, McHutchison JG, Perry J, Feng J, Ray AS, Kim CU (2013) Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients. J Med Chem 57(5):1812–1825</Citation>
</Reference>
<Reference>
<Citation>Siegel D, Hui HC, Doerffler E, Clarke MO, Chun K, Zhang LJ, Neville S, Carra E, Lew W, Ross R, Wang Q, Wolfe L, Jordan R, Soloveva V, Knox J, Perry J, Perron M, Stray KM, Barauskas O, Feng JY, Xu YL, Lee G, Rheingold AL, Ray AS, Bannister R, Strickley R, Swaminathan S, Lee WA, Bavari S, Cihlar T, Lo MK, Warren TK, Mackman RL (2017) Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside(GS-5734) for the treatment of ebola and emerging viruses. J Med Chem 60(5):1648–1661</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7202039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 295(15):4773–4779</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7152756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Morse JS, Lalonde T, Xu S, Liu WR (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chem Bio Chem 21(5):730–738</Citation>
</Reference>
<Reference>
<Citation>Yin WC, Mao CY, Luan XD, Shen DD, Shen QY, Su HX, Wang XX, Zhou FL, Zhao WF, Gao MQ, Chang SH, Xie YC, Tian GH, Jiang HW, Tao SC, Shen JS, Jiang Y, Jiang HL, Xu YC, Zhang SY, Zhang Y, Xu HE (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. BioRxiv. https://doi.org/10.1101/2020.04.08.032763</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.08.032763</ArticleId>
<ArticleId IdType="pmcid">7781315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, Bannister R, Park Y, Babusis D, Clarke MO, Mackman RL, Spahn JE, Palmiotti CA, Siegel D, Ray AS, Cihlar T, Jordan R, Denison MR, Baric RS (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 9(396):3653–3662</Citation>
</Reference>
<Reference>
<Citation>Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9(2):18–32</Citation>
</Reference>
<Reference>
<Citation>Wit ED, Feldmannb F, Cronin J, Jordanc R, Okumurad A, Thomas T, Scott D, Cihlar T, Feldmann H (2019) Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1922083117</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1073/pnas.1922083117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elfiky AA (2020) Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci 253:117592–117597</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7102646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Choy KT, Wong YL, Kaewpreedee A, Sia P, Chen SF, Hui DY, Chu W, Chan W, Cheung PH, Huang P, Peiris X, Yen M (2020) Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir Res 178:104786–104790</Citation>
</Reference>
<Reference>
<Citation>Zhang L, Zhang D, Yuan CM, Wang XW, Li YF, Jia XL, Gao X, Yen HL, Cheung PPH, Huang XH (2020) Role of 1’-ribose cyano substitution for remdesivir to effectively inhibit both nucleotide addition and proofreading in SARS-CoV-2 viral RNA replication. BioRxiv. https://doi.org/10.1101/2020.04.27.063859</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.27.063859</ArticleId>
<ArticleId IdType="pmcid">7781331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pruijssers AJ, George AS, Schäfer A, Leist SR, Gralinksi LE, Dinnon KH III, Yount BL, Agostini ML, Stevens LJ, Chappell JD, Lu XT, Hughes TM, Gully K, Martinez DR, Brown AJ, Graham RL, Perry JK, Pont VD, Pitts J, Ma B, Babusis D, Murakami E, Feng JY, Bilello JP, Porter DP, Cihlar T, Baric RS, Denison MR, Sheahan TP (2020) Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep. https://doi.org/10.1016/j.celrep.2020.107940</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.celrep.2020.107940</ArticleId>
<ArticleId IdType="pmcid">7340027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wu M, Xu L, Huang D, Yuan MJ, Ye CY (2020) Remdesivir inhibits renal fibrosis in obstructed kidneys. bioRxiv. https://doi.org/10.1101/2020.04.01.019943</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.01.019943</ArticleId>
