Serveur d'exploration Chloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia

Identifieur interne : 002031 ( Istex/Corpus ); précédent : 002030; suivant : 002032

Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia

Auteurs : M. Akif Öztürk ; Ibrahim C. Haznedaro Lu ; Mehmet Turgut ; Hakan Göker

Source :

RBID : ISTEX:B827091BEADC215794937213345837B0228A0FE5

English descriptors

Abstract

Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.

Url:
DOI: 10.1177/107602960401000201

Links to Exploration step

ISTEX:B827091BEADC215794937213345837B0228A0FE5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
<author wicri:is="90%">
<name sortKey="Ozturk, M Akif" sort="Ozturk, M Akif" uniqKey="Ozturk M" first="M. Akif" last="Öztürk">M. Akif Öztürk</name>
<affiliation>
<mods:affiliation>Gazi University School of Medicine, Department of Rheumatology</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Haznedaro Lu, Ibrahim C" sort="Haznedaro Lu, Ibrahim C" uniqKey="Haznedaro Lu I" first="Ibrahim C." last="Haznedaro Lu">Ibrahim C. Haznedaro Lu</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Turgut, Mehmet" sort="Turgut, Mehmet" uniqKey="Turgut M" first="Mehmet" last="Turgut">Mehmet Turgut</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Goker, Hakan" sort="Goker, Hakan" uniqKey="Goker H" first="Hakan" last="Göker">Hakan Göker</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B827091BEADC215794937213345837B0228A0FE5</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1177/107602960401000201</idno>
<idno type="url">https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002031</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002031</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
<author wicri:is="90%">
<name sortKey="Ozturk, M Akif" sort="Ozturk, M Akif" uniqKey="Ozturk M" first="M. Akif" last="Öztürk">M. Akif Öztürk</name>
<affiliation>
<mods:affiliation>Gazi University School of Medicine, Department of Rheumatology</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Haznedaro Lu, Ibrahim C" sort="Haznedaro Lu, Ibrahim C" uniqKey="Haznedaro Lu I" first="Ibrahim C." last="Haznedaro Lu">Ibrahim C. Haznedaro Lu</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Turgut, Mehmet" sort="Turgut, Mehmet" uniqKey="Turgut M" first="Mehmet" last="Turgut">Mehmet Turgut</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Goker, Hakan" sort="Goker, Hakan" uniqKey="Goker H" first="Hakan" last="Göker">Hakan Göker</name>
<affiliation>
<mods:affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Clinical and Applied Thrombosis/Hemostasis</title>
<idno type="ISSN">1076-0296</idno>
<idno type="eISSN">1938-2723</idno>
<imprint>
<publisher>Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<date type="published" when="2004-04">2004-04</date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="89">89</biblScope>
<biblScope unit="page" to="126">126</biblScope>
</imprint>
<idno type="ISSN">1076-0296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1076-0296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acas</term>
<term>Akif</term>
<term>Amengual</term>
<term>Anionic phospholipids</term>
<term>Annexin</term>
<term>Antibody</term>
<term>Antibody syndrome</term>
<term>Anticardiolipin</term>
<term>Anticardiolipin antibodies</term>
<term>Anticoagulant</term>
<term>Anticoagulation</term>
<term>Antigenic</term>
<term>Antiphospholipid</term>
<term>Antiphospholipid antibodies</term>
<term>Antiphospholipid antibody syndrome</term>
<term>Antiphospholipid syndrome</term>
<term>Antithrombotic</term>
<term>Apoptosis</term>
<term>Apoptotic</term>
<term>Apoptotic cells</term>
<term>Appl</term>
<term>Aptt</term>
<term>Arthritis rheum</term>
<term>Aspirin</term>
<term>Assay</term>
<term>Asymptomatic</term>
<term>Atsumi</term>
<term>Autoantibody</term>
<term>Autoimmun</term>
<term>Autoimmune</term>
<term>Beta</term>
<term>Bick</term>
<term>Cardiolipin</term>
<term>Cervera</term>
<term>Clin</term>
<term>Clin appl thromb hemost</term>
<term>Clin pathol</term>
<term>Clinical features</term>
<term>Clinical manifestations</term>
<term>Clinical significance</term>
<term>Coagulation</term>
<term>Coagulation cascade</term>
<term>Cofactor</term>
<term>Cohort</term>
<term>Confirmatory</term>
<term>Current debates</term>
<term>Drvvt</term>
<term>Elisa</term>
<term>Endothelial</term>
<term>Endothelial cells</term>
<term>Endothelium</term>
<term>Epitope</term>
<term>Erythematosus</term>
<term>Fetal</term>
<term>Fetal loss</term>
<term>Gharavi</term>
<term>Glycoprotein</term>
<term>Gonadotropin</term>
<term>Gynecol</term>
<term>Haematol</term>
<term>Haemost</term>
<term>Hematol</term>
<term>Hemost</term>
<term>Hemostasis</term>
<term>Heparin</term>
<term>Hypertension</term>
<term>Immune</term>
<term>Immunoglobulin</term>
<term>Immunol</term>
<term>Immunologic</term>
<term>Infarction</term>
<term>Intravenous</term>
<term>Invasiveness</term>
<term>Ischemic</term>
<term>Isotype</term>
<term>Ivig</term>
<term>Kaolin</term>
<term>Khamashta</term>
<term>Laboratory diagnosis</term>
<term>Lipid</term>
<term>Lipoprotein</term>
<term>Lmwh</term>
<term>Lupus</term>
<term>Lupus anticoagulant</term>
<term>Lupus anticoagulants</term>
<term>Miscarriage</term>
<term>Monoclonal</term>
<term>Monocyte</term>
<term>Myocardial infarction</term>
<term>Neurologic</term>
<term>Normal plasma</term>
<term>Obstet</term>
<term>Obstet gynecol</term>
<term>Obstetric</term>
<term>Other hand</term>
<term>Oxidative</term>
<term>Oxidized</term>
<term>Pathobiology</term>
<term>Pathogenesis</term>
<term>Pathol</term>
<term>Pathway</term>
<term>Phosphatidylethanolamine</term>
<term>Phosphatidylserine</term>
<term>Phospholipid</term>
<term>Pierangeli</term>
<term>Placenta</term>
<term>Placental</term>
<term>Placental thrombosis</term>
<term>Platelet</term>
<term>Platelet activation</term>
<term>Pregnancy loss</term>
<term>Primary antiphospholipid syndrome</term>
<term>Procoagulant</term>
<term>Prophylaxis</term>
<term>Prothrombin</term>
<term>Prothrombotic</term>
<term>Randomized</term>
<term>Reprod</term>
<term>Rheum</term>
<term>Rheumatol</term>
<term>Rheumatology</term>
<term>Standardization</term>
<term>Subgroup</term>
<term>Suppl</term>
<term>Syndrome</term>
<term>Syndrome patients</term>
<term>Systemic</term>
<term>Systemic lupus erythematosus</term>
<term>Thromb</term>
<term>Thromb haemost</term>
<term>Thrombin</term>
<term>Thrombocytopenia</term>
<term>Thromboembolism</term>
<term>Thrombophilia</term>
<term>Thromboplastin</term>
<term>Thrombosis</term>
<term>Thrombotic</term>
<term>Thrombotic events</term>
<term>Thrombus</term>
<term>Tissue factor</term>
<term>Tissue factor pathway</term>
<term>Triplett</term>
<term>Trophoblast</term>
<term>Venous</term>
<term>Venous thrombosis</term>
<term>Viper</term>
<term>Warfarin</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.</div>
</front>
</TEI>
<istex>
<corpusName>sage</corpusName>
<keywords>
<teeft>
<json:string>antiphospholipid</json:string>
<json:string>lupus</json:string>
<json:string>syndrome</json:string>
<json:string>antiphospholipid syndrome</json:string>
<json:string>anticoagulant</json:string>
<json:string>antiphospholipid antibodies</json:string>
<json:string>phospholipid</json:string>
<json:string>thromb</json:string>
<json:string>thrombosis</json:string>
<json:string>clin</json:string>
<json:string>anticardiolipin</json:string>
<json:string>platelet</json:string>
<json:string>thromb haemost</json:string>
<json:string>haemost</json:string>
<json:string>coagulation</json:string>
<json:string>thrombotic</json:string>
<json:string>erythematosus</json:string>
<json:string>autoantibody</json:string>
<json:string>acas</json:string>
<json:string>venous</json:string>
<json:string>systemic lupus erythematosus</json:string>
<json:string>annexin</json:string>
<json:string>cardiolipin</json:string>
<json:string>rheumatol</json:string>
<json:string>anticardiolipin antibodies</json:string>
<json:string>prothrombin</json:string>
<json:string>pathway</json:string>
<json:string>heparin</json:string>
<json:string>assay</json:string>
<json:string>placental</json:string>
<json:string>thrombocytopenia</json:string>
<json:string>arthritis rheum</json:string>
<json:string>trophoblast</json:string>
<json:string>apoptotic</json:string>
<json:string>obstet</json:string>
<json:string>gynecol</json:string>
<json:string>primary antiphospholipid syndrome</json:string>
<json:string>immunol</json:string>
<json:string>endothelial cells</json:string>
<json:string>akif</json:string>
<json:string>lupus anticoagulant</json:string>
<json:string>antibody</json:string>
<json:string>warfarin</json:string>
<json:string>lupus anticoagulants</json:string>
<json:string>endothelial</json:string>
<json:string>fetal</json:string>
<json:string>apoptosis</json:string>
<json:string>rheum</json:string>
<json:string>obstet gynecol</json:string>
<json:string>gharavi</json:string>
<json:string>hemost</json:string>
<json:string>haematol</json:string>
<json:string>autoimmune</json:string>
<json:string>venous thrombosis</json:string>
<json:string>oxidized</json:string>
<json:string>lipoprotein</json:string>
<json:string>bick</json:string>
<json:string>elisa</json:string>
<json:string>autoimmun</json:string>
<json:string>immunoglobulin</json:string>
<json:string>syndrome patients</json:string>
<json:string>aptt</json:string>
<json:string>prophylaxis</json:string>
<json:string>platelet activation</json:string>
<json:string>atsumi</json:string>
<json:string>epitope</json:string>
<json:string>aspirin</json:string>
<json:string>antiphospholipid antibody syndrome</json:string>
<json:string>clinical features</json:string>
<json:string>drvvt</json:string>
<json:string>monoclonal</json:string>
<json:string>isotype</json:string>
<json:string>current debates</json:string>
<json:string>other hand</json:string>
<json:string>phosphatidylserine</json:string>
<json:string>glycoprotein</json:string>
<json:string>appl</json:string>
<json:string>asymptomatic</json:string>
<json:string>pierangeli</json:string>
<json:string>anionic phospholipids</json:string>
<json:string>lipid</json:string>
<json:string>hypertension</json:string>
<json:string>apoptotic cells</json:string>
<json:string>antithrombotic</json:string>
<json:string>procoagulant</json:string>
<json:string>lmwh</json:string>
<json:string>monocyte</json:string>
<json:string>subgroup</json:string>
<json:string>clin appl thromb hemost</json:string>
<json:string>thromboplastin</json:string>
<json:string>miscarriage</json:string>
<json:string>phosphatidylethanolamine</json:string>
<json:string>intravenous</json:string>
<json:string>randomized</json:string>
<json:string>cervera</json:string>
<json:string>hemostasis</json:string>
<json:string>pathol</json:string>
<json:string>endothelium</json:string>
<json:string>cofactor</json:string>
<json:string>ivig</json:string>
<json:string>oxidative</json:string>
<json:string>khamashta</json:string>
<json:string>cohort</json:string>
<json:string>clinical manifestations</json:string>
<json:string>clinical significance</json:string>
<json:string>pathobiology</json:string>
<json:string>immunologic</json:string>
<json:string>thrombus</json:string>
<json:string>amengual</json:string>
<json:string>thrombotic events</json:string>
<json:string>obstetric</json:string>
<json:string>ischemic</json:string>
<json:string>hematol</json:string>
<json:string>normal plasma</json:string>
<json:string>placenta</json:string>
<json:string>clin pathol</json:string>
<json:string>placental thrombosis</json:string>
<json:string>laboratory diagnosis</json:string>
<json:string>invasiveness</json:string>
<json:string>gonadotropin</json:string>
<json:string>thrombophilia</json:string>
<json:string>standardization</json:string>
<json:string>beta</json:string>
<json:string>infarction</json:string>
<json:string>systemic</json:string>
<json:string>myocardial infarction</json:string>
<json:string>confirmatory</json:string>
<json:string>kaolin</json:string>
<json:string>suppl</json:string>
<json:string>reprod</json:string>
<json:string>pregnancy loss</json:string>
<json:string>neurologic</json:string>
<json:string>thromboembolism</json:string>
<json:string>triplett</json:string>
<json:string>prothrombotic</json:string>
<json:string>fetal loss</json:string>
<json:string>tissue factor</json:string>
<json:string>antigenic</json:string>
<json:string>thrombin</json:string>
<json:string>viper</json:string>
<json:string>immune</json:string>
<json:string>rheumatology</json:string>
<json:string>antibody syndrome</json:string>
<json:string>coagulation cascade</json:string>
<json:string>tissue factor pathway</json:string>
<json:string>anticoagulation</json:string>
<json:string>pathogenesis</json:string>
<json:string>pregnancy</json:string>
<json:string>arthritis</json:string>
<json:string>prospective study</json:string>
<json:string>oxidized lipoprotein</json:string>
<json:string>asymptomatic carriers</json:string>
<json:string>antibody assays</json:string>
<json:string>semin thromb hemost</json:string>
<json:string>screening test</json:string>
<json:string>classification criteria</json:string>
<json:string>arterial thrombosis</json:string>
<json:string>clinical course</json:string>
<json:string>hemolytic anemia</json:string>
<json:string>dose aspirin</json:string>
<json:string>livedo reticularis</json:string>
<json:string>anticoagulant pathway</json:string>
<json:string>inhibitor</json:string>
<json:string>immunization</json:string>
<json:string>renal</json:string>
<json:string>adhesion</json:string>
<json:string>thrombotic risk</json:string>
<json:string>venous thromboembolism</json:string>
<json:string>endothelial cell activation</json:string>
<json:string>pregnant women</json:string>
<json:string>endothelial activation</json:string>
<json:string>vascular thrombosis</json:string>
<json:string>pulmonary hypertension</json:string>
<json:string>tissue factor pathway inhibitor</json:string>
<json:string>lupus anticoagulant activity</json:string>
<json:string>sapporo criteria</json:string>
<json:string>prothrombotic state</json:string>
<json:string>cell antibodies</json:string>
<json:string>density lipoprotein</json:string>
<json:string>laboratory tests</json:string>
<json:string>hemostasis laboratory</json:string>
<json:string>bick classification</json:string>
<json:string>anticoagulant therapy</json:string>
<json:string>monoclonal antibodies</json:string>
<json:string>anticardiolipin antibody</json:string>
<json:string>recurrent pregnancy loss</json:string>
<json:string>trophoblast gonadotropin secretion</json:string>
<json:string>coagulation time</json:string>
<json:string>proc natl acad</json:string>
<json:string>experimental antiphospholipid syndrome</json:string>
<json:string>placental villi</json:string>
<json:string>hypercoagulable state</json:string>
<json:string>plasma proteins</json:string>
<json:string>possible mechanism</json:string>
<json:string>other phospholipids</json:string>
<json:string>thrombus formation</json:string>
<json:string>autoimmune disease</json:string>
<json:string>clinical point</json:string>
<json:string>manifestation</json:string>
<json:string>cardiac</json:string>
<json:string>recurrent</json:string>
<json:string>antibody binding</json:string>
<json:string>international consensus statement</json:string>
<json:string>oxidative damage</json:string>
<json:string>clinical studies</json:string>
<json:string>patient plasma</json:string>
<json:string>prothrombin molecule</json:string>
<json:string>leiden mutation</json:string>
<json:string>autoimmune antiphospholipid antibodies</json:string>
<json:string>negative test results</json:string>
<json:string>confirmatory tests</json:string>
<json:string>inhibitory activity</json:string>
<json:string>better understanding</json:string>
<json:string>tissue factor activity</json:string>
<json:string>antiphospholipid thrombosis syndromes</json:string>
<json:string>adhesion molecules</json:string>
<json:string>platelet neutralization procedure</json:string>
<json:string>antibody levels</json:string>
<json:string>recurrent miscarriages</json:string>
<json:string>general agreement</json:string>
<json:string>fibrin polymerization rate</json:string>
<json:string>antithrombin complexes</json:string>
<json:string>pregnancy morbidity</json:string>
<json:string>deep venous thrombosis</json:string>
<json:string>normal subjects</json:string>
<json:string>antiplatelet antibodies</json:string>
<json:string>naive mice</json:string>
<json:string>arch intern</json:string>
<json:string>test result</json:string>
<json:string>biol chem</json:string>
<json:string>apoptotic cell clearance</json:string>
<json:string>wide variety</json:string>
<json:string>plasma inhibitor</json:string>
<json:string>phospholipid antibodies</json:string>
<json:string>blood coagul fibrinolysis</json:string>
<json:string>heterogeneous group</json:string>
<json:string>coagulation factors</json:string>
<json:string>laboratory criteria</json:string>
<json:string>lipid peroxidation</json:string>
<json:string>coagulation activation</json:string>
<json:string>free protein</json:string>
<json:string>primary antiphospholipid antibody syndrome</json:string>
<json:string>fertil steril</json:string>
<json:string>recurrent thrombosis</json:string>
<json:string>vivo conditions</json:string>
<json:string>intravenous immunoglobulin</json:string>
<json:string>pulmonary embolism</json:string>
<json:string>antiprothrombin antibodies</json:string>
<json:string>trophoblast invasiveness</json:string>
<json:string>isotype acas</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M. Akif Öztürk MD</name>
<affiliations>
<json:string>Gazi University School of Medicine, Department of Rheumatology</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ibrahim C. Haznedaroğlu MD</name>
<affiliations>
<json:string>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mehmet Turgut MD</name>
<affiliations>
<json:string>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hakan Göker MD</name>
<affiliations>
<json:string>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Antiphospholipid antibody syndrome</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Antiphospholipid antibodies</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Lupus anticoagulants</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Anticardiolipin antibodies</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Terminology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Clinical features</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Laboratory investigation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Pathobiology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Management</value>
</json:item>
</subject>
<articleId>
<json:string>10.1177_107602960401000201</json:string>
</articleId>
<arkIstex>ark:/67375/M70-T6B88BCZ-M</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.</abstract>
<qualityIndicators>
<score>9.544</score>
<pdfWordCount>22879</pdfWordCount>
<pdfCharCount>159139</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>38</pdfPageCount>
<pdfPageSize>654 x 852 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>212</abstractWordCount>
<abstractCharCount>1527</abstractCharCount>
<keywordCount>9</keywordCount>
</qualityIndicators>
<title>Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Clinical and Applied Thrombosis/Hemostasis</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1076-0296</json:string>
</issn>
<eissn>
<json:string>1938-2723</json:string>
</eissn>
<publisherId>
<json:string>CAT</json:string>
</publisherId>
<volume>10</volume>
<issue>2</issue>
<pages>
<first>89</first>
<last>126</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
<json:string>1000</json:string>
<json:string>1998</json:string>
<json:string>1983</json:string>
<json:string>1999</json:string>
<json:string>2004</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>LABORATORY DIAGNOSIS OF THE ANTIBODIES IN THE APL SYNDROME The</json:string>
<json:string>Medicine Department of Hematology, Ankara, Turkey Summary</json:string>
<json:string>Medicine Department of Rheumatology</json:string>
<json:string>Gazi University</json:string>
<json:string>CLINICAL AND LABORATORY MANIFESTATIONS OF THE PATIENT</json:string>
<json:string>Hacettepe University</json:string>
<json:string>International Congress</json:string>
<json:string>S</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Akif Öztürk</json:string>
<json:string>M. Akif</json:string>
<json:string>Ibrahim C. Haznedaro</json:string>
<json:string>In</json:string>
<json:string>The</json:string>
<json:string>Bick</json:string>
<json:string>Recent</json:string>
<json:string>Hakan Göker</json:string>
<json:string>Mehmet Turgut</json:string>
</persName>
<placeName>
<json:string>Leiden</json:string>
<json:string>Taormina</json:string>
<json:string>Turkey</json:string>
<json:string>Specificity</json:string>
<json:string>Immunogenicity</json:string>
<json:string>France</json:string>
<json:string>Sapporo</json:string>
<json:string>Tours</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>September 2002</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/M70-T6B88BCZ-M</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - peripheral vascular disease</json:string>
<json:string>2 - hematology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - cardiovascular system & hematology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Hematology</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - General Medicine</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1177/107602960401000201</json:string>
</doi>
<id>B827091BEADC215794937213345837B0228A0FE5</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<availability>
<licence>
<p>sage</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-0J1N7DQT-B"></p>
<date>2004</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
<author xml:id="author-0000">
<persName>
<forename type="first">M. Akif</forename>
<surname>Öztürk</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Gazi University School of Medicine, Department of Rheumatology</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ibrahim C.</forename>
<surname>Haznedaroğlu</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Mehmet</forename>
<surname>Turgut</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Hakan</forename>
<surname>Göker</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</author>
<idno type="istex">B827091BEADC215794937213345837B0228A0FE5</idno>
<idno type="ark">ark:/67375/M70-T6B88BCZ-M</idno>
<idno type="DOI">10.1177/107602960401000201</idno>
<idno type="article-id">10.1177_107602960401000201</idno>
</analytic>
<monogr>
<title level="j">Clinical and Applied Thrombosis/Hemostasis</title>
<idno type="pISSN">1076-0296</idno>
<idno type="eISSN">1938-2723</idno>
<idno type="publisher-id">CAT</idno>
<idno type="PublisherID-hwp">spcat</idno>
<imprint>
<publisher>Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<date type="published" when="2004-04"></date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="89">89</biblScope>
<biblScope unit="page" to="126">126</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Antiphospholipid antibody syndrome</term>
</item>
<item>
<term>Antiphospholipid antibodies</term>
</item>
<item>
<term>Lupus anticoagulants</term>
</item>
<item>
<term>Anticardiolipin antibodies</term>
</item>
<item>
<term>Terminology</term>
</item>
<item>
<term>Clinical features</term>
</item>
<item>
<term>Laboratory investigation</term>
</item>
<item>
<term>Pathobiology</term>
</item>
<item>
<term>Management</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus sage not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">spcat</journal-id>
<journal-id journal-id-type="publisher-id">CAT</journal-id>
<journal-title>Clinical and Applied Thrombosis/Hemostasis</journal-title>
<issn pub-type="ppub">1076-0296</issn>
<publisher>
<publisher-name>Sage Publications</publisher-name>
<publisher-loc>Sage CA: Thousand Oaks, CA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1177/107602960401000201</article-id>
<article-id pub-id-type="publisher-id">10.1177_107602960401000201</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Öztürk</surname>
<given-names>M. Akif</given-names>
</name>
<degrees>MD</degrees>
<aff>Gazi University School of Medicine, Department of Rheumatology</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Haznedaroğlu</surname>
<given-names>Ibrahim C.</given-names>
</name>
<degrees>MD</degrees>
<aff>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Turgut</surname>
<given-names>Mehmet</given-names>
</name>
<degrees>MD</degrees>
<aff>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Göker</surname>
<given-names>Hakan</given-names>
</name>
<degrees>MD</degrees>
<aff>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</aff>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<month>04</month>
<year>2004</year>
</pub-date>
<volume>10</volume>
<issue>2</issue>
<fpage>89</fpage>
<lpage>126</lpage>
<abstract>
<p>Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.</p>
</abstract>
<kwd-group>
<kwd>Antiphospholipid antibody syndrome</kwd>
<kwd>Antiphospholipid antibodies</kwd>
<kwd>Lupus anticoagulants</kwd>
<kwd>Anticardiolipin antibodies</kwd>
<kwd>Terminology</kwd>
<kwd>Clinical features</kwd>
<kwd>Laboratory investigation</kwd>
<kwd>Pathobiology</kwd>
<kwd>Management</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta xlink:type="simple">
<meta-name>sagemeta-type</meta-name>
<meta-value>Journal Article</meta-value>
</custom-meta>
<custom-meta xlink:type="simple">
<meta-name>search-text</meta-name>
<meta-value> Antiphospholipid syndrome (APL syndrome) can be called "acquired antibody­mediated thrombophilia" from the clinical point of view. The hypercoagulability/thrombotic diathesis of APL syndrome can manifest in a wide variety of clinical and/or laboratory abnormal states. The expanding heterogeneous spectrum of the disor- der varies from a coincidental abnormality in the hemostasis laboratory to thromboembolic events such as a serious stroke, venous thrombosis, ar- terial occlusion, or a catastrophic obstetrical complication in the clinic (1). There are many obscurities challenging a bet- ter understanding of APL syndrome and APL an- tibody­associated pathologic states. Difficulties are mainly present in the confusing terminology describing the disorders and antibodies, prob- lems in the hemostasis laboratory and their clin- ical relevance, still ongoing revisions in the diag- nostic criteria, heterogeneous patient presenta- tions, chaotic multisystemic involvement, unsat- isfactory treatment strategies, and, of course, the unresolved enigmatic distinct etiopathogenesis of the APL syndrome. The aim of this review is to outline current dilemmas and their present clar- ifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody­related dis- tinct pathologic conditions. DIFFICULTIES IN THE CURRENT TERMINOLOGY OF THE APL SYNDROME The term "APL antibodies" represents a het- erogeneous group of antibodies associated with a prothrombotic state and/or a condition with high 89 State-of-the-Art Review Current Debates in Antiphospholipid Syndrome: The Acquired Antibody­Mediated Thrombophilia M. Akif Öztürk, MD,* Ibrahim C. Haznedaroglu, MD, Mehmet Turgut, MD, and Hakan Göker, MD *Gazi University School of Medicine Department of Rheumatology, Hacettepe University School of Medicine Department of Hematology, Ankara, Turkey Summary: Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term "APL antibodies" represents a hetero- geneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and sub- group APL antibodies represent intersecting, but non-identical, sub- sets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understand- ing of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anti- coagulant therapy. In this review, we focused on the current dilem- mas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody­related distinct patho- logic conditions. Key Words: Antiphospholipid antibody syndrome--Antiphospho- lipid antibodies--Lupus anticoagulants--Anticardiolipin antibod- ies--Terminology--Clinical features--Laboratory investigation-- Pathobiology--Management. Clin Appl Thrombosis/Hemostasis 10(2):89­126, 2004 ©2004 Westminster Publications, Inc., Glen Head, NY Address correspondence and reprint requests to Dr. M. Akif Öztürk, Ostim mahallesi 89. sokak, AK-84 sitesi A2 blok no: 8, Yenimahalle, Ankara TR-06160, Turkey; e-mail: makifozturk@yahoo.com. risk of recurrent fetal loss. Currently no single assay can identify every APL antibody. While the presence of those antibodies is detected with a phospholipid-dependent coagulation reaction, they are designated as "lupus anticoagulants" (LA). When they are demonstrated with the solid phase enzyme-linked immunosorbent assay (ELISA) in which microplate wells are coated with cardiolipin, they are called "anticardiolipin antibodies" (ACA). Therefore, ACAs are detect- ed by their antigenic specificity irrespective of their functional properties. On the other hand, LAs are detected by their effect on in vitro coag- ulation irrespective of their immunologic target. Despite the famous historical name of the syn- drome, the real antigenic target for APL antibod- ies is not phospholipid itself but some phospho- lipid binding plasma proteins, mainly beta2 gly- coprotein-1 (2 GP-1) and prothrombin. 2 GP-1 is required for the binding of autoimmune ACAs to cardiolipin. Most LAs depend on the presence of prothrombin or 2 GP-1 directed against anionic phospholipids (1­8). Furthermore, the anionic phospholipids probably play important roles for the binding of APL antibodies to those phospho- lipid binding plasma proteins in in vivo condi- tions. It is not clear whether these antibodies rec- ognize the proteins themselves, the phospho- lipid-protein complex, or neo- or cryptic antigens eventually expressed as a result of the interac- tions. Another hypothesis is that close contact to the negatively charged surface makes clusters, providing higher antigenic density for the bind- ing of the APL antibodies that have low affinity for binding under normal conditions (3,7­13). Because APL antibodies represent a heteroge- nous group, each of those hypotheses could be operative in different patients. ACAs and LAs represent two intersecting, but non-identical, subsets of autoantibodies. Thus, LACs and ACAs may coexist or may occur inde- pendently (14­16). From the clinical point of view, there are some patients with recurrent ve- nous and/or arterial thromboses without APL antibodies via with those "routine" assays in the absence of other autoimmune diseases. How- ever they have positivity for the more recently recognized "subgroups" of APL antibodies (i.e. antibodies against 2 GP-1, prothrombin, or an- nexin-V, and antibodies against phospholipids themselves other than cardiolipin including phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine) (17­20). The term "APL antibody" describes either of those previously mentioned antibodies, whereas the term "APL syndrome" designates the presence of either of those "APL antibodies" together with the throm- botic manifestations and/or recurrent fetal loss and/or thrombocytopenia (Fig. 1). The term "LA" is improper for two major as- pects. First, the "LA" antibodies are not neces- sarily specific to patients with systemic lupus erythematosus (SLE). Many patients suffering from recurrent thrombotic events or obstetrical complications and are positive for LA do not manifest any of the major clinical or serologic features of SLE. Second, LAs prolong the in vitro coagulation assays but actually demonstrate pro- coagulant, not anticoagulant, effects in in vivo conditions. APL antibodies can be associated with clinical features of APL syndrome without any finding of an underlying connective tissue disorder (i.e., primary APL syndrome). APL syndrome can also complicate the clinical course of various connec- tive tissue disorders, most commonly SLE (18,21­28), as well as some other autoimmune disorders such as Sjögren's syndrome, rheuma- toid arthritis, systemic sclerosis, systemic vas- culitis, or dermatomyositis (23). APL syndrome, however, more commonly develops in patients without any underlying disorder (18,23,26­29). Presence of LA or ACAs generally defines two distinct patient populations, each of which is as- sociated with an increased risk of thrombosis (15,18). However, there appears to be an intense overlap between those disorders, challenging widespread use of the LAs and APL antibodies to- gether. Therefore, we prefer to present those two disorders together for the sake of clarity in this paper. Infection- or Drug-Related APL Antibodies APL antibodies are reported to occur in some infections such as syphilis, malaria, infectious mononucleosis, tuberculosis, human immunode- ficiency virus, and hepatitis A, B, and C (30­32). Infection-related ACAs tend to be transient, of low titre, and directly bind to the cardiolipin it- self; i.e., they are not 2 GP-1 dependent, and moreover could be inhibited by 2 GP-1 (30,31). In these conditions, there is generally no appar- ently increased risk for developing manifesta- tions of APL syndrome (1,32), although certain viral infections can precede the development of APL syndrome (33­36). Some drugs are associated with APL antibod- ies and LA activity. Procainamide hydrochloride, quinidine sulfate, phenytoin sodium, chlorpro- M. AKIF ÖZTÜRK ET AL90 mazine hydrochloride, valproic acid, amoxicillin, hydralazine hydrochloride, and propranolol hy- drochloride are all reported for this association. Those drug-induced APL antibodies were associ- ated with thrombotic complications in contrast to the majority of infectious-related ACAs (15,18). PATHOBIOLOGY AND GENESIS OF APL SYNDROME: AN ENIGMA FROM MOLECULES TO DISEASE Pathobiology and genesis of the APL syndrome still remain undetermined. However, there have been enormous efforts and progress for our un- derstanding the molecular pathogenesis of the APL syndrome in the past decade. The role of APL antibodies as the "primary cause" of the syndrome could be questionable, at least for some patients. APL antibodies are in- creased in patients with autoimmune hemolytic anemia (37). The APL antibodies, thus, could be "innocent bystanders" generated secondary to antibody-mediated cell injury in some disorders. Another possibility is that APL antibodies could act as a "second hit," and could be both an effect and a cause of thrombosis. In that hypothetical model, anionic phospholipids that are exposed during blood clotting could trigger immunologi- cal recognition and the formation of APL anti- bodies, promoting a vicious cycle through their thrombogenic properties (38). Finally, the APL antibodies could play direct causal roles in the generation of the clinical features of APL syn- drome. There are data supporting this final hy- pothesis. The majority of antigenic structures that are targets for the APL antibodies do play roles in the normal hemostasis. Moreover, those APL antibodies precede the thrombotic events, and the risk of developing the clinical manifes- tations of the APL syndrome correlates directly with the level of the APL antibodies (39­46). Furthermore, passive transfer of immunoglobu- lins from patients with APL syndrome generates features of APL syndrome in animal models (47­53). Therefore, rather than being merely an epiphenomenon, APL antibodies seem to play di- rect roles in the pathogenesis of APL syndrome. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 91 FIG. 1. Classical diagram representing the intersecting subsets of antiphos- pholipid antibodies. Subgroup of antiphospholipid antibodies are antibodies against 2 -GP-1, prothrombin, or annexin-V, and antibodies against phospho- lipids themselves other than cardiolipin including phosphatidylserine, phos- phatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Although the exact pathogenetic mecha- nism(s) remain to be determined, it is likely that more than one mechanism could be operative for the development of the clinical manifestations because a wide spectrum of autoantibodies have been shown to be associated with the APL syn- drome. Thrombotic events in patients with APL syndrome segregate into venous or arterial vas- cular tree. Arterial events are generally followed by arterial events and venous events by venous events in the majority of the cases in APL syn- drome (54). Therefore, molecular mechanisms of thrombosis could differ in different clinical manifestations. For instance, venous thrombotic manifestations may be attributed to coagulation factor­associated mechanisms (i.e., secondary hemostasis), whereas disorders of platelets (i.e., primary hemostasis) might be responsible for ar- terial thromboses. The 2 GP-1 protein is the most frequently ob- served protein cofactor in the APL syndrome. However little is known regarding the physiolog- ic role(s) of this protein. The 2 GP-1 has been identified as a constituent of chylomicrons, and very-low-density and high-density lipoproteins. Roughly 40% of the circulating 2 GP-1 is bound to lipoproteins. Therefore this protein may be in- volved in lipoprotein metabolism (55). 2 GP-1 may also play a scavenging role in mediating the clearance of foreign particles and apoptotic cells in the circulation (56­58). 2 GP-1 was also sug- gested as a natural anticoagulant. Circulating levels of 2 GP-1 are reduced dramatically during disseminated intravascular coagulation (DIC) along with reductions in other anticoagulant pro- teins including protein C and antithrombin III. These data suggest specific consumption of the 2 GP-1 during in vivo coagulation (59). A num- ber of in vitro studies also supported the antico- agulant role of the 2 GP-1 molecule. 2 GP-1 can inhibit various platelet functions (60,61), down- regulate the activation of the Hageman factor and the contact phase system of the coagulation cascade (62,63), prevent the binding of protein S with its plasma inhibitor, the C4b-binding pro- tein (64), and inhibit tissue factor activity (65). However, the clinical relevance of those in vitro observations remains questionable because hereditary deficiency of 2 GP-1 does not seem to be associated with thrombophilia (66). The 2 GP-1 molecule can bind to negatively charged macromolecules that are involved in the initia- tion of coagulation. However, its binding affinity is far below that of many other phospholipid- binding proteins (67). Therefore, it seems un- likely that the binding of 2 GP-1 can neutralize the initiation of coagulation cascade. Likewise, anti-prothrombin antibodies do not interfere with the coagulant properties of the prothrombin molecule itself (68). Both anti-2 GP-1 antibodies and anti-prothrombin antibodies can display LA activity (2,4­6,68). Hence, other than direct in- hibition of function, binding of those antibodies to their targets should have some common dy- namic influences on the coagulation cascade. Disruption of the Annexin V Shield in APL Syndrome Annexin V is found in a variety of tissues in- cluding the vascular endothelium and placenta. This protein could have potent anticoagulant properties based on its high affinity for anionic phospholipids. The capacity of annexin V to dis- place coagulation factors from phospholipid sur- faces is evident (69,70). A number of consecu- tive experiments supported this hypothesis. The decrements in the levels of annexin V induced by APL antibodies were accompanied by a shorten- ing of the coagulation time of plasma. Likewise incubating endothelial cells with anti­annexin V resulted in faster coagulation of plasma. Moreover, removing annexin V from the cell sur- face by calcium chelator EGTA significantly ac- celerated the coagulation of plasma. Adding ex- ogenous annexin V increased the coagulation time of plasma applied to the cells (69). APL an- tibodies directly reduced binding of annexin-V to noncellular anionic phospholipid-coated surfaces in a 2 GP-1­dependent manner interfering with its anticoagulant activity, resulting in the accel- eration of coagulation (70). Inhibition of annex- in V binding to procoagulant phospholipid sur- faces by APL antibodies was dependent upon anti-2 GP-1 antibodies. This reduction is signifi- cantly correlated with clinical thrombosis (71). The hypothesis depending on these data is used to explain the in vivo procoagulant and in vitro anticoagulant effects of APL antibodies. Based on the hypothesis, annexin V forms a crystal lattice over the anionic phospholipid surface that serves and shields it from the availability for the assem- bly of the phospholipid-dependent coagulation complexes (i.e. tissue factor, factor X, factor IX, factor V, etc.) under physiologic conditions. Annexin V, thus, has a potent anticoagulant ef- fect in vivo. During the absence of the annexin V, the complexes of APL antibodies and their antigenic targets such as 2 GP-1 or prothrombin, bind the phospholipid bilayer, reducing the ac- cess of coagulation factors to anionic phospho- M. AKIF ÖZTÜRK ET AL92 lipids in vitro. Because there is a limiting quanti- ty of anionic phospholipids, this interaction re- sults in the prolongation of the coagulation assay. However, in in vivo conditions where there is sufficient amount of annexin V, the APL antibodies disrupt the ability of annexin V to form ordered crystals on the phospholipid sur- face and inhibit the anticoagulant effect of an- nexin V. That state results in a net increase of the amount of anionic phospholipid available for promoting coagulation reactions, which estab- lishes a hypercoagulable state (38,70). This at- tractive hypothesis could link the paradoxical LA phenomenon and the in vivo thrombogenic ten- dency of the APL antibodies. However, there is some conflicting data. In a Russell's viper venom assay, co-incubation of annexin V with APL anti- body containing plasma failed to correct the clot- ting time, but even caused prolongation of the clotting time. The observed clotting time exceeds that with either annexin V or APL containing plasma alone (72). Moreover, annexin V binding was unaffected by the presence of ACA-2 GP-1 complexes. Annexin V pre-adsorbed to the bilay- ers completely prevented adsorption of ACA- 2 GP-1 complexes. None of the pre-adsorbed an- nexin V was displaced by ACA-2 GP-1 complexes (73). Therefore, displacement of the annexin V shield is not a prerequisite for the thrombotic events in patients with APL syndrome. Inhibition of the Protein C Anticoagulant Pathway in APL Syndrome The protein C anticoagulant pathway is a major regulatory mechanism of the coagulation cascade. Upon binding of thrombin to thrombo- modulin, the thrombin molecule loses its proco- agulant properties and cleaves protein C. Activated protein C then complexes with protein S and proteolyzes coagulation factors Va and VIIIa (74). A missense mutation in the factor V gene (1691 GA) (Leiden mutation) is a com- mon cause of thrombotic tendency by causing an abnormal factor V product. However, factor V Leiden mutation is not common in patients with APL syndrome (75). On the other