<ArticleId IdType="pmcid">7743066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Williamson BN, Feldmann F, Meade-White KBS, Porter DP, Schulz J, Doremalen NV, Leighton L, Yinda CK, Péreze-Péreze L, Okumura A, Lovaglio J, Hanley PW, Saturday G, Bosio CM, Anzick S, BAarbian K, Cihlar T, Martens C, Scott DP, Munster VJ, Wit ED, (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585:273–276</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7486271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, Abedi GR, Ahmed NS, Almendares O, Beer K, Ben-Aderet MA, Benowitz I, Biggs HM, Binder AM, Black SR, Bonin B, Bozio CH, Brown CM, Bruce H, Bryant-Genevier J, Budd A, Buell D, Bystritsky R, Cates J, Charles EM, Chatham-Stephens K, Chea N, Chiou H, Christians JM, Dawson P, DeSalvo T, Diaz G, Donahue M, Donovan S, Duca LM, Erichson K, Esona MD, Evans S, Falk J, Feldstein LR, Fricchione MJ, Gerber SI, Gunzenhauser JD, Harcourt J, Hunter JC, Kim L, Kamili S, Klos R, Layden JE, Livingston M, Lo K, Li Y, Malapati L, McGovern O, Robinson S, Robinson P, Rolfes MA, Routh JA, Rubin R, Rudman SL, Sakthivel SK, Scott S, Shepherd C, Shetty V, Smith EA, Smith S, Stierman B, Stoecher W, Sunenshine R, Sy-Santos R, Wang LJ, Watson JT, Westercamp M, Whitaker B, Wilkerson S, Wondruff RC, Wortham JM, Wu T, Xie A, Yousaf A, Zahn M, Zhang J (2020) Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med 26:861–868</Citation>
</Reference>
<Reference>
<Citation>National Institutes of Health (2020) NIH Clinical Trial of Remdesivir to Treat COVID-19 Begins. https://www.nih.gov/news-events/news-releases/nih-clinical-trial-Remdesivir-treat-covid-19-begins</Citation>
</Reference>
<Reference>
<Citation>U.S.National Library of Medicine Clinical Trials Registry (2020) A trial of remdesivir in adults with mild and moderate COVID-19. NCT04252664. https://clinicaltrials.gov/ct2/show/NCT04252664</Citation>
</Reference>
<Reference>
<Citation>US National Library of Medicine Clinical Trials Registry (2020) Severe 2019-nCoV Remdesivir RCT. NCT04257656. https://clinicaltrials.gov/ct2/show/NCT04257656</Citation>
</Reference>
<Reference>
<Citation>Zhang Q, Wang Y, Qi C, Shen L, Li J (2020) Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol 92(6):540–545</Citation>
</Reference>
<Reference>
<Citation>Wang YM, Zhang DY, Du GH, Du RH, Zhao JP, Jin Y, Fu SZ, Gao L, Cheng ZS, Lu QF, Hu Y, Luo GW, Wang K, Lu Y, Li HD, Wang SZ, Ruan SN, Yang CQ, Mei CL, Wang Y, Ding D, Wu F, Tang X, Ye XZ, Ye YC, Liu B, Yang J, Yin W, Wang AL, Fan GH, Zhou F, Liu ZB, Gu XY, Xu JY, Shang LH, Zhang Y, Cao LJ, Guo TT, Wan Y, Qin H, Jiang YS, Jaki T, Hayden FG, Horby P, Cao B, Wang C (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395:1569–1578</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7190303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Grein J, Ohmagari N, Diaz SG, Asperges DE, Castagna A, Feldt T, Green G, Green ML, Lescure FX, Nicastri E, Oda R, Yo K, Quiros-Roldan E, Studemeister A, Redinski J, Ahmed S, Bernett J, Chelliah D, Chen D, Chihara S, Cohen SH, Cunningham J, Monforte AD, Ismail S, Kato H, Lapadula G, Her EL, Maeno T, Majumder S, Massari M, Mora-Rillo M, Mutoh Y, Nguyen D, Verweij E, Zoufaly A, Osinusi AO, Dezure A, Zhao Y, Zhong L, Chokkalingam A, Elboudwarej E, Telep L, Mera R, Gaggar A, Myers RP, Brainard DM, Childs R, Flaniga T (2020) Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2007016</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2007016</ArticleId>
<ArticleId IdType="pmcid">7169476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L, Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh M, Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane HC (2020) Remdesivir for the treatment of Covid-19 preliminary report. N Engl J Med. https://doi.org/10.1056/NEJMoa2007764</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2007764</ArticleId>
<ArticleId IdType="pmcid">7745180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn MY, Nahass RG, Chen YS, SenGupta D, Hyland RH, Osinusi AO, Cao HY, Blair C, Wei XL, Gaggar A, Brainard DM, Towner WJ, Munoz J, Mullane KM, Marty FM, Tashima KT, Diaz G, Subramanian A (2020) Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2015301</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1056/NEJMoa2015301</ArticleId>
<ArticleId IdType="pmcid">7143164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Butler T, Cho A, Kim C, Saunders O, Zhang LJ, Parrish J (2011) 1'-Substituted carba-nucleoside analogs for antiviral treatment. EP2268642</Citation>
</Reference>
<Reference>
<Citation>Metobo SE, Xu J, Saunders OL, Butler T, Aktoudianakis E, Cho A, Kim CU (2012) Practical synthesis of 1′-substituted tubercidin C-nucleoside. Tetrahedron Lett 53:484–486</Citation>
</Reference>
<Reference>
<Citation>Vieira T, Stevens A, Chtchemelinine A, Gao D, Badalov P, Heumann L (2020) Development of a large-scale cyanation process using continuous flow chemistry en route to the synthesis of remdesivir. Org Process Res Dev. https://doi.org/10.1021/acs.oprd.0c00172</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/acs.oprd.0c00172</ArticleId>