hand, some pa- tients with APL syndrome and asymptomatic car- riers of APL antibodies may have acquired free protein S deficiency (76,77). Immunoglobulin fractions isolated from patients with APL causes acquired activated protein C resistance (78,79). The presence of LAs can interfere with the pro- tein C pathway (80­83). Other APL antibodies, including anti-2 GP-1 antibodies and ACAs, were also associated with the acquired activated pro- tein C resistance phenomenon (84­86). ACAs bound to protein C in the presence of cardiolipin and 2 GP-1, but not in the absence of either 2 GP-1 or cardiolipin. These data suggest that protein C could be a target of ACA by making a complex with cardiolipin and 2 GP-1, leading to protein C dysfunction (87). Autoantibodies gen- erated against the isolated components of the protein C pathway (i.e. thrombomodulin, protein C, or protein S) may also impair the protein C pathway (88,89). Different steps in the protein C anticoagulant pathway could be targets for APL antibodies. They can inhibit thrombin formation. APL antibodies interfere with the protein C acti- vation via thrombin-thrombomodulin complex. Inhibition of the protein C complex assembly takes place. Protein C activity can be downregu- lated directly or via inhibition of the activity of its cofactor, protein S. Finally, the antibodies direct- ed against the substrates of APC, factors Va and VIIIa may protect them from inactivation (90,91). A subpopulation of APL antibodies selectively inhibits the activated protein C complex as a re- sult of differences in the phospholipid require- ments of this complex as compared to those of the procoagulant complexes. Phosphatidyl- ethanolamine supports activated protein C anti- coagulant activity but has little influence on pro- thrombin activation. The inhibitory effect of LAs on activated protein C pathway was also en- hanced in the presence of phosphatidylethano- lamine (92). The rate of inhibition of the antico- agulant pathway (i.e., inactivation of factor Va) is much higher than the inhibition of the proco- agulant pathway (i.e., thrombin generation) in the presence of phosphatidylethanolamine in the system (92). Therefore, differences between membrane phospholipid requirement of the anti- coagulant and procoagulant reactions could ac- count for the selective inhibition of one pathway over the other. The variability of different LA as- says may be attributed to the differences in the phospholipid reagents inside them (93). Why the autoantibodies directed against the phospho- lipids themselves can cause hypercoagulability is possibly explained via this hypothesis. Taken together, those observations suggest that inhibition of the activated protein C antico- agulation system may be a common mechanism contributing to the prothrombotic state of APL antibodies in at least a subgroup of patients. APA and Endothelium Vascular endothelial cells play a critical pro- tective role in the whole body defense against CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 93 thrombosis. Other than being a mechanical bar- rier, the endothelium plays an active role in the physiologic regulation of hemostasis through synthesis of numerous procoagulant and antico- agulant mediators. Immunologic injury to en- dothelial cells and alterations of the endothelial cell functions could have a place in the patho- genesis of the APL syndrome. Binding of APL an- tibodies suppressed vasodilator prostacyclin re- lease by vascular endothelium. This inhibition generates an imbalance between vasodilator and vasoconstrictor prostoglandins toward the vaso- constrictor state (94). Likewise, urinary excre- tion of the major thromboxane metabolite of platelet origin (11-dehydro-thromboxane B2) is very significantly increased while the urinary metabolite reflecting the vascular production of prostacyclin (2,3-dinor-6-keto-prostaglandin F1 alpha) is much less enhanced (95). LAs induce apoptosis in endothelial cells (96,97). Apoptotic cells expose phosphatidylserine on the outer sur- face of the plasma membrane, further activating coagulation cascades (98). APL antibodies induce the production of monocyte chemoattractant pro- tein-1 in human umbilical vein endothelial cells in a 2 GP-1­dependent manner, which might in turn promote thrombus formation either by en- hancing the influx of monocytes to the endothe- lium or by increasing tissue factor expression in monocytes (99). Binding of APL antibodies to the endothelial cell surface generates a functional cell activation and a procoagulant state. APL an- tibodies induce upregulation of certain cell ad- hesion molecules on the surface of endothelial cells. E-selectin, vascular cell adhesion molecule- 1 (VCAM-1), and intracellular adhesion mole- cule-1 (ICAM-1) are mediated through 2 GP-1 (100­103). Anti-2 GP-1 antibodies also signifi- cantly increase the secretion of proinflammatory cytokine IL-6 and augment prostacyclin metabo- lism by endothelial cells in a dose-dependent manner (100). APL antibodies increase leukocyte adhesion to the endothelium and enhance thrombus formation as demonstrated in an in vivo model of leukocyte adhesion and microcir- culation. This increment was accompanied by en- hanced adhesion molecule expression as an in vitro marker of endothelial cell activation (104). Circulating VCAM-1 is increased in patients with primary APL syndrome, which is further evident in patients with repeated thrombotic events (105). APL antibody induced endothelial activa- tion and enhanced thrombosis is impaired in ICAM-deficient and ICAM-1/P-selectin deficient mice. These data demonstrate that pathogenic ef- fects of APL antibodies could be mediated by those cell adhesion molecules (106). Moreover, leukocyte adhesion to endothelial cells was sig- nificantly decreased after infusion of anti-VCAM- 1 antibodies (106). Taken together, those data strongly indicate that pathologic activation of the endothelium may contribute to the hypercoagu- lable state of APL syndrome. The Tissue Factor Pathway in APL Syndrome Tissue factor (TF) is the principle (patho)bio- logic initiator of the coagulation cascade. Endothelial cells and monocytes can generate tis- sue factor upon stimulation by various sub- stances. Tissue factor is inducibly synthesized in endothelium and monocytes (107). Tissue factor pathway is upregulated in the APL syndrome. Plasma tissue factor is higher in patients with APL syndrome compared to healthy people and patients with thrombosis without APL antibodies (108,109). Cell surface expression of tissue factor and tissue factor mRNA levels are also increased in the monocytes of APL syn- drome. These data suggest that circulating monocytes in APL syndrome express increased amounts of tissue factor (109,110). Moreover, APL antibodies induce tissue factor generation and enhance tissue factor activity in monocytes and vascular endothelial cells (108,111­113). On the other hand, APL antibodies can also interfere with the inhibitory activity of tissue factor path- way inhibitor in a group of patients (114,115), despite the circulating tissue factor pathway in- hibitor levels were increased in APL syndrome (108). The increased levels of tissue factor path- way inhibitor could either reflect a compensato- ry response or endothelial activation or damage (108). Therefore, enhancement of the tissue fac- tor pathway either by increasing tissue factor generation and activity or by interfering with its inhibition can be an important mechanism that leads to activation of coagulation and thrombus formation in the APL syndrome. Molecular Mimicry as a Potential Triggering Mechanism in APL Syndrome Immunization with phospholipids alone does not induce the production of APL antibodies (116). However, immunization of normal mice and rabbits with purified 2 GP-1 induced pro- duction of high levels of APL antibodies in addi- tion to antibodies against 2 GP-1 (117­119). Characteristics of those 2 GP-1­induced APL an- tibodies were similar to those of the human au- toimmune APL antibodies (118,119). Moreover, M. AKIF ÖZTÜRK ET AL94 immunization with 2 GP-1 induced the develop- ment of the clinical and histopathologic features of APL syndrome in PL/J mice, which are genet- ically predisposed to autoimmune disease (120). A major PL-binding site of 2 GP-1, called GDKV, induced production of pathogenic APL an- tibodies alone without the rest of the 2 GP-1 molecule (121). Some common human viruses shared structural similarities with this phospho- lipid-binding region of 2 GP-1, the GDKV. Those peptides showed greater degrees of binding to PL compared to GDKV. Interestingly, immunization of mice with those peptides caused production of high levels of APL antibodies (122). A CMV pep- tide-induced monoclonal APL antibody showed significantly high binding to cardiolipin and vary- ing degrees of binding to other phospholipids in the presence of 2 GP-1. Injection of those mono- clonal APL antibodies in mice resulted in a sig- nificant increase in the number of leukocytes ad- hering to endothelial cells and enhanced throm- bus formation in vivo. These data suggest that those antibodies could be pathogenic (123). Certain viral infections can precede the develop- ment of APL syndrome (32­36). Taken together, those experiments proposed that the tolerance to self 2 GP-1 could be broken after certain micro- bial exposure by molecular mimicry. This mech- anism could be operative in at least a subgroup of APL patients (124). A wide variety of diseases and immunologic alterations affect the endothe- lial phospholipids. These effects promote the pathogenicity of otherwise harmless APL anti- bodies. Therefore hypercoagulability is unpre- dictable in APL syndrome. Likewise "healthy" people with APL antibodies could remain asymp- tomatic for many years. Infection-related APL antibodies are usually transient and do not offer an increased risk for thrombotic events (1,32). The affinity of autoim- mune APL antibodies for their protein antigens in the circulation is often at most moderate, which is also a characteristic of natural autoanti- bodies (125). Indeed, patients with antibodies against either 2 GP-1 or prothrombin do usually have normal circulating levels of these proteins. Therefore, some other authors concluded that the origin of pathogenic autoimmune APL anti- bodies resides in deregulated overproduction of natural antibodies rather than in antigen-driven formation of immune antibodies (125). APL Antibodies and Apoptosis Anionic phospholipids are almost exclusively located in the intracellular surface of cell mem- branes, whereas cardiolipin is located primarily on the mitochondial membranes. Therefore, APL antibodies cannot react with their targets under normal conditions. Redistribution of the anionic phospholipids from the intracellular to the ex- tracellular compartment can occur in certain physiologic conditions such as platelet activation or apoptosis (98,126,127). Cardiolipin molecules were expressed on the surface of apoptotic cells and were recognized by APL antibodies (128). 2 GP-1 bound selectively to the surface of apop- totic cells (57,127,129). The binding of 2 GP-1 to the surface of the apoptotic cells generated an epitope for the binding of APL autoantibodies (127). Heterologous human 2 GP-1 bound to the surface of apoptotic cells induced the production of ACAs and LA activity in non-autoimmune mice (130). Importantly, neither apoptotic cells nor 2 GP-1 alone could be able to induce generation of ACAs after intravenous injection (130). Subcutaneous or intradermal administration of the heterologous 2 GP-1 molecule alone could also induce generation of APL antibodies (5,117­119). Slow absorption of the 2 GP-1 over several days may induce such a phenomenon. During the sustained absorption time, 2 GP-1 could bind to apoptotic cells of the host. This in- teraction could be induced by the generation of local inflammatory response secondary to co-ad- ministration of the adjuvant (namely CFA, com- plete Freund's adjuvant) (130). Therefore apop- totic cell-bound 2 GP-1 appears to be a "true" im- munogen for the production of APL antibodies. 2 GP-1 complexed with native cardiolipin is structurally altered. Likewise, intravenous im- munization of mice with 2 GP-1 in the presence of cardiolipin vesicles induced a high level of anti-2 GP-1 antibodies, ACAs, and LA activity (131). On the other hand, binding of APL anti- bodies to apoptotic cells can occur in both in a 2 GP-1­dependent and independent way (132). Taken together, these data provide evidence that exposure of phospholipids during apoptosis may be an early event in the apoptotic cellular pro- gram leading to specific interactions with circu- lating phospholipid-binding plasma proteins such as 2 GP-1. The binding of the 2 GP-1 molecule to those phospholipids exposed on the apoptotic cells could be immunogenic. That phenomenon can break tolerance and trigger the generation of APL antibodies. Once an immune response is initiated against such an immunodominant epi- tope, the immunologic response can expance to other epitopes within the complex by the process of epitope spreading. As "the end," the APL anti- CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 95 body response eventually includes autoantibod- ies against 2 GP-1 or phospholipids alone, or against a new epitope generated after the inter- action between those molecules (130,131,133). Role of Lipid Peroxidation in the Initiation and/or Propagation of APL Syndrome Oxidative injury has been suggested in the pathogenesis of a variety of disorders including vasculitic syndromes and atherosclerosis. Like- wise, a number of experiments provided evi- dence that oxidative damage could have a role in the pathobiology of the APL syndrome. Native cardiolipin, the naturally occurring form of car- diolipin, is highly susceptible to oxidation, par- ticularly upon exposure to air. In contrast, hy- drogenated cardiolipin is unable to undergo lipid peroxidation. Cardiolipin is highly sensitive to lipid peroxidation under conditions of solid- phase immunoassay. Both sera and affinity puri- fied ACA IgG from APL syndrome patients bound to oxidized cardiolipin, but did not bind to hy- drogenated cardiolipin. These data suggest that APL antibodies are directed at neoepitopes gen- erated when cardiolipin undergoes the process of peroxidation (134). Moreover, 2 GP-1 was recognized by the APL sera only when bound to oxidized cardiolipin, but not when bound to the reduced cardiolipin analog unable to undergo ox- idation (135). ACAs could bind to 2 GP-1 only when it was bound to a microtiter plate that was previously irradiated, a condition that introduces oxygen radicals (9). These data support the hy- pothesis that a simple phosholipid-2 GP-1 com- plex is not sufficient for the generation of APL antibodies unless the PL first undergoes oxida- tion. Therefore, many of the APL antibodies could actually be antibodies directed against ox- idized phospholipids (134,135). Oxidative stress is a potential component of the final common pathway leading to apoptosis. On the other hand, cells sustained progressive lipid peroxidation following an apoptotic signal (136,137). Therefore, the apoptotic cell surface is a site of increased oxidative activity. Immuno- genicity of apoptotic cell-bound 2 GP-1 depend- ed upon prolonged interaction between 2 GP-1 and the apoptotic cell surface (130). Hence both apoptosis and oxidative injury may play a dual role in the pathogenesis of APL antibodies. Antiplatelet Antibodies in APL Syndrome There is some evidence suggesting that APL autoantibodies can cross-react with platelets and can affect both their quantity and function. Platelet activation induces the exposure of an- ionic phospholipids on the outer leaflet of the membrane (126,138). Both ACAs and LAs bound to thrombin activated, but not unactivated rest- ing, platelets (139). The most likely binding site was phospholipids because there was no cross- reactivity of these antibodies with GPIIb/IIIa (139). Likewise, 2 GP-1 preferentially bound to activated platelets. Binding of ACAs to platelet surface is also 2 GP-1­dependent (138,139). Moreover, some APL antibodies can induce platelet activation and aggregation (140­145). Urinary excretion of the platelet-derived throm- boxane metabolite 11-dehydro-thromboxane B2 was significantly increased in patients with APL antibodies (140). Activated platelets were de- tected by flow cytometry in the majority of APL syndrome patients with neurologic involvement (146). In contrast, although APL antibodies did bind to activated platelets, they may fail to in- duce platelet activation (139,147). Therefore, the role of platelet activation in the pathobiology of thrombosis in APL syndrome is not universal. Platelets circulating in an "over-activation state" in APL syndrome could either be a "cause" or an "effect" of the thrombosis or vascular injury (148). Specific anti-platelet antibodies directed against major platelet membrane glycoproteins were higher in APL syndrome patients with thrombocytopenia compared to patients with normal platelet counts (149,150). Those anti- platelet antibodies did not demonstrate cross-re- activity with ACAs (149). Therefore, anti-platelet antibodies could represent a distinct group of auto-antibodies other than APL antibodies. They could play a significant role in the thrombocy- topenia observed in APL syndrome. However, whether binding of these anti-platelet antibodies may play a pathogenic role in thrombosis on the basis of hyperaggregability remains obscure. Heparin-induced thrombocytopenia (HIT) and APL syndrome have similar clinical presenta- tions. Enhanced platelet activation at the vascu- lar wall and endothelial injury are similar in both HIT and APL. Deposition of the immune com- plexes on slightly activated platelets further in- duces cellular activation. Likewise, generation of microvesicles provides much larger phospholipid surface area and results in enhanced thrombin generation (125,151,152). In a recent mild radi- cal-induced injury model in hamsters, anti-2 GP-1 antibodies were mainly localized within the platelet thrombus. This observation suggests that after a slight endothelial damage (first hit), acti- M. AKIF ÖZTÜRK ET AL96 vated platelets exposed negatively charged phos- pholipids, leading to deposition of APL antibody complexes perpetuating the platelet activation and thrombus growth (second hit) (125,153). Mechanisms of Pregnancy Loss in APL Syndrome Intervillous thrombosis, intravillous infarc- tions, and decidual vasculopathy disturbing pla- cental circulation were proposed as the pathobi- ologic basis of recurrent miscarriages in women with APL syndrome (154,155). The previously- mentioned hypotheses regarding the prothrom- botic state of APL syndrome could contribute to the placental thrombosis. The "disruption of the annexin V shield" hypothesis could offer a logical explanation for the placental thrombosis (69). Annexin V is normally located on the apical sur- face of syncytiotrophoblasts lining the placental villi (156,157). This protein is constitutively pro- duced to maintain the fluidity of the intervillous circulation and consequently to maintain fetal vi- ability (156,157). Infusion of anti-annexin V an- tibodies caused placental thrombosis, necrosis, and fetal loss in animal models (157). Interestingly the concentrations of this placental anticoagulant factor are markedly reduced on placental villi in APL patients with spontaneous recurrent abortion (158). Moreover, APL anti- bodies decreased the levels of villous surface an- nexin-V on placental villi (158,159). APL antibod- ies both reduced the levels of annexin V and also accelerated the coagulation of plasma on cultured trophoblasts and endothelial cells (69). Therefore, deficiency of placental surface annexin-V caused by APL antibodies may complicate the placental thrombosis observed in those patients (69,158). In contrast, ACA-2 GP-1 complexes failed to dis- place preadsorbed annexin V from lipid bilayers in another study (73). No difference was observed regarding the intensity of immunostaining for an- nexin V between placentas from women with APL syndrome and those from control subjects (160). Therefore, placental thrombosis cannot be solely attributed to the displacement of the annexin V shield, and other prothrombotic mechanisms could be operative as well. On the other hand, placental infarction is not present in all the placentae of patients with APL syndrome. Furthermore, although placental thrombosis could be responsible for late fetal losses, early miscarriages cannot be explained by placental thrombosis (155,161). Recent reports have suggested that APL antibodies could induce trophoblast dysfunction such as decreased pla- cental hormone production or trophoblast inva- sion. In a choriocarcinoma model of pregnancy, phosphatidylserine exposed during syncytium formation was targeted by APL antibodies. They inhibited the intercytotrophoblast fusion process and trophoblast invasiveness and secretion of human chorionic gonadotropin (159). APL anti- body­containing sera suppressed human chori- onic gonadotropin secretion by cultured tro- phoblast cells (162). Anti-annexin V antibody in- duced trophoblast apoptosis and significantly re- duced trophoblast gonadotropin secretion (163). Moreover, 2 GP-1­dependent APL antibodies as well as APL antibodies against the phospholipids themselves attacked the trophoblasts, and both groups of antibodies negatively affected tro- phoblast implantation and development (164). In this regard, APL antibodies can affect tro- phoblast gonadotropin secretion and invasive- ness by binding directly to anionic phospholipids and through adhered 2 GP-1. Alternatively they can induce apoptosis and lead to the defective placentation in APL syndrome (159,163,164). Establishment of the human placenta requires invasiveness of fetal cytotrophoblast stem cells in anchoring chorionic villi. Trophoblast inva- siveness and differentiation are dependent on ad- herence to the extracellular matrix, response to external cytokine signals, and expression and the alteration of adhesion proteins. During normal cytotrophoblast differentiation along the invasive pathway, the differentiating cytotrophoblasts dramatically transform their adhesion receptor phenotype. These data suggest that a unique ad- hesion phenotype switch is required for the suc- cessful endovascular invasion and normal pla- centation (165,166). The effects of APL antibod- ies on trophoblast adhesion molecules (alpha1 and alpha5 integrins, E- and VE-cadherins) were investigated in primary cytotrophoblast cell cul- tures. APL antibodies modulated the trophoblast cadherins repertoire in vitro, suggesting that re- current pregnancy loss in APL syndrome could be associated with abnormal cytotrophoblast ex- pression of adhesion molecules (167). The Role of Genetic Predisposition in APL Syndrome Familial clustering of increased APL antibody levels has been described (168). Moreover, cer- tain polymorphisms of the 2 GP-1 molecule were associated with the presence of anti-2 GP-1 anti- bodies and APL syndrome (169,170). Associa- tions with HLA DR4, DR5, and HLA-DQ7 anti- gens and primary APL syndrome were reported (171­174). Frequency of HLA-DR7 was in- CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 97 creased in SLE patients with ACAs (173,175). However, those studies were carried out in a lim- ited number of patients and genetic marker(s) for APL syndrome have not yet been demon- strated in large cohorts of subjects from differ- ent ethnic populations. Other Thrombophilic Triggers Complicating the Genesis of APL Syndrome The fibrin polymerization rate is increased in patients with APL syndrome (176). Fibrinolytic activity could be suppressed by APL antibodies. Impaired fibrinolysis could be either due to the increments in PAI-1 activity or to the inhibition of factor XII activation together with the inhibi- tion of XIIa (177,178). APL antibodies also in- hibit heparin-accelerated formation of an- tithrombin III-thrombin complexes (179). In conclusion, for the thrombophilia mecha- nism of APL syndrome, several different and/or related pathogenic mechanisms could be opera- tive concurrently, and even in the same patients to induce the generation of the features of APL antibodies. Each of the previously mentioned mechanisms could be in part operative during the pathobiologic course of APL syndrome. Moreover, it is likely that those mechanisms are tightly integrated and can display complex dual interactions as a vicious cycle. For instance, while apoptosis induces generation of APL antibodies, LAs can trigger endothelial cell apoptosis. Apoptosis is able to induce oxidative damage. Oxidative damage is a well-known inducer for apoptosis. APL antibodies can induce pathologic activation and/or injury to platelets and en- dothelium. The activation of those cells causes exposure of anionic phospholipids that can sec- ondarily amplify the generation of APL antibod- ies. Therefore, complex interactions of biologic structures and molecules are operative in the genesis of APL syndrome. A list of proposed mechanisms in the pathobiology of APL syn- drome is given in Table 1. LABORATORY DIAGNOSIS OF THE ANTIBODIES IN THE APL SYNDROME The laboratory diagnosis of APL syndrome de- pends on the detection of autoantibodies direct- ed against anionic phospholipids and/or a variety of phospholipid binding proteins. Solid-phase im- munoassays and phospholipid-dependent tests of hemostasis are used for this purpose (21,67,180­ 182). There still remain some problems in the detection, standardization, clinical utility, rele- vance, and significance in the laboratory diagno- sis of APL syndrome. M. AKIF ÖZTÜRK ET AL98 TABLE 1. Proposed Mechanisms in the Complicated Pathobiology of APL Syndrome Proposed Mechanism Reference Disruption of the annexin V shield 38, 69, 70 Inhibition of the protein C anticoagulant pathway 78­90 Endothelial injury and/or pathological activation 94­97, 99­106 Alterations in the tissue factor pathway 108­115 Molecular mimicry 122­124 Deregulated overproduction of natural antibodies 125 Induction of apoptosis 130, 132, 133 Oxidative injury and lipid peroxydation 134, 135 Platelet activation 140­146 Anti-platelet antibodies 149, 150 Genetic predisposition 168­175 Induction of trophoblast dysfunction and/or trophoblast apoptosis in pregnancy 159, 162­164 Modulation of cytotrophoblast expression of adhesion molecules in pregnancy 167 Increased fibrin polymerization rate 176 Impaired fibrinolytic activity 177, 178 Inhibition of formation of antithrombin III-thrombin complexes 179 Solid-Phase Tests of APL Syndrome­Associated Antibodies Solid-phase tests are developed and widely used to detect antibodies against 2 GP-1 (anti- 2 GP-1), cardiolipin (ACA), prothrombin, annex- in V, phosphatidylserine, phosphatidyletanola- mine, and many others of which their numbers are growing (180,183). Therefore, more specific measurements of antibodies associated with APL syndrome are currently available via solid-phase assays (180). A detailed summary regarding the current knowledge and clinical applications of novel antigenic targets in APL syndrome is given in "Heterogeneous clinical and laboratory mani- festations of the patient(s) with APL syndrome: a logical approach for the use of various APL anti- bodies" section of this review. Nevertheless, there are many complicated problems restricting the predictive ability of current diagnostic tests in terms of the lack of standardization, repro- ducibility, and lack of prospective and multivari- ate epidemiologic analysis (21). The inter-labo- ratory coefficient of variation for IgG APL units was found to be higher than 70%, though the within-run coefficient of variation had a median value of 10% in the First French Anticardiolipin Antibodies Standardization Workshop (184). ACA assay is currently a "routine" standard in the diagnosis of APL syndrome. However, critical laboratory tests should be repeated at least once before reaching a clinical decision in APL syn- drome (185). Another study focusing on ACA assay usefulness suggested "exceedingly high in- terlaboratory result variation, combined with a general lack of test result grading consensus and method-based variation" (185). In that study, cross-laboratory testing of samples yielded inter- laboratory coefficients of variation for lgG ACA and IgM ACA that were higher than 50% in cases. General consensus (interlaboratory agree- ment, 90% or more) was obtained in approxi- mately 40% of cases only. Different laboratories usually failed to agree on whether a sample was ACA-positive or ACA-negative. Distinct methods in various laboratories tended toward higher or lower ACA values (185). Hence, the laboratory data obtained by ACA assays should be inter- preted together with the clinical presentation of the patients, as discussed in various sections of this review. Phospholipid-Dependent Hemostatic Tests of APL Syndrome-Associated Antibodies The term LAs denotes some of the APL anti- bodies that prolong phospholipid-dependent clot- ting reactions in vitro. The main critical function of hemostasis laboratory in the diagnosis of APL syndrome is to measure LA. Essentially, a phos- pholipid-dependent screening assay such as acti- vated partial thromboplastin time (aPTT) is per- formed to test LA. If this screening test is pro- longed, normal plasma is added to the tested sample in a 1:1 mixture. If the LA is present, ad- dition of normal plasma does not correct the pro- longed assay. The next step for LA detection is to add excess phospholipid to the tested sample. Naturally, addition of those phospholipids does correct the prolonged assay. In cases of coagula- tion factor deficiency, addition of normal plasma corrects the prolonged assay at the second step of the experiment. In the presence of anti-coagula- tion factor inhibitors, prolonged assay is never corrected in all steps of the tests. Specific mea- surements of anti-factor inhibitors are mandato- ry for the diagnosis of those cases (Fig. 2) (186). The sensitivity of numerous screening or confir- matory assays for the diagnosis of LA may vary. Attention to the ratio of tested patient plasma to normal plasma is important to detect a circulat- ing inhibitor especially in a minimally prolonged aPTT. Furthermore, the normal plasma source must be "platelet poor" to maximize sensitivity in the case of a weak LA (187). Dilute Russell viper venom time (dRVVT) is an important con- firmatory test for the LA. Russell viper venom di- rectly activates factor X. Therefore, dRVVT is not affected from the intrinsic factor deficiencies be- cause they are bypassed. Thus, dRVVT is more sensitive than prolonged aPTT for the detection of LA (188) with varying reference ranges (189). The sensitivity and specificity of commercial reagents for the detection of LA may exhibit marked differences in distinct coagulometers (190). Several tests are developed for the diag- nosis of LA, including platelet neutralization pro- cedures (191), platelet-derived microvesicle­ based tests (192), Textarin/Ecarin ratio (193), hexagonal phase phospholipid neutralization assay (194), silica clotting time (195), kaolin clotting time (196), tissue thromboplastin inhi- bition test (197), dilute prothrombin time­based lupus ratio test (198), Taipan snake venom time (199), and lupus ratio test, a mixture of a lupus- sensitive and a lupus-insensitive aPTT-reagent with normal plasma (200). The use of platelets in confirmatory tests may lead to false-positive re- sults especially in anti-factor V and heparin-like inhibitors (201). A normal aPTT result does not exclude the presence of LA. In approximately half of APL syn- CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 99 drome cases, aPTT is prolonged. LA testing, on the other hand, is the most difficult task in the everyday practice of the hemostasis laboratory. Not only the enigmatic clinical course of the APL syndrome, but also certain technical issues com- plicate the detection of LA (201). Contamination with platelets, instrumental effects, pH drift dur- ing incubation, and difficulties in standardization represent some of the problems for LA laborato- ry identification (201). Anti-2 GP-1 and anti-pro- thrombin monoclonal antibodies offered better understanding of the mechanism by which LA prolongs in vitro clotting. LA-positive monoclon- al antibodies also improved the LA diagnosis (67). Mixing studies are widely used to identify LA or any other circulating coagulation inhibitor (187). There are some important variables in case of "mixing." The normal plasma source should be platelet-poor to maximize sensitivity as mentioned previously. The patient plasma to normal plasma ratio is extremely important, par- ticularly in the suspected APL syndrome case of a minimally prolonged aPTT (187). A hemostatic test should be optimally combined for the detec- tion of LA or exclusion of a coagulation inhibitor. Twenty-one patients who initially presented with a prolonged prothrombin time (PT) or aPTT or both were tested for the presence of LA in a study (202). The authors used a battery of coagulation tests, including both immediate and 2-hour mix- ing studies, a platelet neutralization procedure, a tissue thromboplastin inhibition test, and dRVVT. Ten percent of the patients only had a prolonged PT, 33% only had a prolonged aPTT, and in 57% both test results were abnormal. In 15 patients, inhibition was evident on immediate assay of equal-volume mixture studies of patient plasma and normal pooled plasma. However, in some patients, it was evident only after a 2-hour incu- bation period. Therefore, proper incubation is important in mixing studies for LA or inhibitor detection. Fifteen of 18 samples showed correc- tion of the abnormal screening study when platelets were used as a source of phospholipid. M. AKIF ÖZTÜRK ET AL100 FIG. 2. Simplified practical schema for the laboratory diagnosis of antiphospholipid syndrome. APL: antiphos- pholipid, ACA: anticardiolipin antibody, LA: lupus anticoagulant, ELISA: enzyme-linked immunosorbent assay. Both the tissue thromboplastin inhibition (ab- normal in 20 of 21 samples) test and dRVVT (in 13 of 14 samples) were found to be sensitive as- says (202). The dRVVT test correlates most close- ly with elevated anticardiolipin antibodies. A het- erogeneous cohort of 725 patients referred for LA detection was reviewed in a retrospective study (203). A positive LA test result was defined by abnormal results obtained by at least two techniques from the reagents used and confirmed with a platelet-neutralizing procedure. The au- thors found that a positive dRVVT test result is strongly correlated with elevated ACA (203). Sakakura and coworkers investigated kaolin clot- ting time, mixing with normal plasma in kaolin clotting time, dRVVT, dRVVT at high lipid con- centrations, APL antibodies, and ACA-2 GP-1 complex antibody in 135 patients with prolonga- tion of aPTT and diagnosed 86 patients positive for LA. In this study, the sensitivity of aPTT and dRVVT/dRVVT­high lipid concentrations ratio for LA was markedly high, but the specificity of aPTT for LA was not so remarkable. The speci- ficity, but not the sensitivity, of kaolin clotting time mixing with normal plasma in kaolin clot- ting time was also markedly high. The authors concluded that dRVVT/dRVVT­high lipid con- centrations ratio gave high sensitivity as well as specificity. Of their patients positive for LA, 25% were found to be positive for APL antibodies and 17% were positive for ACA-2 GP-1 complex anti- body (204). Clinical strategy is important for the selection of laboratory tests for the detection of LA (205,206). A decision tree can be constructed using a combination of aPTT and dRVVT with confirmatory tests, tissue thromboplastin time (TTI), platelet neutralization procedures, and mixing studies (205). Predictive values (207) and clinical associations (208,209) of all labora- tory tests may vary. Optimization of solid-phase and hemostatic tests should be performed for the rational approach to the management of APL syndrome (210,211). CLINICAL FEATURES OF THE APL SYNDROME Thrombosis is the basic pathologic process in the APL syndrome. It represents the main mech- anism behind the majority of the clinical features in patients with APL syndrome. Arterial and ve- nous thrombosis can be present in APL syn- drome. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the spectrum of clinical find- ings is extremely wide (Fig. 3). In terms of overall frequency, a recent multi- center study of a cohort of 1000 patients with APL syndrome demonstrated that the most com- mon initial manifestations were deep vein throm- bosis (31.7%), thrombocytopenia (21.9%), live- do reticularis (20.4%), stroke (13.1%), superfi- cial thrombophlebitis (9.1%), pulmonary em- bolism (9.0%), fetal loss (8.3%), transient is- chemic attack (7.0%), and hemolytic anemia (6.6%) (23). The frequencies of the majority of clinical features including recurrent thromboses and miscarriages are comparable in primary and secondary APL syndromes. However, arthritis, livedo reticularis, thrombocytopenia, and leuko- penia appear to be more common in SLE-associ- ated APL syndrome (23). Those differences could probably be attributed to the association of the manifestations with SLE itself. Likewise, the fe- male-to-male ratio was higher in the SLE-APL syndrome group (23). Venous Thrombosis in APL Syndrome Venous thrombosis most commonly involves deep and superficial venous system of the legs. Venous involvement often takes place as bilater- al and multiple (23). Deep venous thrombosis can be resulted in pulmonary thromboembolism in up to one third to half of APL syndrome pa- tients (1,23). Other less commonly involved sites of venous thrombosis include adrenal, hepatic, mesenteric, portal, splenic, subclavian, jugular, retinal, renal, skin, or upper extremity veins; su- perior and inferior vena cavae; and cerebral ve- nous sinuses (1,23). The presenting symptoms depend on the localization, extent, and acuity of the thrombosis. Thrombosis can occur sponta- neously. However, the presence of a precipitating factor such as hormone replacement therapy, oral contraceptives, immobilization, trauma, con- gestive heart failure, or pregnancy increases the risk of thrombosis (1). Neurologic Features in APL Syndrome Recurrent stroke and transient ischemic attacks are the most common neurologic manifestations of APL syndrome (23,29,212,213). Arterial thrombotic events and embolism from cardiac vegetations may represent the underlying mecha- nism (1). Ischemic events can occur in any vas- cular territory of the brain. The average age of onset of an APL-associated cerebrovascular event is approximately a decade younger than that of the typical cerebral ischemia population (45). CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 101 Some cases may lead to multiinfarct dementia. Other stroke risk factors such as cigarette smok- ing or hyperlipidemia may further complicate the risk of recurrent ischemic events in patients with APL syndrome (29). A less common cerebral vas- cular thrombotic manifestation was cerebral sinus thrombosis (1,23,212­214). Other less common neurologic manifestations of APL syndrome are migraine-type headache, chorea, transverse myelopathy, myasthenia gravis, Guillain Barré syndrome, transient global amnesia, seizures, motor neuron disease, and depression. However their associations with APL syndrome have been less well-determined (29,212­214). Cerebral dys- function in APL syndrome may range from mild cognitive dysfunction to severe dementia. Retinal and choroidal vessel involvement may cause acute ocular ischemia and transient blurred vision or amaurosis fugax, transient diplopia, and de- creased vision. Transient field loss may also de- velop (1,29,212­216). Sudden sensorineural hearing loss has been rarely reported in APL syn- drome (217). Cardiac Features in APL Syndrome The most common cardiac manifestation of APL syndrome is valvular pathologies. They in- clude verrucous endocarditis, valvular thicken- ing, and insufficiency. Valvular stenosis is rarely seen. The mitral valve is the most com- monly affected site, followed by the aortic valve, although the tricuspid or pulmonary valve can also be affected (1,23,214,218­220). A strong association between valvular abnor- malities and arterial brain infarcts in APL syn- drome patients does exist. This association re- flects the embolization from the damaged valve (219). Patients with APL syndrome have in- creased risk for myocardial infarction, in- creased risk for graft occlusion after coronary artery bypass surgery, and restenosis after an- gioplasty (18,26,214,221). APL antibodies may rarely cause myocardial infarction even in the presence of normal coronary arteries (222). In addition, there have been some reports of in- tracardiac thrombi or cardiomyopathy in asso- ciation with the APL syndrome (23,218). M. AKIF ÖZTÜRK ET AL102 FIG. 3. Schematic representation of the clinical manifestations in antiphospholipid antibody syndrome. Cutaneous Lesions in APL Syndrome Cutaneous lesions appear in approximately one third of patients with APL syndrome. Livedo reticularis is by far the most common cutaneous manifestation. It is frequently the initial clinical feature of the syndrome (23,223). Other cuta- neous findings of the APL syndrome include necrotizing vasculitis, livedoid vasculitis, throm- bophlebitis, cutaneous ulceration, necrosis, ery- thematous macules, purpura, ecchymoses, painful skin nodules, and subungual splinter he- morrhages (214,223). Pulmonary Involvement in APL Syndrome The most common pulmonary complications of APL syndrome are pulmonary thromboem- bolism and pulmonary hypertension (23,214, 224). Pulmonary embolism occurs in approxi- mately 14% to 30% of the patients. It may be the initial feature in approximately 9% of the pa- tients (23,214). Thrombosis in calf veins, inferi- or vena cava, tricuspid valve vegetations, and right-sided intracardiac thrombosis may be the source of pulmonary emboli (214). Recurrent pulmonary embolism may lead to thromboem- bolic pulmonary hypertension. Severe cases with pulmonary hypertension may be accompanied by isolated tricuspid valve insufficiency (224). Several cases of "primary" (non-thromboembol- ic) pulmonary hypertension complicating prima- ry APL syndrome have been described. The out- come in patients with pulmonary hypertension and APL syndrome is usually fatal (224). Rare cases with diffuse alveolar hemorrhage, fibros- ing alveolitis, adult respiratory distress syn- drome, and pulmonary artery thrombosis have all been reported (23,214,224). Renal Involvement in APL Syndrome Renal manifestations of the APL syndrome are relatively rare, occurring in 2.7% of all cases (23). Vasoocclusive events can occur at any level of the renal vasculature. The disease may affect the main renal artery and its branches, arterioles, glomerular capillaries, and renal veins. Characteristic