<ArticleId IdType="pmcid">7294886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xue F, Zhou XB, Zhou RJ, Zhou XH, Xiao D, Gu E, Guo XW, Xiang J, Wang K, Yang LK, Zhong W, Qin Y (2020) Improvement of the C-glycosylation step for the synthesis of remdesivir. Org Process Res Dev 24:1772–1777</Citation>
</Reference>
<Reference>
<Citation>Wang M, Zhang L, Huo XH, Zhang ZF, Yuan QJ, Li PP, Chen JZ, Zou YS, Wu ZX, Zhang WB (2020) Catalytic asymmetric synthesis of the anti-COVID-19 drugremdesivir. Angew Chem Int Ed. https://doi.org/10.1002/anie.202011527</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/anie.202011527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Walker KL, Kabakov SA, Zhu F, Bouchlaka MN, Olson SL, Cho MM, Quamine AE, Feils AS, Gavcovich TB, Rui LX, Capitini CM (2020) Efficacy of JAK1/2 and BCL2 inhibition on human T cell acute lymphoblastic leukemia in vitro and in vivo. bioRxiv. https://doi.org/10.1101/734913</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/734913</ArticleId>
<ArticleId IdType="pmcid">7781331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Williams NK, Bamert RS, Patel O, Wang C, Walden PM, Wilks AF, Fantino E, Rossjohn J, Lucet IS (2009) Dissecting specificity in the janus kinases: the structures of JAK specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232</Citation>
</Reference>
<Reference>
<Citation>Sonbol MB, Firwana B, Zarzour A, Morad M, Rana V, Tiu RV (2013) Comprehensive review of JAK inhibitors in myeloproliferative neoplasms. Ther Adv Hematol 4:15–35</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">3629759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tuttle KD, Minter R, Waugh KA, Araya P, Ludwig M, Sempeck C, Smith K, Andrysik Z, Burchill MA, Tamburini BAJ, Orlicky DJ, Sullivan KD, Espinosa JM (2020) JAK1 inhibition blocks lethal sterile immune responses: implications for COVID-19 therapy. BioRxiv. https://doi.org/10.1101/2020.04.07.024455</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1101/2020.04.07.024455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Huang CL, Wang YM, Li XW, Ren LL, Zhao JP, Hu Y, Zhang L, Fan GH, Xu JY, Gu XY, Cheng ZS, Yu T, Xia JA, Wei Y, Wu WJ, Xie XL, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie JG, Wang GF, Jiang RM, Gao ZC, Jin Q, Wang JW, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:15–21</Citation>
</Reference>
<Reference>
<Citation>Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">3294426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (2020) COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–1034</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7270045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Caocci G, Nasa GL (2020) Could ruxolitinib be effective in patients with COVID-19 infection at risk of acute respiratory distress syndrome (ARDS)? Ann Hematol 99:1675–1676</Citation>
</Reference>
<Reference>
<Citation>Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, Huang L, Meng F, Huang L, Wang N, Zhou X, Luo H, Mao Z, Chen X, Xie J, Liu J, Cheng H, Zhao J, Huang G, Wang W, Zhou J (2020) Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 146:137–146</Citation>
<ArticleIdList>
<ArticleId IdType="pmcid">7250105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rodgers JD, Shepard S, Maduskuie TP, Wang HS, Falahatpisheh N, Rafalski M, Arvanitis AG, Storace L, Jalluri RK, Fridman JS, Vaddi K (2007) Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyridines as janus kinese inhibitors. WO 2007070514</Citation>
</Reference>
<Reference>
<Citation>Haydl AM, Xu K, Breit B (2015) Regio- and enantioselective synthesis of N-substituted pyrazoles by rhodium-catalyzed asymmetric addition to allenes. Angew Chem Int Ed 127:1–6</Citation>
</Reference>
<Reference>
<Citation>Deepshikha C, Chandra BD, Pranab C, Asok N, Mohan P (2016) Processes for the preparation of ruxolitinib phosphate. WO 2016035014.</Citation>
</Reference>
<Reference>
<Citation>Zhang XQ, Zhang AM, Zhou Z, Yang LL, Yao HD, Zhou XY, Wang HB (2018) Synthesis process of ruxolitinib. EP3398952</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000508 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000508 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:33428032
   |texte=   Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:33428032" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021