histologic findings of renal APL syndrome are intrarenal vascular lesions, arte- riosclerosis, fibrous intimal hyperplasia, partial or complete vascular occlusions, and thrombotic microangiopathy. Focal cortical atrophy is an- other finding. Inflammatory vascular lesions are typically absent (225). These histopathologic findings are clinically manifested by hyperten- sion, acute or chronic renal insufficiency, pro- teinuria, nephrotic syndrome, and inconsistent hematuria in the majority of the APL syndrome patients (1,214,225,226). Among those manifes- tations, hypertension is of particular importance because it is almost invariably present among pa- tients with renal APL syndrome (225). Mild, se- vere, or even malignant hypertension may be present. All patients with APL syndrome and hy- pertension should be investigated for renal in- volvement (especially renal artery stenosis). Hypertension is often the only early clinical man- ifestation of renal APL syndrome. Other nephro- logic manifestations of APL syndrome include he- modialysis vascular access thrombosis, and pri- mary graft non-function in renal transplant re- cipients (214,226). Hematologic Manifestations in APL Syndrome Thrombocytopenia in the APL syndrome is a frequent finding, occurring in 20% to 30% of pa- tients (23,214). It is usually chronic and mild, and does not cause a severe bleeding complica- tion (23,214). On the other hand, elevated levels of APL antibodies are common in immune throm- bocytopenic purpura, and the persistent presence of APL antibodies is an important risk for the de- velopment of thrombosis or fetal loss (227). Autoimmune hemolytic anemia may develop in some patients with APL syndrome. The direct Coombs' test result is positive in 14% of patients with primary APL syndrome and 40% of patients with APL syndrome secondary to SLE. However, hemolytic anemia is not common in those pa- tients (214). Autoimmune hemolytic anemia is more common in secondary APL syndrome (23). DIC, hemolytic-uremic syndrome and thrombot- ic thrombocytopenic purpura are uncommon complications of APL syndrome. However, they represent the drastic rare clinical manifestation called catastrophic APL syndrome (1). Other Manifestations of APL Syndrome Nasal septum perforation, pancreas infarction, splenic infarction, Budd-Chiari syndrome, Addison's disease due to adrenal infarction, and pituitary failure after necrosis of the pituitary gland have all been reported in APL syndrome (1,23,228). Musculoskeletal manifestations in- cluding arthralgia or arthritis are very common (38.7% and 27.1%, respectively) (23). Avascular necrosis of bone may occur in approximately 2% of the patients (23). However, this necrotic com- plication can be detected by magnetic resonance imaging in approximately one fifth of the pa- tients with primary APL syndrome who did not receive steroids before (229). CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 103 Obstetric Complications in APL Syndrome APL syndrome is associated with both fetal and maternal complications. Fetal complications include both early abortions before the 10th week of gestation and fetal deaths at or after the 10th week of gestation. Preterm labor at or be- fore the 34th week of gestation may also take place (1,230). These obstetric features were specifically mentioned in the 1999 International Consensus Statement Classification Criteria for APL syndrome (231). Other obstetric complica- tions include intrauterine growth retardation, placental abruption, pre-eclampsia, and eclamp- sia (1,23,226,230). Association with HELLP syn- drome (hemolytic anemia, elevated liver en- zymes, low platelet count in association with pre- eclampsia) has been rarely reported (1). Catastrophic APL Syndrome Catastrophic APL syndrome is an acute and drastic manifestation of the APL syndrome char- acterized by clinical involvement of at least three different organ systems over days or weeks with histopathologic evidence of multiple occlusions of large or small vessels (232). It is fortunately a rare complication (less than 1% of all patients with APL syndrome). The mortality is as high as 50% and most patients die as a result of a com- bined cardiac and respiratory failure (232,233). Respiratory failure can develop after acute respi- ratory distress syndrome (ARDS) and diffuse alve- olar hemorrhage. Precipitating factors include in- fections, trauma, surgery, drug administration, and warfarin withdrawal in 22% of the patients with catastrophic APL syndrome. The majority of those patients develop widespread vascular oc- clusion mainly affecting small vessels of organs, particularly kidney, lungs, brain, heart, adrenal glands, and liver, causing microangiopathy. Only a minority of these patients experience occlusion of a single large vessel. Digital ischemia with frank gangrene, superficial skin necrosis, and is- chemic ulceration of the limbs may develop. Thrombocytopenia was reported in 68% of the patients, hemolytic anemia in 26%, and DIC in 28%. They all have the potential to contribute to the multiorgan thrombotic microangiopathy in catastrophic APL syndrome (232,233). HETEROGENEOUS CLINICAL AND LABORATORY MANIFESTATIONS OF THE PATIENT(S) WITH APL SYNDROME: A LOGICAL APPROACH FOR THE USE OF VARIOUS APL ANTIBODIES The spectrum of antigens and autoantibodies in the APL syndrome is expanding. Conventional approach for the detection of APL antibodies in- cludes the clotting-based assay LA and solid phase immunoassays for ACAs. However, a sig- nificant number of patients with clinical features of APL syndrome remain negative for those con- ventional APL assays. Hence, tremendous efforts are being spent to demonstrate novel antigenic targets and to develop novel laboratory assays to improve the diagnostic yield in the APL syn- drome. However, those efforts in the laboratory may adversely affect critical clinical decision making in the clinic. Therefore, a hierarchical and rational approach is necessary for effective clinical management of APL syndrome patients. Since the first documentation in 1983 (234), a large number of clinical studies documented the association between the ACAs and the develop- ment of arterial and/or venous thrombotic events (40­43,235­237). ACAs can also significantly in- crease the recurrence risk following an episode of vascular thrombosis (25,238,239). The risk for development of APL antibody­related disorders is higher in patients with high titer IgG isotype (40,41,44,45,240,241). However, IgM isotypes and low titer ACAs could be associated with an increased thrombosis risk as well (236,237). Moreover, there is growing evidence for the as- sociation of IgA isotype ACAs and APL anti- body­related disorders (242,243). It is generally, however, not assayed routinely and not suggest- ed as a diagnostic criterion because other authors failed to confirm this association (244­246). The association of ACAs with vascular throm- bosis is not, however, universally confirmed (15,46,241,246­248). A recent meta-analysis concluded that only high-titer IgG isotype ACA is clearly associated with thrombosis. Less consis- tent results are available for IgM isotype ACAs and low titer IgG isotype ACAs (241). However, there are significant differences between those studies regarding the methods of the research, associated clinical conditions, clinical end-points, laboratory methods for the detection of ACAs, and cut-off levels for the antibodies. Thus, the comparison of studies is really problematic. The titers for APL antibodies can fluctuate. Furthermore patients who had initially had neg- ative test results for APL antibodies could have positive test results for ACAs later (20,249). Therefore, prospective well-designed studies via serial measurements of ACAs with better inter- laboratory harmonization at certain critical time points during the clinical course of APA syn- drome is strictly needed to draw more depend- able conclusions. However, in everyday clinical M. AKIF ÖZTÜRK ET AL104 practice, ACA IgG, IgM, and IgA antibodies should be searched in cases of unexplained arte- rial and/or venous thrombosis (18,26,28,250). The association of LAs and thrombosis is more significant. The risk of thrombosis is independent of the laboratory tests used to identify the LAs (46,235,241,251­254). LAs are more closely as- sociated with arterial and/or venous thrombosis than ACA antibodies (235,241,253,254). Patients with SLE and LA are at approximately six times greater risk for venous thrombosis than patients without LA. On the other hand, patients with SLE and ACA antibodies have an approximate two times greater risk for venous thrombosis than pa- tients without ACA antibodies (254). A recent meta-analysis examining the risk of venous thrombosis in individuals with APA syndrome without underlying autoimmune disease or pre- vious thrombosis revealed that the risk for thrombosis is higher in patients with LA than in other patients. This risk was also higher than in patients with ACAS even when only high titers were considered (253). The closer association of the LAs with throm- bosis could be partly attributed to the lower sen- sitivity and greater specificity of LA versus ACA assays (235,250). ACA ELISA is more sensitive but less specific than the LA assay (235,250). In the cohort of 1000 well-documented patients with APL syndrome, the presence of ACA was de- tected in 879 patients and LA in 536 patients (23). Therefore, any test is neither sufficiently sensitive nor specific for screening or diagnostic purposes. Both tests should be assayed and re- peated in cases of strong suspicion for APL syn- drome (18,26,28). The presence of 2 GP-1­independent benign ACAs in the general population naturally de- creases the specificity of the ACA assay for the diagnosis of APL antibody syndrome. The anti- bodies against 2 GP-1 are directed to an epitope readily available on the native protein (255). Tests specific for 2 GP-1 can help to distinguish false positive biologic test results for syphylis and true APL antibodies (256). There is a subgroup of patients who demonstrate clinical features com- patible with APL antibody syndrome but are neg- ative for conventional APL antibody assays (17,257). Therefore, antibodies against the 2 GP-1 molecule detected with solid phase ELISA could improve the specificity of conventional APL anti- body assays for the diagnosis of APL antibody syndrome. Anti-2 GP-1 antibodies may even be superior to ACA assays for the diagnosis of APL antibody syndrome based on some studies (22,258­262). Some other studies suggested that anti-2 GP-1 ELISA does not give additional in- formation for a thrombotic risk than the conven- tional APL antibody assays (235,263­266). A re- cent meta-analysis concluded that firm evidence for the association of anti-2 GP-1 antibodies and thrombosis is still lacking (267). Likewise, the anti-2 GP-1 antibodies are not more sensitive than conventional APL antibody assays for the diagno- sis of APL syndrome in women with recurrent fetal loss (211,268­270). A potential advantage of screening for anti-2 GP-1 antibodies could be in- creasing the specificity and the positive predictive value of the ACA testing in ACA-positive patients (211,271). Moreover, the presence of anti-2 GP-1 antibodies in patients with LA and high titer ACAs could also be of prognostic importance and should alert the physician about the risk for the bad out- come of the disease (264). However, the anti- 2 GP-1 assay is not recommended for a "first-line" screening test in suspected cases for APL antibody syndrome. It could be searched if both LA and ACA remained negative and still suspicion persists (18,21,26,28,250,264). Prothrombin is another major phospholipid binding protein. The prevalence of anti-pro- thrombin antibodies ranges from 50% to 90% in APL antibody­positive patients depending on the laboratory methodology (272). Antibodies against prothrombin were demonstrated in pa- tients with LAs and severe hypoprothrombinemia or in patients with LAs and normal prothrombin levels (273­275). Anti-prothrombin antibodies are associated with LA activity (4,250). They can also be determined by standard ELISA method (276). A number of clinical studies evaluated the presence of anti-prothrombin antibodies as a risk factor for arterial and/or venous thrombosis in APL syndrome. Some authors reported signifi- cant correlation with anti-prothrombin antibod- ies and thrombosis (277­282), while some others did not (235,283­286). Therefore, routine mea- surement of anti-prothrombin antibodies is not recommended to define their thrombotic risk in patients with APL syndrome (68,267,272). Anti- prothrombin antibodies do not interfere with the coagulant properties of prothrombin (68). More- over, most of them may react with neoepitopes generated after the binding of the prothrombin molecule to phosphatidylserine via calcium ions (68). The anti-prothrombin antibodies detected in those previously mentioned assays were di- rected against the prothrombin molecule alone. Antibodies against phosphatidylserine-prothrom- bin complex were more closely associated with CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 105 LA activity than the anti-prothrombin antibodies. They are significantly correlated with the clini- cal manifestations of the APL syndrome while anti-prothrombin antibodies were not (287,288). Therefore the place of anti-phosphatidylserine- prthrombin complex antibodies as a marker for APL syndrome remains to be elucidated. Annexin V is a tissue and circulating phospho- lipid-binding protein with anticoagulant proper- ties. It has high affinity for anionic phospholipids and can displace coagulation factors from phos- pholipid surfaces (38). Displacement of the an- nexin V shield by APL antibodies has been pro- posed in the pathogenesis of APL syndrome as discussed previously (38). Antibodies directed against the annexin V molecule do have LA prop- erties (289). Anti-annexin V antibodies have also been reported in some patients with APL syn- drome (277,290,291). Moreover anti-prothrom- bin and anti-annexin V antibodies could be more specific for the diagnosis of APA syndrome (277). Furthermore, anti-annexin V IgG antibodies were associated with higher incidences of arterial or venous thrombosis, intrauterine fetal loss, and prolonged aPTT in patients with SLE (292). However, conflicting data exist regarding the as- sociation of anti-annexin V antibodies and the clinical manifestations of the APL syndrome (291). Hence, strong evidence for the functional and clinical significance of those autoantibodies is not yet available. Low density lipoprotein (LDL) oxidation may contribute to the development of atherosclerosis in vivo (293,294). Oxidized LDL is more im- munogenic, and led to the generation of autoan- tibodies (295). Antibodies directed against oxi- dized LDL were associated with myocardial in- farction in prospective studies (296). Circulating LDL contains significant amounts of cardiolipin suggesting that many ACAs and anti-oxidized LDL antibodies may be directed at similar epi- topes (297). Moreover, APL antibodies are cross- reactive to oxidized LDL (298). On the other hand, anti-oxidized LDL antibodies are higher in patients with APL syndrome compared to healthy controls and patients with SLE without clinical features of APL syndrome (299-301). The levels of anti-oxidized LDL did not show strong correla- tion with those of anti-2 GP-1 or ACAs. Therefore anti-oxidized LDL may represent a distinct subset of antibodies (299). Elevated levels of anti-oxi- dized LDL antibodies are potential markers for the development of arterial thrombosis in patients with APL syndrome (299,300). However, follow- ing studies failed to demonstrate an association between high anti-oxidized LDL antibody levels and arterial thrombosis (301,302). On the con- trary, high anti-oxidized LDL antibody titer was correlated with venous thrombosis in another study (301). Moreover, the association of anti-ox- idized LDL antibodies and primary APL syndrome also remains controversial (301). Therefore, ad- ditional studies are needed to determine the exact clinical relevance of anti-oxidized LDL antibodies in the APL syndrome. Pathologic activation of the endothelial cells by APL antibodies contributes to the prothrom- botic state in APL syndrome as discussed previ- ously. APL antibodies themselves bind to en- dothelial cells (100,303,304). Moreover, a dis- tinct group of endothelial cell reactive antibod- ies other than well-known APL antibodies can occur in the plasma of patients with APL anti- bodies (305,306). However, whether those anti- bodies are initiators of the endothelial injury or endothelial cell surface alterations lead to the formation of those antibodies remains to be elu- cidated. Although the presence of those anti-en- dothelial antibodies was associated with a his- tory of thrombotic events (306), the utility of the anti-endothelial cell antibodies in the diag- nostic workup of the APL syndrome remains to be elucidated. There are additional potential targets for APL antibodies, including protein C and protein S, thrombomodulin, factor XI, factor XII, high-mol- ecular-weight kininogen, low-molecular-weight kininogen, tissue plasminogen activator, comple- ment component C4, complement factor H, co- agulation factor VII/VIIa, antimitochondrial an- tibody type 5, platelet-activating factor, and mal- ondialdehyde-modified lipoprotein(a) (88­90, 283,307­315). However, the association of those auto-antibodies and APL syndrome has not been confirmed. Accordingly a firm evidence for the clinical use of those antibodies for investigating the APL syndrome is currently absent. Cardiolipin is the most widely used phospho- lipid in the APL antibody assays. There is exten- sive cross reactivity between ACAs and antibod- ies against other phospholipids (316­318). Therefore, serum anti-noncardiolipin antibodies could be identified by their cross-reactivity with ACAs. There may be no rational to perform ELISAs for other phospholipids. However, some of the antibodies against phospholipids other than cardiolipin cannot be detected by conven- tional ACA assays. ELISA methods based on car- diolipin as target antigen may not be sensitive enough to detect all APL antibody-positive sub- M. AKIF ÖZTÜRK ET AL106 jects (19,316,319­323). Moreover, a significant correlation was found between those antibodies and thrombosis and thrombocytopenia (321,324, 325). Recently, a multitarget ELISA assay using a coating mixture of cardiolipin and non-cardi- olipin phospholipids including phosphatidylinos- itol, phosphatidylserine, and phosphatidylethan- olamine was suggested to enhance the ability to identify patients with APL syndrome (316). On the contrary, testing for APL antibodies other than LA and ACA is not clinically useful in the evaluation of APL syndrome (317,326). How- ever, some patients with clinical features for APL syndrome who are negative for conventional APA assays (ACA and/or LA assays) can be positive for antibodies againts non-cardiolipin phospho- lipids (316,319­323). Therefore, patients whose clinical symptoms suggest APL syndrome but whose sera are negative for conventional APA as- says should be screened for antibodies against non-cardiolipin phospholipids including phos- phatidylserine, phosphatidylethanolamine, phos- phatidylglycerol, phosphatidylinositol, and phos- phatidylcholine (18,26,28). In summary, in a patient with unexplained thrombosis of any type or recurrent fetal loss both LA and ACA, all three assays should be per- formed. There is general agreement that solid- phase ELISA is the method of choice for the de- tection of ACAs (18,26,28,327). For the detec- tion of LAs, dRVVT seems to be the most sensi- tive assay (18,26,28). The titers for APL anti- bodies can fluctuate and patients who had ini- tially had negative test results for LAs or ACAs could be later positive, or patients who initially had either IgM or low IgG can develop higher levels of IgG or LAs (20,240,249). Therefore, pa- tients should be re-tested for those assays in case of strong suspicion (21). For the patients with high suspicion for APA syndrome who disclose negative results for LA and ACA assays, the pres- ence of isolated subgroup antibodies against 2 GP-1, prothrombin, annexin-V, phosphatidyl- serine, phosphatidylethanolamine, phosphatidyl- glycerol, phosphatidylinositol, or phosphatidyl- choline should be tested (18,21,26,28,250). THE "BICK CLASSIFICATION" OF APL ANTIBODY­MEDIATED THROMBOSIS SYNDROMES Bick has proposed to divide the APL anti- body­mediated thrombosis syndromes into six subgroups (18,26­28) (Table 2). He stated that there is little overlap (approximately 10% or less) among these subtypes. Moreover, type IV patients (mixtures of types I, II, and III) are also uncommon, with most patients fitting into one of the first three types. This classification could be important for choosing the initial and long- term therapeutic alternatives from the clinical point of view. Recommended antithrombotic therapy regimens for each subgroup is given in Table 2 and also discussed in "Clinical strategies against APL syndrome" section. DIAGNOSTIC CRITERIA OF APL SYNDROME: A STILL ONGOING PROCESS The diversity of the clinical and laboratory fea- tures of the APL syndrome necessitated a set of criteria for diagnosis. Preliminary classification criteria for APL syndrome were formulated dur- ing a post-conference workshop held in Sapporo in 1998 following the Eighth International Multidisiplinary Symposium on APL Antibodies (231) (Table 3). The workshop focused on defin- ing a category of "definite" APL syndrome. These criteria were intended to provide a uniform basis for clinical and research studies. The intention was not to guide clinical diagnosis or treatment of APL syndrome in individual patients. There- fore, the criteria encompass those clinical and laboratory features that were most closely asso- ciated with the APL syndrome in prospective clin- ical and experimental studies. IgG and IgM aCL antibodies can be detected in approximately 5% of normal subjects, while persistently elevated levels can be present in less than 2% on repeat testing (328). Hence, the persistent presence of APL antibodies for 6 or more weeks is an essen- tial requirement for APL syndrome classification. Other features of APL syndrome such as throm- bocytopenia, hemolytic anemia, transient cere- bral ischemia, transverse myelopathy, livedo reticularis, cardiac valve disease, multiple scle- rosis­like syndrome, chorea, and migrane was not included in the Sapporo criteria because their associations were not strongly confirmed by clin- ical and experimental investigations. Likewise, anti-2 GP-1 antibodies, low-positive titers of IgG or IgM ACAs, IgA isotype of ACA, and antibodies against other phospholipids or phospholipid- binding proteins were not included as criteria in this classification (231,329). Recently, the Sapporo criteria for APL syn- drome were tested by experienced clinicians. Two hundred forty-three consecutive patients CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 107 who had clinical diagnoses of primary APL syn- drome (n=49), secondary APL syndrome (n=26), systemic lupus erythematosus (SLE) without clinical APL syndrome (n=131), and lupus-like disease without clinical APL syndrome (n=37) were classified according to the classifi- cation criteria. Sensitivity, specificity, positive predictive value, and negative predictive value were found to be 0.71, 0.98, 0.95, and 0.88, re- spectively (330). Specificity and positive predic- tive value were high and these preliminary crite- ria could be useful for clinical studies. Sensitivity and negative predictive value were lower com- pared with physician-diagnosed APL syndrome because some other diagnostic features of the disease such as livedo reticularis, thrombocy- topenia, low-titer aCL, IgA ACA, or anti-2 GP-1 were not included in the criteria for definite APL M. AKIF ÖZTÜRK ET AL108 Data from references 18, 26­28. *Antithrombotic therapy should not be stopped unless the ACAs has been absent for the preceding 4 to 6 months. Based on The FDA Safety Information and Adverse Event Reporting Program, 2002 Safety Alert-Lovenox. Deep venous thrombosis with or without pulmonary embolus · Acute treatment with heparin/LMWH followed by long-term* self-administration of subcutaneous porcine heparin/LMWH · Clopidogrel (long term if stable) Type I syndrome Coronary artery thrombosis Peripheral artery thrombosis Aortic thrombosis Carotid artery thrombosis · Acute treatment with heparin/LMWH followed by long-term* self-administration of subcutaneous porcine heparin/LMWH · Clopidogrel (long term if stable) Type II syndrome Retinal artery thrombosis Retinal vein thrombosis Cerebrovascular thrombosis Transient ischemic attacks Cerebrovascular · Long-term (clopidogrel) plus long-term* self-admin- istration of subcutaneous porcine heparin/LMWH Retinal · Clopidogrel;if failure, add long-term* self-adminis- tration of subcutaneous porcine heparin/LMWH Type III syndrome Mixtures of types I, II, and III · Therapy depends on types and sites of thrombosis, as per preceding recommendations Type IV syndrome Placental vascular thrombosis Fetal wastage common in first trimester Fetal wastage can occur in second and third trimesters Maternal thrombocytopenia (uncommon) · Low dose aspirin (81 mg/day) before conception and add fixed, low dose porcine heparin at 5000 U every 12 hours immediately after conception, Dalteparin (but not enoxaparin) Type V (fetal wastage) syndrome Antiphospholipid antibody No apparent clinical manifestations · No clear indications for antithrombotic therapyType VI syndrome TABLE 2. "Bick Classification" of APL Antibody-Mediated Thrombosis Syndromes and Recommended Antithrombotic Therapy Regimens Type of Thrombotic Syndrome Clinical Presentation Recommended Antithrombotic Therapy syndrome. Therefore, classification criteria for "probable" or "possible" APL syndrome should be described to better understand the boundaries of APL syndrome and the full spectrum of "true" APL syndrome (329). At the subsequent work- shop on classification criteria held in Tours, France in September 2000, no alterations were added to the Sapporo criteria. However, future efforts should be focused on the following to im- prove them: 1) further evaluation of the interna- tional (Sapporo) criteria for definite APL syn- drome; 2) definition of other categories of APL syndrome, such as "probable" and "possible" APL syndrome; 3) guidelines for the clinical diagnosis as distinct from classification of APL syndrome; 4) strategies to improve the compliance of labo- ratories worldwide, with recommended proce- dures for LA and ACA assays; 5) development of monoclonal antibody standard reagents for ACA and LA assays; and 6) refinement and subse- quent evaluation of anti-2 GP-1 assays for use in identification of APL syndrome (331). Because the major features of primary and secondary APL syndromes are similar and SLE is by far the most CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 109 TABLE 3. Preliminary Criteria for Classification of Definite APL Syndrome Definite antiphospholipid antibody syndrome is considered to be present if at least 1 of the clinical criteria and 1 of the laboratory criteria are met. Clinical criteria 1. Vascular thrombosis One or more clinical episodes of arterial, venous, or small vessel thrombosis in any tissue or organ. Thrombosis must be confirmed by imaging or Doppler studies or histopathology, with the exception of superficial venous thrombosis. For histopathologic confirmation, thrombosis should be present without significant inflammation in the vessel wall. 2. Pregnancy morbidity (a) One or more unexplained deaths of a morphologically normal fetus at or beyond the 10th week of gestation, with normal fetal morphology documented by ultrasound or by direct examination of the fetus, or 2. (b) One or more premature births of a morphologically normal neonate at or before the 34th week of gestation because of severe preeclampsia or eclampsia, or severe placental insufficiency, or 2. (c) Three or more unexplained consecutive spontaneous abortions before the 10th week of gestation, with maternal anatomic or hormonal abnormalities and paternal and maternal chromosomal causes excluded. In studies of populations of patients who have more than 1 type of pregnancy morbidity, investigators are strongly encouraged to stratify groups of subjects according to a, b, or c above. Laboratory criteria 1. Anticardiolipin antibody of IgG and/or IgM isotype in blood, present in medium or high titer, on 2 or more occasions, at least 6 weeks apart, measured by a standardized enzyme-linked immunosorbent assay for beta2 ­glycoprotein I-dependent anticardiolipin antibodies. 2. Lupus anticoagulant present in plasma, on 2 or more occasions at least 6 weeks apart, detected according to the guidelines of the International Society on Thrombosis and Hemostasis (Scientific Subcommittee on Lupus Anticoagulants/Phospholipid- Dependent Antibodies), in the following steps: (a) Prolonged phospholipid-dependent coagulation demonstrated on a screening test, e.g. activated partial thromboplastin time, kaolin clotting time, dilute Russell's viper venom time, dilute prothrombin time, Textarin time. 2. (b) Failure to correct the prolonged coagulation time on the screening test by mixing with normal platelet-poor plasma. 2. (c) Shortening or correction of the prolonged coagulation time on the screening test by addition of excess phospholipid. 2. (d) Exclusion of other coagulopathies, e.g. factor VIII inhibitor or heparin, as appropriate. Data from reference 231. No exclusions other than those contained within the above criteria are needed. However, because of the likelihood that thrombosis may be multifactorial in patients with the APL syndrome, the workshop participants recommend that (a) patient populations being studied should be assessed for other contributing causes of thrombosis, and (b) such populations should be stratified according to identifiable or probable risk factors, e.g., age or comorbidities. Specific limits were not placed on the interval between the clinical event and the positive laboratory findings. However, it was the view of many at the workshop that (a) information about such intervals should be assessed when relevant, and (b) the relatively strict definition of laboratory criteria (including the requirement that results again be positive on repeat tests performed at least 6 weeks after the initial test) would help to exclude antiphospholipid antibody positivity that represents an epiphenomenon to the clinical events. common cause of secondary APL syndrome, ex- clusion criteria have been proposed for the diag- nosis of primary APL syndrome (Table 4) (332). CLINICAL STRATEGIES AGAINST APL SYNDROME: OBSERVATION AND RATIONAL CLINICAL MANAGEMENT Despite tremendous advances in our under- standing the pathogenesis of APL syndrome, the mainstay of the management is still anticoagula- tion. Available data for making a decision on how to treat APL syndrome patients largely come from retrospective studies, and data from prospective clinical trials are limited. Moreover, there is no consensus regarding the duration and intensity of anticoagulant therapy after the thrombotic event occurred. Management strate- gies based on "Bick classification of APL syn- drome" have been given in Table 2. This classifi- cation offers a useful tool for the management of APL in clinical practice. Whether or not to treat asymptomatic healthy individuals with APL antibodies (type VI disease in Bick's classification) is also a matter of debate. A weakly or transiently elevated positive APL an- tibody test result needs no prophylaxis. Asymp- tomatic healthy subjects with persistently posi- tive moderate-to-high titer APL antibodies are generally given low-dose aspirin (ASA 75­100 mg/day). Low-dose aspirin alone could offer some benefit in recurrent miscarriage syndrome with APL antibodies (333­335). Aspirin prophy- laxis could also provide protection against post- partum non­pregnancy-related vascular throm- bosis in APL syndrome patients who present with pregnancy loss as their only manifestation (336). Prophylactic aspirin is suggested to all patients with SLE to prevent both arterial and venous thrombotic manifestations, especially those with APL antibodies (337). On the other hand, the use of low dose aspirin in people with ACAs did not protect against deep venous thrombosis or pul- monary embolism (41). Currently there is still no satisfactory prospective evidence that low-dose aspirin provides an adequate prophylaxis against thrombosis especially in venous site in asympto- matic carriers of APL antibodies. Hydroxychloro- quine can decrease the titers of APL antibodies and could protect against thrombotic risk in SLE patients. It was also tried in primary APL syn- drome in some studies (338,339). However, use- fulness in asymptomatic carriers of APL antibod- ies has not been proven by prospective trials. Moreover, the majority of asymptomatic carriers of APL antibodies do not develop thrombotic manifestations. Therefore targeted education and close monitoring of those persons would be ap- propriate (18,26,340). Clearly, any acquired pro- thrombotic risk factors should be removed if pos- sible. Asymptomatic individuals with APL anti- bodies should be examined for the co-existence of hereditary thrombophilia (factor V Leiden, prothrombin 20210A, MHTFR, and others) and a strong family history of arterial and/or venous M. AKIF ÖZTÜRK ET AL110 TABLE 4. Proposed Empirical Exclusion Criteria to Distinguish Primary and SLE Related APL Syndrome The presence of any of these criteria excludes the diagnosis of primary APL syndrome: Malar rash Discoid rash Oral or pharyngeal ulceration, excluding nasal septum ulceration or perforation Frank arthritis Pleuritis, in the absence of pulmonary embolism or left-sided heart failure Pericarditis, in the absence of myocardial infarction or uremia Persistent proteinuria greater than 0.5 gram per day, due to biopsy-proven immune complex-related glomerulonephritis Lymphopenia less than 1.000/µL Antibodies to native DNA, by radioimmunoassay or Crithidia fluorescence Antiextractable nuclear antigen antibodies ANA of more than 1:320 Treatment of drugs known to induce APL antibodies A follow-up longer than 5 years after the first clinical manifestation is necessary to rule out the subsequent emergence of SLE Data from reference 332. thrombotic tendency. Selected cases among that specific subpopulation are subject to long-term low-dose aspirin prophylaxis. Likewise, if any asymptomatic subject does develop some clinical features of APL syndrome such as migraine, livedo reticularis, dizzy or confusional episodes, nonspe- cific visual disturbance, or very early pregnancy loss, low-dose aspirin may be given (340,341). Treatment of acute thrombotic events of pa- tients with APL syndrome is not different than treatment of acute thrombosis in the general population. Those patients should be anticoagu- lated with standard heparin protocol (339,342). However, initial management of acute arterial thrombosis, particularly cerebrovascular events, must include careful differential diagnosis. Stroke during the course of APL syndrome could either be in situ thrombotic or be embolized from the cardiac valves. A hemorrhagic stroke must be ruled out in patients who are already on warfarin prophylaxis. In cases of secondary APL syndrome associated with SLE, possibility of a neurologic involvement due to SLE may further complicate the clinical situation (339). There are anecdotal reports for successful results with thrombolytic agents or angioplasty in patients with APL syn- drome and acute myocardial infarction (343­ 345). However, reocclusion is a major problem and thrombolytic agents are often unhelpful in acute thrombotic events in APL syndrome as well as serious hemorrhagic complications (340). There is almost always an increased risk of re- currence of thrombosis in APL syndrome unless effective antithrombotic prophylaxis is given (1,18,26­28,54,148,238,252,339,346,347). Cor- ticosteroids or immunosuppresants have no room in reducing thrombotic risk in patients with pri- mary APL syndrome. The immunosuppression generally will not alleviate propensity to throm- bosis in secondary APL syndrome patients (18,26,348). Therefore, long-term anticoagula- tion as a secondary prophylaxis is mandatory in APL syndrome, although the duration and inten- sity is still controversial. Initial data from large retrospective trials concluded that lifelong high- intensity warfarin (i.e. INR 3.0) is necessary for preventing recurrences (51,346). However, se- vere hemorrhagic complication appears to be an important problem particularly with high INRs (54,342,346,349). The risk of major bleeding in- creases by 42% with every increase in INR by one point (350). Some small studies suggest that in- termediate intensity warfarin therapy (i.e. INR value between 2.0 and 3.0) can be equally effec- tive and safer (238,252,347). Efficacy of inter- mediate-dose warfarin was also supported by its capacity to suppress in vivo markers of coagula- tion activation, i.e. prothrombin fragments 1+2 (PF 1.2) in patients with SLE and APL antibodies (351). Recently a randomized, double-blind trial of 114 patients with a mean follow-up period of 2.7 years demonstrated that high-intensity war- farin was not superior to moderate-intensity war- farin for thromboprophylaxis in patients with APL syndrome (352). Another potential problem with warfarin anticoagulation is dose monitoring because LAs may prolong the PT. In such pa- tients, the INR may not reflect the true level of anticoagulation (353,354). Lastly, warfarin fail- ure is not uncommon. Some authors reported that up to 50% of APL patients on adequate doses of warfarin experienced recurrent throm- bosis (18,26­28), although warfarin failure could result from inappropriate use or drug interac- tions (339). Aspirin may be added to warfarin if there are ongoing symptoms of ischemia despite high-intensity warfarin. However, care should be taken for the increased risk of bleeding in this special therapeutic situation (339). Low-dose he- parin or low-molecular-weight heparin have been suggested as the more effective and safer alternatives to warfarin in the prevention of thrombotic recurrences (18,26,28,355). Heparin enhances plasmin-mediated inactivation of 2 GP-1 (356). Therefore, some authors prefer to use long-term low-molecular-weight heparin (LMWH) therapy for preventing thrombotic re- currences (18,26,28,355). This LMWH approach may be particularly useful for patients with arte- rial thrombosis. There is no consensus on the duration of anti- coagulation. Although initial reports suggested lifelong oral anticoagulation, this approach could carry a high risk of bleeding (54,346). Therefore, the risk to benefit ratio and the risk of thrombo- sis versus bleeding should be evaluated with maximum caution from the clinical point of view. Aspirin alone is an insufficient prophylaxis for the prevention of recurrent arterial or venous thrombosis (346). Clopidogrel has been effective in stable patients not failing to respond to LMWH (18,26). Therefore, long-term clopidogrel may be an alternative to long-term anticoagulation, par- ticularly in arterial thrombosis (18,26). The du- ration of antithrombotic treatment may be con- cluded depending on the clinical severity of the initial thrombotic event and the persistence of antibodies. Some experts prefer to change anti- coagulant treatment to antiaggregant prophylax- is with either low-dose aspirin or clopidogrel CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 111 after 6 months of thrombosis-free and antibody- free period (18,26). Anticoagulant therapy should be individual- ized in APL patients depending on the severity of the clinical condition and the localization and na- ture of the initial thrombus. The Bick classifica- tion of APL antibody­associated thrombotic syn- dromes offers a very useful guide for choosing appropriate therapy for the clinician against the very heterogenous presentations of APL syn- drome (Table 2). Thrombocytopenia Thrombocytopenia rarely causes clinical prob- lem of hemorrhage in APL syndrome. However, it is essential to achieve a platelet count above 50,000 per mm3 (54) before warfarin therapy to reduce the risk of hemorrhage. Prednisone is the most common approach for management of au- toimmune thrombocytopenia in APL syndrome. Intravenous immunoglobulin (IVIG), chloro- quine, low-dose heparin, cyclosporin A, dapsone, and danazol have been used to correct thrombo- cytopenia in APL syndrome in selected cases (339,341,357­359). Aspirin administration should be given with caution for the damaged function of already low-count platelets in throm- bocytopenic APL syndrome. Splenectomy might be indicated, but is occasionally ineffective (148,339). Management of Pregnancy in APL Syndrome Women with APL syndrome have a high risk of recurrent fetal loss. Therefore, therapy with aspirin, heparin, prednisone, intravenous im- munoglobulin (IVIG), and their combinations have been tried in the obstetric APL syndrome with varying success (226,230,360). There is a general consensus that women with APL syndrome and a history of thrombosis should receive heparin for thromboprophylaxis during the gestational period because pregnan- cy represents a hypercoagulable state (340,361). However there is no agreement regarding the management of the pregnancies of women with APL antibodies and recurrent miscarriages but had not experienced any previous thrombotic event. There are conflicting data concerning this difficult topic. Earlier non-randomized trials sug- gested that low-dose aspirin alone is beneficial (333,334). A recent randomized controlled trial supported this observation. This trial demon- strated that a high success rate can be achieved with low-dose aspirin only, while LMWH addi- tion do not significantly improve pregnancy out- come (335). On the other hand, treatment with aspirin plus heparin led to a significantly higher rate of live births in women with APL syndrome than that achieved with aspirin alone in other prospective studies (362,363). At the end of the research spectrum, a placebo-controlled study claimed that low-dose aspirin has no additional benefit when added to supportive care for women for whom recurrent early fetal loss is the only sequela of the APL syndrome (364). However, most of those studies investigated a limited number of subjects and there are some limitations in the research design. Further large randomized placebo controlled trials are needed to identify the optimal treatment for this group of women, although the heterogeneous nature and critical clinical points in fetal and maternal life can limit their performance. Currently, he- parin administered to pregnant women after ul- trasonographic demonstration of a live embryo is the treatment of choice (1). LMWH can also be used instead of standard heparin to reduce the risk of osteoporosis and heparin-induced throm- bocytopenia (1,365). However, maximum care should be taken while choosing the LMWH dur- ing pregnancy. Enoxaparin prophylaxis resulted in prosthetic valve thrombosis in two of the seven pregnant women with prosthetic heart valves leading to maternal and fetal deaths. There are other similar postmarketing reports of complica- tions of enoxaparin treatment miscarriages (The FDA Safety Information and Adverse Event Reporting Program, 2002 Safety Alert-Lovenox). Therefore, enoxaparin should not be recom- mended to manage the pregnancy in APL anti- body positive women with a history of recurrent miscarriages. Dalteparin may represent a safer alternative as a LMWH in this setting of APL syn- drome complicating pregnancies. Damage to the developing trophoblast occurs early in the pregnancy. Hence, in most of the ex- perienced centers, aspirin is being started before conception (18,26,361). The success rate of preg- nancy using low-dose aspirin and low-dose he- parin combination could be as high as 97% (18,26,366). Therefore, this approach should be accepted as "standard of care" until further in- vestigations would be performed focusing on pregnancy and APL syndrome. Some in vitro observations provide evidence for the rationale of using heparin and aspirin in APL syndrome. APL antibodies affect the inva- siveness and differentiation of cytotrophoblast cells after binding to the cell surface. LMWH sig- nificantly reduces the immunoglobulin G bind- M. AKIF ÖZTÜRK ET AL112 ing to trophoblast cells and restores in vitro pla- cental invasiveness and differentiation in a dose- dependent manner. Such an effect is not ob- served in the presence of acetylsalicylic acid (367). LMWH at pharmacologic doses signifi- cantly reduces the APL antibody binding and re- stores gonadotropin releasing hormone­induced human chorionic gonadotropin (hCG) secretion in presence of APL antibody containing sera. Low dose aspirin does not modify APL antibody bind- ing, but partially restores hCG secretion (368). Therefore, LMWH together with low-dose ASA offers not only a simple antithrombotic approach but also have the potential to modify the pathobi- ology of the pregnancy loss due to APL syndrome. There is also no general agreement on the du- ration of postpartum thromboprophylaxis. Those women are usually suggested to hold the heparin therapy but to continue low-dose aspirin after delivery depending on the individual clinical sit- uation (18,26). There is an increased risk for non­pregnancy-related vascular thrombosis in APL syndrome patients who present with preg- nancy loss as their only manifestation of APL syn- drome. Recently a retrospective study suggested that aspirin alone is effective as a prophylaxis in this subgroup of APL syndrome patients (336). Prednisone administration during pregnancy of women with APL syndrome provided no ben- efit over either low-dose heparin or low-dose as- pirin. Moreover, steroid use resulted in signifi- cant maternal morbidity including gestational di- abetes, hypertension, osteoporosis, and preterm labor (333,369,370). Therefore, steroid admin- istration should be restricted to patients with thrombocytopenia or coexistent lupus (361). Earlier studies with small numbers of patients implied that addition of IVIG to either aspirin or heparin is safe and might improve the pregnancy outcomes (371,372). However, results of a re- cent multicenter study demonstrated that IVIG failed to improve obstetric or neonatal outcomes beyond those achieved with a heparin and low dose aspirin regimen (373). Moreover, a more recent randomized study exhibited that APL syn- drome women treated with LMWH plus low-dose aspirin had a higher rate of live births than those treated with IVIG (374). The additional cost of IVIG is also a matter of debate. Therefore, IVIG therapy should only be considered in serious pregnancy-related patient morbidity that is re- fractory to aspirin plus heparin (230,360). APL syndrome is now accepted as a treatable cause of recurrent pregnancy loss (1). Seventy- four percent of women who became pregnant in the recently published cohort of 1000 APL pa- tients succeeded in having one or more live births (437 of 590 women). This represents the advances in the treatment and follow-up of APL pregnants (23). Clinical approach to women with APL anti- bodies without any symptom of APL syndrome during their first pregnancy is also a matter of debate. The common practice in such cases is low-dose aspirin, although remains to be largely unconfirmed. A small study investigating the ef- ficacy of low-dose aspirin in persistently APL pos- itive women with "low risk" pregnancy (i.e. no associated signs or symptoms of the APL syn- drome, thrombosis or thrombocytopenia and no or just one prior spontaneous abortion) failed to demonstrate any advantage of aspirin adminis- tration in such pregnants. However, the frequen- cy of complications was so low that at least 600 women were needed for the investigation as to whether low-dose aspirin would be beneficial treatment during a pregnancy (375). Management of Catastrophic APL Syndrome Catastrophic APL syndrome is a life-threaten- ing medical emergency that requires high-level clinical awareness. Varying combinations of an- ticoagulants, steroids, plasmapheresis, cyclophos- phamide, and IVIG were administered for the management of this condition (232,233). Among the 20 patients who received a combination of antithrombotics, steroids, and plasmapheresis or IVIG, recovery occurred in 14 (70%) patients in a previous study (232). Fibrinolytic agents have been tried to treat acute thrombotic microan- giopathy (232). Recently, an international con- sensus statement for treatment guidelines for cat- astrophic APL syndrome was established by the Catastrophic APL Syndrome Registry Project Group during the presymposium workshop on APL syndrome consensus, held in Taormina at the tenth International Congress on APL syn- drome in September 2002. The optimal manage- ment of catastrophic APL syndrome must have three clear aims according to this consensus re- port: to treat any precipitating factors (prompt use of antibiotics if infection is suspected, ampu- tation for any necrotic organ, high awareness in patients with APL syndrome who undergo an op- eration or an invasive procedure); to prevent and to treat the ongoing thrombotic events; and to suppress the excessive cytokine "storm." Stand- ard anticoagulation protocol (usually intra- venous heparin followed by oral anticoagulants), corticosteroids, plasma exchange, intravenous CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 113 gammaglobulins and, if associated with lupus flare, cyclophosphamide, are the most common- ly used treatments for catastrophic APL syn- drome patients (376). FUTURE PROSPECTS Better standardization of diagnostic tests is mandatory particularly for the detection of clin- ically suspected cases. Moreover, we still need better predictive assays to differentiate disease- associated APL antibodies to identify which pa- tients with APL antibodies are truly at risk for thrombotic events. Identification of peptide mimetics for each immunologically distinct pro- thrombotic APL antibodies seem to help us for this aim (377). Molecular markers of thrombo- sis, such as PF 1.2, could be investigated with prospective large trials in asymptomatic carriers of APL antibodies to identify the "high-risk" sub- jects (378). The prospective study of aspirin as compared with placebo, and the trial of aspirin as compared with low-dose warfarin plus aspirin would give us more dependable answers to the question of whether to treat individuals with APL antibodies in the clinically "gray" zone (379,380). Results of ongoing large collaborative prospective randomized double-blind studies (such as (WAPS, PAPRE, WARSS, APASS, PRE- CLUDE trials) are being awaited for more effi- cient and less toxic therapeutic approaches (339,347,381). Statins blocked APL antibody­in- duced endothelial cell activation in vitro and di- minished APL antibody­mediated thrombosis and endothelial cell activation in an in vivo ani- mal model (382,383). Hence, statins might serve as complementary medicines for the manage- ment of APL syndrome. Focusing on better un- derstanding of the pathobiology of the APL syn- drome may further provide new therapeutic strategies. For instance, intensive antioxidant therapy, antithrombotic strategies that more specifically target the tissue factor pathway of co- agulation such as recombinant tissue factor path- way inhibitor or anti-tissue factor antibodies, or a 2 GP-1­specific B cell toleragen, LJP 1082, may be tried for more specific targeted therapy (299,384,385). REFERENCES 1. Levine JS, Branch DW, Rauch J. The antiphospholipid syndrome. N Engl J Med 2002;346:752. 2. Arnout J, Meijer P, Vermylen J. Lupus anticoagulant testing in Europe: An analysis of results from the first European Concerted Action on Thrombophilia (ECAT) survey using plasmas spiked with monoclonal antibodies against human beta2-glycoprotein I. Thromb Haemost 1999;81:929. 3. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990;335:1544. 4. Bevers EM, Galli M, Barbui T, et al. Lupus anticoagulant IgG's (LA) are not directed to phospholipids only, but to a complex of lipid-bound human prothrombin. Thromb Haemost 1991;66:629. 5. Roubey RA, Pratt CW, Buyon JP, et al. Lupus anticoagu- lant activity of autoimmune antiphospholipid antibod- ies is dependent upon beta 2-glycoprotein I. J Clin Invest 1992;90:1100. 6. Oosting JD, Derksen RH, Entjes HT, et al. Lupus antico- agulant activity is frequently dependent on the presence of beta2-glycoprotein I. Thromb Haemost 1992;67:499. 7. Roubey RA. Autoantibodies to phospholipid-binding plasma proteins: A new view of lupus anticoagulants and other "antiphospholipid" autoantibodies. Blood 1994;84:2854. 8. Roubey RA, Eisenberg RA, Harper MF, et al. "Anti- cardiolipin" autoantibodies recognize beta 2-glycopro- tein I in the absence of phospholipid. Importance of Ag density and bivalent binding. J Immunol 1995;154:954. 9. Matsuura E, Igarashi Y, Yasuda T, et al. Anticardiolipin antibodies recognize beta 2-glycoprotein I structure al- tered by interacting with an oxygen modified solid phase surface. J Exp Med 1994;179:457. 10. Sheng Y, Kandiah DA, Krilis SA. Anti-beta 2-glycopro- tein I autoantibodies from patients with the "antiphos- pholipid" syndrome bind to beta 2-glycoprotein I with low affinity: Dimerization of beta 2-glycoprotein I in- duces a significant increase in anti-beta 2-glycoprotein I antibody affinity. J Immunol 1998;161:2038. 11. Pengo V, Biasiolo A, Fior MG. Autoimmune antiphos- pholipid antibodies are directed against a cryptic epi- tope expressed when beta 2-glycoprotein I is bound to a suitable surface. Thromb Haemost 1995;73:29. 12. Chamley LW, Duncalf AM, Konarkowska B, et al. Conformationally altered beta 2-glycoprotein I is the antigen for anti-cardiolipin antibodies. Clin Exp Immunol 1999;11:571. 13. Giles IP, Isenberg DA, Latchman DS, et al. How do an- tiphospholipid antibodies bind 2 -glycoprotein I? Arthritis Rheum 2003;48:2111. 14. Harris EN, Loizou S, Englert H, et al. Anticardiolipin an- tibodies and lupus anticoagulant. Lancet 1984;ii:1099. 15. Triplett DA, Brandt JT, Musgrave KA, et al. The rela- tionship between lupus anticoagulants and antibodies to phospholipid. JAMA 1988;259:550. 16. Alving BM, Barr CF, Tang DB. Correlation between lupus anticoagulants and anticardiolipin antibodies in patients with prolonged activated partial thromboplastin times. Am J Med 1990;88:112. 17. Cabral AR, Amigo MC, Cabiedes J, et al. The antiphos- pholipid/cofactor syndromes: A primary variant with an- tibodies to beta 2-glycoprotein-I but no antibodies de- tectable in standard antiphospholipid assays. Am J Med 1996;101:472. M. AKIF ÖZTÜRK ET AL114 18. Bick RL. Antiphospholipid thrombosis syndromes. Hematol Oncol Clin North Am 2003;17:115. 19. Gilman-Sachs A, Lubinski J, Beer AE, et al. Patterns of anti-phospholipid antibody specificities. J Clin Lab Immunol 1991;35:83. 20. Silver RM, Pierangeli SS, Edwin SS, et al. Pathogenic an- tibodies in women with obstetric features of antiphos- pholipid syndrome who have negative test results for lupus anticoagulant and anticardiolipin antibodies. Am J Obstet Gynecol 1997;176:628. 21. Merrill JT. Which antiphospholipid antibody tests are most useful? Rheum Dis Clin North Am 2001;27:525. 22. Gomez-Pacheco L, Villa AR, Drenkard C, et al. Serum anti-beta2-glycoprotein-I and anticardiolipin antibodies during thrombosis in systemic lupus erythematosus pa- tients. Am J Med 1999;106:417. 23. Cervera R, Piette JC, Font J, et al. Euro-Phospholipid Project Group. Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease ex- pression in a cohort of 1,000 patients. Arthritis Rheum 2002;46:1019. 24. Love PE, Santoro SA. Antiphospholipid antibodies: Anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders. Ann Intern Med 1990;112:682. 25. Alarcon-Segovia D, Deleze M, Oria CV, et al. Anti- phospholipid antibodies and the antiphospholipid syn- drome in systemic lupus erythematosus. A prospective analysis of 500 consecutive patients. Medicine (Baltimore) 1989;68:353. 26. Bick RL. Antiphospholipid thrombosis syndromes. Clin Appl Thromb Hemost 2001;7:241. 27. Bick RL, Arun B, Frenkel EP. Antiphospholipid-throm- bosis syndromes. Haemostasis 1999;29:100. 28. Bick RL, Baker WF. Antiphospholipid syndrome and thrombosis. Semin Thromb Hemost 1999;25:333. 29. Levine SR, Deegan MJ, Futrell N, et al. Cerebrovascular and neurologic disease associated with antiphospholipid antibodies: 48 cases. Neurology 1990;40:1181. 30. Hunt JE, McNeil HP, Morgan GJ, et al. A phospholipid- beta 2-glycoprotein I complex is an antigen for anticar- diolipin antibodies occurring in autoimmune disease but not with infection. Lupus 1992;1:75. 31. Guglielmone H, Vitozzi S, Elbarcha O, et al. Cofactor de- pendence and isotype distribution of anticardiolipin an- tibodies in viral infections. Ann Rheum Dis 2001;60:500. 32. Asherson RA, Cervera R. Antiphospholipid antibodies and infections. Ann Rheum Dis 2003;62:388. 33. Uthman I, Tabbarah Z, Gharavi AE. Hughes syndrome associated with cytomegalovirus infection. Lupus 1999;8:775. 34. Labarca JA, Rabaggliati RM, Radrigan FJ, et al. Anti- phospholipid syndrome associated with cytomegalovirus infection: Case report and review. Clin Infect Dis 1997;24:197. 35. Constans J, Guerin V, Couchouron A, et al. Auto- antibodies directed against phospholipids or human beta 2-glycoprotein I in HIV-seropositive patients: Relation- ship with endothelial activation and antimalonic dialde- hyde antibodies. Eur J Clin Invest 1998;28:115. 36. Uthman IW, Gharavi AE. Viral infections and antiphos- pholipid antibodies. Semin Arthritis Rheum 2002;31:256. 37. Guzman J, Cabral AR, Cabiedes J, et al. Antiphos- pholipid antibodies in patients with idiopathic autoim- mune haemolytic anemia. Autoimmunity 1994;18:51. 38. Rand JH. Molecular pathogenesis of the antiphospho- lipid syndrome. Circ Res 2002;90:29. 39. Inanc M, Donohoe S, Ravirajan CT, et al. Anti-beta2-gly- coprotein I, anti-prothrombin and anticardiolipin anti- bodies in a longitudinal study of patients with systemic lupus erythematosus and the antiphospholipid syn- drome. Br J Rheumatol 1998;37:1089. 40. Finazzi G, Brancaccio V, Moia M, et al. Natural history and risk factors for thrombosis in 360 patients with an- tiphospholipid antibodies: A four-year prospective study from the Italian Registry. Am J Med 1996;100:530. 41. Ginsburg KS, Liang MH, Newcomer L, et al. Anti- cardiolipin antibodies and the risk for ischemic stroke and venous thrombosis. Ann Intern Med 1992;117:997. 42. Antiphospholipid Antibodies in Stroke Study Group. Anticardiolipin antibodies are an independent risk factor for first ischemic stroke. The Antiphospholipid Antibodies in Stroke Study (APASS) Group. Neurology 1993;43:2069. 43. Vaarala O, Manttari M, Manninen V, et al. Anti-cardi- olipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men. Circulation 1995;91:23. 44. Levine SR, Salowich-Palm L, Sawaya KL, et al. IgG anti- cardiolipin antibody titer >40 GPL and the risk of sub- sequent thrombo-occlusive events and death. A prospec- tive cohort study. Stroke 1997;28:1660. 45. Levine SR, Brey RL, Sawaya KL, et al. Recurrent stroke and thrombo-occlusive events in the antiphospholipid syndrome. Ann Neurol 1995;38:119. 46. Abu-Shakra M, Gladman DD, Urowitz MB, et al. Anti- cardiolipin antibodies in systemic lupus erythematosus: Clinical and laboratory correlations. Am J Med 1995;99:624. 47. Branch DW, Dudley DJ, Mitchell MD. Immunoglobulin G fractions from patients with antiphospholipid antibod- ies cause fetal death in Balb/c mice: A model for au- toimmune fetal loss. Am J Obstet Gynecol 1990;163:210. 48. Piona A, Larosa L, Tincani A, et al. Placental thrombosis and fetal loss after passive transfer of mouse lupus mon- oclonal or human polyclonal anti-cardiolipin antibodies in pregnant naive BALB/c mice. Scand J Immunol 1995;41:427. 49. Blank M, Cohen J, Toder V, et al. Induction of antiphos- pholipid syndrome in naive mice with mouse mono- clonal and human polyclonal anticardiolipin antibodies. Proc Natl Acad Sci USA 1991;88:3069. 50. Blank M, Tincani A, Shoenfeld Y. Induction of experi- mental antiphospholipid syndrome in naive mice with purified IgG antiphosphatidylserine antibodies. J Rheumatol 1994;21:100. 51. Suzuki T, Takabayashi K, Ichikawa K, et al. Effects of monoclonal anticardiolipin antibody in pregnant mice. J Rheumatol 1996;23:83. 52. Pierangeli SS, Barker JH, Stikovac D, et al. Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice. Thromb Haemost 1994; 71:670. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 115 53. Pierangeli SS, Liu X, Barker JH, et al. Induction of thrombosis in a mouse model by IgG, IgM and IgA im- munoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost 1995;74:1361. 54. Rosove MH, Brewer PM. Antiphospholipid thrombosis: Clinical course after the first thrombotic event in 70 pa- tients. Ann Intern Med 1992;117:303. 55. Polz E, Kostner GM. The binding of beta 2-glycoprotein- I to human serum lipoproteins: Distribution among den- sity fractions. FEBS Lett 1979;102:183. 56. Chonn A, Semple SC, Cullis PR. Beta 2 glycoprotein I is a major protein associated with very rapidly cleared li- posomes in vivo, suggesting a significant role in the im- mune clearance of "non-self" particles. J Biol Chem 1995;270:25845. 57. Manfredi AA, Rovere P, Heltai S, et al. Apoptotic cell clearance in systemic lupus erythematosus. II. Role of beta2-glycoprotein I. Arthritis Rheum 1998;41:215. 58. Balasubramanian K, Schroit AJ. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. J Biol Chem 1998;273:29272. 59. Brighton TA, Hogg PJ, Dai YP, et al. Beta 2-glycoprotein I in thrombosis: Evidence for a role as a natural antico- agulant. Br J Haematol 1996;93:185. 60. Nimpf J, Bevers EM, Bomans PH, et al. Prothrombinase activity of human platelets is inhibited by beta2-glyco- protein-I. Biochim Biophys Acta 1986;884:142. 61. Nimpf J, Wurm H, Kostner GM. Beta 2-glycoprotein-I (apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation. Atherosclerosis 1987;63:109. 62. Henry ML, Everson B, Ratnoff OD. Inhibition of the ac- tivation of Hageman factor (factor XII) by beta2-glyco- protein I. J Lab Clin Med 1988;111:519. 63. Schousboe I. beta 2-Glycoprotein I: A plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway. Blood 1985;66:1086. 64. Merrill JT, Zhang HW, Shen C, et al. Enhancement of protein S anticoagulant function by beta2-glycoprotein I, a major target antigen of antiphospholipid antibodies: beta2-glycoprotein I interferes with binding of protein S to its plasma inhibitor, C4b-binding protein. Thromb Haemost 1999;81:748. 65. Ieko M, Yasukouchi T, Sawada KI, et al. The influence of beta2-glycoprotein I on tissue factor activity. Semin Thromb Hemost 1998;24:211. 66. Bancsi LF, van der Linden IK, Bertina RM. Beta 2-glyco- protein I deficiency and the risk of thrombosis. Thromb Haemost 1992;67:649. 67. Arnout J. Antiphospholipid syndrome: Diagnostic as- pects of lupus anticoagulants. Thromb Haemost 2001; 86:83. 68. Angles-Cano E, Guillin MC. Antiphospholipid antibodies and the coagulation cascade. Rheum Dis Clin North Am 2001;27:573. 69. Rand JH, Wu XX, Andree HA, et al. Pregnancy loss in the antiphospholipid-antibody syndrome--a possible thrombogenic mechanism. N Engl J Med 1997;337:154. 70. Rand JH, Wu XX, Andree HA, et al. Antiphospholipid an- tibodies accelerate plasma coagulation by inhibiting an- nexin-V binding to phospholipids: A "lupus procoagu- lant" phenomenon. Blood 1998;92:1652. 71. Hanly JG, Smith SA. Anti-beta2-glycoprotein I (GPI) au- toantibodies, annexin V binding and the anti-phospho- lipid syndrome. Clin Exp Immunol 2000;120:537. 72. Bevers EM, Janssen MP, Willems GM, et al. No evidence for enhanced thrombin formation through displacement of annexin V by antiphospholipid antibodies. Thromb Haemost 2000;83:792. 73. Willems GM, Janssen MP, Comfurius P, et al. Competition of annexin V and anticardiolipin antibodies for binding to phosphatidylserine containing mem- branes. Biochemistry 2000;39:1982. 74. Esmon CT. The anticoagulant and anti-inflammatory roles of the protein C anticoagulant pathway. J Autoimmun 2000;15:113. 75. Dizon-Townson D, Hutchison C, Silver R, et al. The fac- tor V Leiden mutation which predisposes to thrombosis is not common in patients with antiphospholipid syn- drome. Thromb Haemost 1995;74:1029. 76. Crowther MA, Johnston M, Weitz J, Ginsberg JS. Free protein S deficiency may be found in patients with antiphospholipid antibodies who do not have sys- temic lupus erythematosus. Thromb Haemost 1996; 76:689. 77. Ames PR, Tommasino C, Iannaccone L, et al. Coagu- lation activation and fibrinolytic imbalance in subjects with idiopathic antiphospholipid antibodies--a crucial role for acquired free protein S deficiency. Thromb Haemost 1996;76:190. 78. Borrell M, Sala N, de Castellarnau C, et al. Immuno- globulin fractions isolated from patients with antiphos- pholipid antibodies prevent the inactivation of factor Va by activated protein C on human endothelial cells. Thromb Haemost 1992;68:268. 79. Malia RG, Kitchen S, Greaves M, et al. Inhibition of ac- tivated protein C and its cofactor protein S by antiphos- pholipid antibodies. Br J Haematol 1990;76:101. 80. Nojima J, Kuratsune H, Suehisa E, et al. Acquired acti- vated protein C resistance is associated with the co-ex- istence of anti-prothrombin antibodies and lupus anti- coagulant activity in patients with systemic lupus ery- thematosus. Br J Haematol 2002;118:577. 81. Tsakiris DA, Settas L, Makris PE, et al. Lupus anticoagu- lant--antiphospholipid antibodies and thrombophilia. Relation to protein C--protein S--thrombomodulin. J Rheumatol 1990;17:785. 82. Bokarewa MI, Blomback M, Egberg N, et al. A new vari- ant of interaction between phospholipid antibodies and the protein C system. Blood Coagul Fibrinolysis 1994;5:37. 83. Cariou R, Tobelem G, Bellucci S, et al. Effect of lupus anticoagulant on antithrombogenic properties of en- dothelial cells--inhibition of thrombomodulin-depen- dent protein C activation. Thromb Haemost 1988;60:54. 84. Gennari L, Blanco A, Alberto MF, et al. The concomitant presence of lupus anticoagulant, anticardiolipin and anti-beta2-glycoprotein antibodies could be associated with acquired activated protein C resistance in non-sys- temic lupus erythematosus patients. Br J Haematol 2003;121:527. 85. Hwang KK, Yang CD, Yan W, et al. A thrombin-cross-re- active anticardiolipin antibody binds to and inhibits the anticoagulant function of activated protein C. Arthritis Rheum 2003;48:1622. M. AKIF ÖZTÜRK ET AL116 86. Matsuda J, Gohchi K, Kawasugi K, et al. Inhibitory ac- tivity of anti-beta 2-glycoprotein I antibody on factor Va degradation by activated-protein C and its cofactor pro- tein S. Am J Hematol 1995;49:89. 87. Atsumi T, Khamashta MA, Amengual O, et al. Binding of anticardiolipin antibodies to protein C via beta2-gly- coprotein I (beta2-GPI): A possible mechanism in the in- hibitory effect of antiphospholipid antibodies on the pro- tein C system. Clin Exp Immunol 1998;112:325. 88. Oosting JD, Derksen RH, Bobbink IW, et al. Anti- phospholipid antibodies directed against a combination of phospholipids with prothrombin, protein C, or pro- tein S: An explanation for their pathogenic mechanism? Blood 1993;81:2618. 89. Carson CW, Comp PC, Rezaie AR, et al. Antibodies to thrombomodulin are found in patients with lupus anti- coagulant and unexplained thrombosis. J Rheumatol 2000;27:384. 90. de Groot PG, Horbach DA, Derksen RH. Protein C and other cofactors involved in the binding of antiphospho- lipid antibodies: Relation to the pathogenesis of throm- bosis. Lupus 1996;5:488. 91. Field SL, Brighton TA, McNeil HP, et al. Recent insights into antiphospholipid antibody-mediated thrombosis. Baillieres Best Pract Res Clin Haematol 1999;12:407. 92. Smirnov MD, Triplett DT, Comp PC, et al. On the role of phosphatidylethanolamine in the inhibition of activated protein C activity by antiphospholipid antibodies. J Clin Invest 1995;95:309. 93. Esmon NL, Safa O, Smirnov MD, et al. Antiphospholipid antibodies and the protein C pathway. J Autoimmun 2000;15:221. 94. Carreras LO, Vermylen JG. "Lupus" anticoagulant and thrombosis--possible role of inhibition of prostacyclin formation. Thromb Haemost 1982;48:38. 95. Lellouche F, Martinuzzo M, Said P, et al. Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant. Blood 1991;78:2894. 96. Nakamura N, Shidara Y, Kawaguchi N, et al. Lupus an- ticoagulant autoantibody induces apoptosis in umbilical vein endothelial cells: Involvement of annexin V. Biochem Biophys Res Commun 1994;205:1488. 97. Nakamura N, Ban T, Yamaji K, et al. Localization of the apoptosis-inducing activity of lupus anticoagulant in an annexin V-binding antibody subset. J Clin Invest 1998;101:1951. 98. Bombeli T, Karsan A, Tait JF, et al. Apoptotic vascular endothelial cells become procoagulant. Blood 1997;89:2429. 99. Cho CS, Cho ML, Chen PP, et al. Antiphospholipid anti- bodies induce monocyte chemoattractant protein-1 in endothelial cells. J Immunol 2002;168:4209. 100. Del Papa N, Guidali L, Sala A, et al. Endothelial cells as target for antiphospholipid antibodies. Human poly- clonal and monoclonal anti-beta 2-glycoprotein I anti- bodies react in vitro with endothelial cells through ad- herent beta 2-glycoprotein I and induce endothelial ac- tivation. Arthritis Rheum 1997;40:551. 101. Del Papa N, Guidali L, Spatola L, et al. Relationship be- tween anti-phospholipid and anti-endothelial cell anti- bodies III: beta 2 glycoprotein I mediates the antibody binding to endothelial membranes and induces the ex- pression of adhesion molecules. Clin Exp Rheumatol 1995;13:179. 102. Simantov R, LaSala JM, Lo SK, et al. Activation of cul- tured vascular endothelial cells by antiphospholipid an- tibodies. J Clin Invest 1995;96:2211. 103. George J, Blank M, Levy Y, et al. Differential effects of anti-beta2-glycoprotein I antibodies on endothelial cells and on the manifestations of experimental antiphospho- lipid syndrome. Circulation 1998;97:900. 104. Pierangeli SS, Colden-Stanfield M, Liu X, et al. Anti- phospholipid antibodies from antiphospholipid syn- drome patients activate endothelial cells in vitro and in vivo. Circulation 1999;99:1997. 105. Kaplanski G, Cacoub P, Farnarier C, et al. Increased sol- uble vascular cell adhesion molecule 1 concentrations in patients with primary or systemic lupus erythemato- sus-related antiphospholipid syndrome: Correlations with the severity of thrombosis. Arthritis Rheum 2000;43:55. 106. Pierangeli SS, Gharavi AE, Harris EN. Experimental thrombosis and antiphospholipid antibodies: New in- sights. J Autoimmun 2000;15:241. 107. Semeraro N, Colucci M. Tissue factor in health and dis- ease. Thromb Haemost 1997;78:759. 108. Amengual O, Atsumi T, Khamashta MA, et al. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost 1998;79:276. 109. Cuadrado MJ, Lopez-Pedrera C, Khamashta MA, et al. Thrombosis in primary antiphospholipid syndrome: A pivotal role for monocyte tissue factor expression. Arthritis Rheum 1997;40:834. 110. Dobado-Berrios PM, Lopez-Pedrera C, Velasco F, et al. Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome. Thromb Haemost 1999;82:1578. 111. Kornberg A, Renaudineau Y, Blank M, et al. Anti-beta 2- glycoprotein I antibodies and anti-endothelial cell anti- bodies induce tissue factor in endothelial cells. Isr Med Assoc J 2000;2 Suppl:27. 112. Branch DW, Rodgers GM. Induction of endothelial cell tissue factor activity by sera from patients with an- tiphospholipid syndrome: A possible mechanism of thrombosis. Am J Obstet Gynecol 1993;168:206. 113. Kornberg A, Blank M, Kaufman S, et al. Induction of tis- sue factor-like activity in monocytes by anti-cardiolipin antibodies. J Immunol 1994;153:1328. 114. Salemink I, Blezer R, Willems GM, et al. Antibodies to beta2-glycoprotein I associated with antiphospholipid syndrome suppress the inhibitory activity of tissue factor pathway inhibitor. Thromb Haemost 2000;84:653. 115. Adams MJ, Donohoe S, Mackie IJ, et al. Anti-tissue factor pathway inhibitor activity in patients with primary an- tiphospholipid syndrome. Br J Haematol 2001;114:375. 116. Marcus DM, Schwarting GA. Immunochemical proper- ties of glycolipids and phospholipids. Adv Immunol 1976;23:203. 117. Gharavi AE, Sammaritano LR, Wen J, et al. Induction of antiphospholipid autoantibodies by immunization with beta 2 glycoprotein I (apolipoprotein H). J Clin Invest 1992;90:1105. 118. Gharavi AE, Sammaritano LR, Bovastro JL Jr, et al. Specificities and characteristics of beta 2 glycoprotein I- induced antiphospholipid antibodies. J Lab Clin Med 1995;125:775. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 117 119. Blank M, Faden D, Tincani A, et al. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice. J Autoimmun 1994;7:441. 120. Garcia CO, Kanbour-Shakir A, Tang H, et al. Induction of experimental antiphospholipid syndrome in PL/J mice following immunization with beta2 GPI. Am J Reprod Immunol 1997;37:118. 121. Gharavi AE, Pierangeli SS, Colden-Stanfield M, et al. GDKV-induced antiphospholipid antibodies enhance thrombosis and activate endothelial cells in vivo and in vitro. J Immunol 1999;163:2922. 122. Gharavi EE, Chaimovich H, Cucurull E, et al. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides. Lupus 1999;8:449. 123. Gharavi AE, Pierangeli SS, Espinola RG, et al. Anti- phospholipid antibodies induced in mice by immuniza- tion with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum 2002;46:545. 124. Gharavi AE, Pierangeli SS, Harris EN. Origin of an- tiphospholipid antibodies. Rheum Dis Clin North Am 2001;27:551. 125. Arnout J, Vermylen J. Current status and implications of autoimmune antiphospholipid antibodies in relation to thrombotic disease. J Thromb Haemost 2003;1:931. 126. Bevers EM, Comfurius P, Zwaal RF. Changes in mem- brane phospholipid distribution during platelet activa- tion. Biochim Biophys Acta 1983;736:57. 127. Price BE, Rauch J, Shia MA, et al. Anti-phospholipid au- toantibodies bind to apoptotic, but not viable, thymo- cytes in a beta 2-glycoprotein I-dependent manner. J Immunol 1996;157:2201. 128. Sorice M, Circella A, Misasi R, et al. Cardiolipin on the surface of apoptotic cells as a possible trigger for an- tiphospholipids antibodies. Clin Exp Immunol 2000;122:277. 129. Manfredi AA, Rovere P, Galati G, et al. Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arthritis Rheum 1998;41:205. 130. Levine JS, Subang R, Koh JS, et al. Induction of anti- phospholipid autoantibodies by beta2-glycoprotein I bound to apoptotic thymocytes. J Autoimmun 1998;11:413. 131. Subang R, Levine JS, Janoff AS, et al. Phospholipid- bound beta 2-glycoprotein I induces the production of anti-phospholipid antibodies. J Autoimmun 2000;15:21. 132. Pittoni V, Ravirajan CT, Donohoe S, et al. Human mon- oclonal anti-phospholipid antibodies selectively bind to membrane phospholipid and beta2-glycoprotein I (beta2-GPI) on apoptotic cells. Clin Exp Immunol 2000;119:533. 133. Rauch J, Subang R, D'Agnillo P, et al. Apoptosis and the antiphospholipid syndrome. J Autoimmun 2000;15:231. 134. Horkko S, Miller E, Dudl E, et al. Antiphospholipid anti- bodies are directed against epitopes of oxidized phos- pholipids. Recognition of cardiolipin by monoclonal an- tibodies to epitopes of oxidized low density lipoprotein. J Clin Invest 1996;98:815. 135. Horkko S, Miller E, Branch DW, et al. The epitopes for some antiphospholipid antibodies are adducts of oxi- dized phospholipid and beta2 glycoprotein 1 (and other proteins). Proc Natl Acad Sci USA 1997;94:10356. 136. Fabisiak JP, Kagan VE, Ritov VB, et al. Bcl-2 inhibits se- lective oxidation and externalization of phos- phatidylserine during paraquat-induced apoptosis. Am J Physiol 1997;272 (2 Pt 1):C675. 137. Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2 func- tions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241. 138. Vazquez-Mellado J, Llorente L, Richaud-Patin Y, et al. Exposure of anionic phospholipids upon platelet activa- tion permits binding of beta 2 glycoprotein I and through it that of IgG antiphospholipid antibodies. Studies in platelets from patients with antiphospholipid syndrome and normal subjects. J Autoimmun 1994;7:335. 139. Shi W, Chong BH, Chesterman CN. 2-Glycoprotein-I is a requirement for anticardiolipin antibodies binding to activated platelets: Differences with lupus anticoagu- lants. Blood 1993;81:1255. 140. Martinuzzo ME, Maclouf J, Carreras LO, et al. Anti- phospholipid antibodies enhance thrombin-induced platelet activation and thromboxane formation. Thromb Haemost 1993;70:667. 141. Reverter JC, Tassies D, Escolar G, et al. Effect of plasma from patients with primary antiphospholipid syndrome on platelet function in a collagen rich perfusion system. Thromb Haemost 1995;73:132. 142. Campbell AL, Pierangeli SS, Wellhausen S, et al. Comparison of the effects of anticardiolipin antibodies from patients with the antiphospholipid syndrome and with syphilis on platelet activation and aggregation. Thromb Haemost 1995;73:529. 143. Arvieux J, Roussel B, Pouzol P, et al. Platelet activating properties of murine monoclonal antibodies to beta 2- glycoprotein I. Thromb Haemost 1993;70:336. 144. Nojima J, Suehisa E, Kuratsune H, et al. Platelet activa- tion induced by combined effects of anticardiolipin and lupus anticoagulant IgG antibodies in patients with sys- temic lupus erythematosus--possible association with thrombotic and thrombocytopenic complications. Thromb Haemost 1999;81:436. 145. Wiener MH, Burke M, Fried M, et al. Thrombo- agglutination by anticardiolipin antibody complex in the antiphospholipid syndrome: A possible mechanism of immune-mediated thrombosis. Thromb Res 2001; 103:193. 146. Emmi L, Bergamini C, Spinelli A, et al. Possible patho- genetic role of activated platelets in the primary an- tiphospholipid syndrome involving the central nervous system. Ann NY Acad Sci 1997;823:188. 147. Ford I, Urbaniak S, Greaves M. IgG from patients with antiphospholipid syndrome binds to platelets without in- duction of platelet activation. Br J Haematol 1998;102:841. 148. Greaves M. Antiphospholipid antibodies and thrombo- sis. Lancet 1999;353:1348. 149. Godeau B, Piette JC, Fromont P, et al. Specific an- tiplatelet glycoprotein autoantibodies are associated with the thrombocytopenia of primary antiphospholipid syndrome. Br J Haematol 1997;98:873. 150. Macchi L, Rispal P, Clofent-Sanchez G, et al. Anti- platelet antibodies in patients with systemic lupus ery- thematosus and the primary antiphospholipid antibody syndrome: Their relationship with the observed throm- bocytopenia. Br J Haematol 1997;98:336. M. AKIF ÖZTÜRK ET AL118 151. Arnout J. The pathogenesis of the antiphospholipid syn- drome: A hypothesis based on parellelism with heparin- induced thrombocytopenia. Thromb Haemost 1996; 75:536. 152. Walenga JM, Michal K, Hoppensteadt D, et al. Vascular damage correlates between heparin-induced thrombo- cytopenia and the antiphospholipid syndrome. Clin Appl Thromb Hemost 1999;5 Suppl 1:S76. 153. Jankowski M, Vreys I, Wittevrongel C, et al. Thrombo- genicity of beta-2-glycoprotein I dependent antiphos- pholipid antibodies in a photochemically induced throm- bosis in the hamster. Blood 2003;101:157. 154. Lockwood CJ, Rand JH. The immunobiology and ob- stetrical consequences of antiphospholipid antibodies. Obstet Gynecol Surv 1994;49:432. 155. Out HJ, Kooijman CD, Bruinse HW, et al. Histo- pathological findings in placentae from patients with intra-uterine fetal death and anti-phospholipid antibod- ies. Eur J Obstet Gynecol Reprod Biol 1991;41:179. 156. Krikun G, Lockwood CJ, Wu XX, et al. The expression of the placental anticoagulant protein, annexin V, by vil- lous trophoblasts: Immunolocalization and in vitro reg- ulation. Placenta 1994;15:601. 157. Wang X, Campos B, Kaetzel MA, et al. Annexin V is crit- ical in the maintenance of murine placental integrity. Am J Obstet Gynecol 1999;180:1008. 158. Rand JH, Wu XX, Guller S, et al. Reduction of annexin- V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recur- rent spontaneous abortion. Am J Obstet Gynecol 1994;171:1566. 159. Rote NS, Vogt E, DeVere G, et al. The role of placental trophoblast in the pathophysiology of the antiphospho- lipid antibody syndrome. Am J Reprod Immunol 1998;39:125. 160. Lakasing L, Campa JS, Poston R, et al. Normal expres- sion of tissue factor, thrombomodulin, and annexin V in placentas from women with antiphospholipid syndrome. Am J Obstet Gynecol 1999;181:180. 161. Luzzana C, Gerosa M, Riboldi P, et al. Up-date on the antiphospholipid syndrome. J Nephrol 2002;15:342. 162. Di Simone N, De Carolis S, Lanzone A, et al. In vitro ef- fect of antiphospholipid antibody-containing sera on basal and gonadotrophin releasing hormone-dependent human chorionic gonadotrophin release by cultured tro- phoblast cells. Placenta 1995;16:75. 163. Di Simone N, Castellani R, Caliandro D, et al. Mono- clonal anti-annexin V antibody inhibits trophoblast go- nadotropin secretion and induces syncytiotrophoblast apoptosis. Biol Reprod 2001;65:1766. 164. Di Simone N, Meroni PL, del Papa N, et al. Anti- phospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2-glycoprotein I. Arthritis Rheum 2000;43:140. 165. Zhou Y, Fisher SJ, Janatpour M, et al. Human cytotro- phoblasts adopt a vascular phenotype as they differenti- ate. A strategy for successful endovascular invasion? J Clin Invest 1997;99:2139. 166. Sueoka K, Shiokawa S, Miyazaki T, et al. Integrins and reproductive physiology: Expression and modulation in fertilization, embryogenesis, and implantation. Fertil Steril 1997;67:799. 167. Di Simone N, Castellani R, Caliandro D, et al. Anti- phospholid antibodies regulate the expression of tro- phoblast cell adhesion molecules. Fertil Steril 2002;77:805. 168. Hellan M, Kuhnel E, Speiser W, et al. Familial lupus an- ticoagulant: A case report and review of the literature. Blood Coagul Fibrinolysis 1998;9:195. 169. Atsumi T, Tsutsumi A, Amengual O, et al. Correlation between beta2-glycoprotein I valine/leucine247 poly- morphism and anti-beta2-glycoproteinI antibodies in pa- tients with primary antiphospholipid syndrome. Rheumatology 1999;38:721. 170. Hirose N, Williams R, Alberts AR, et al. A role for the polymorphism at position 247 of the beta2-glycoprotein I gene in the generation of anti-beta2-glycoprotein I an- tibodies in the antiphospholipid syndrome. Arthritis Rheum 1999;42:1655. 171. Asherson RA, Doherty DG, Vergani D, et al. Major histo- compatibility complex associations with primary an- tiphospholipid syndrome. Arthritis Rheum 1992;35:124. 172. Vargas-Alarcon G, Granados J, Bekker C, et al. Association of HLA-DR5 (possibly DRB1*1201) with the primary antiphospholipid syndrome in Mexican patients. Arthritis Rheum 1995;38:1340. 173. Camps MT, Cuadrado MJ, Ocon P, et al. Association be- tween HLA class II antigens and primary antiphospho- lipid syndrome from the south of Spain. Lupus 1995;4:51. 174. Goldstein R, Moulds JM, Smith CD, et al. MHC studies of the primary antiphospholipid antibody syndrome and of antiphospholipid antibodies in systemic lupus erythe- matosus. J Rheumatol 1996;23:1173. 175. Granados J, Vargas-Alarcon G, Drenkard C, et al. Relationship of anticardiolipin antibodies and antiphos- pholipid syndrome to HLA-DR7 in Mexican patients with systemic lupus erythematosus (SLE). Lupus 1997;6:57. 176. de Pablo P, Ramirez A, Cortina E, et al. Increased fibrin polymerization rate in patients with primary antiphos- pholipid syndrome and systemic lupus erythematosus. Clin Appl Thromb Hemost 2003;9:221. 177. Takeuchi R, Atsumi T, Ieko M, et al. Suppressed intrin- sic fibrinolytic activity by monoclonal anti-beta-2 glyco- protein I autoantibodies: Possible mechanism for throm- bosis in patients with antiphospholipid syndrome. Br J Haematol 2002;119:781. 178. Ieko M, Ichikawa K, Atsumi T, et al. Effects of beta2-gly- coprotein I and monoclonal anticardiolipin antibodies on extrinsic fibrinolysis. Semin Thromb Hemost 2000;26:85. 179. Shibata S, Harpel PC, Gharavi A, et al. Autoantibodies to heparin from patients with antiphospholipid antibody syndrome inhibit formation of antithrombin III-throm- bin complexes. Blood 1994;83:2532. 180. Chi HS. Recent advances in the diagnosis of antiphos- pholipid syndrome. Int J Hematol 2002;76 Suppl 2:47. 181. Reyes H, Dearing L, Bick RL, et al. Laboratory diagnosis of antiphospholipid syndromes. Clin Lab Med 1995;15:85. 182. Bick RL. Antiphospholipid thrombosis syndromes: Etiology, pathophysiology, diagnosis and management. Int J Hematol 1997;65:193. 183. Pierangeli SS, Gharavi AE, Harris EN. Testing for an- tiphospholipid antibodies: Problems and solutions. Clin Obstet Gynecol 2001;44:48. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 119 184. Abuaf N, Meyer O, Laperche S, et al. Conclusions of the first French workshop of standardization of anticardi- olipin antibody determination associated with autoim- mune pathology. Ann Biol Clin 1994;52:365. 185. Favaloro EJ, Silvestrini R. Assessing the usefulness of anticardiolipin antibody assays: A cautious approach is suggested by high variation and limited consensus in multilaboratory testing. Am J Clin Pathol 2002;118:548. 186. Exner T, Triplett DA, Taberner D, et al. Guidelines for testing and revised criteria for lupus anticoagulants. SSC Subcommittee for the Standardization of Lupus Anticoagulants. Thromb Haemost 1991;65:320. 187. Kaczor DA, Bickford NN, Triplett DA. Evaluation of dif- ferent mixing study reagents and dilution effect in lupus anticoagulant testing. Am J Clin Pathol 1991;95:408. 188. Brandt JT, Triplett DA. The effect of phospholipid on the detection of lupus anticoagulants by the dilute Russell viper venom time. Arch Pathol Lab Med 1989;113:1376. 189. Gerbutavicius R, Fareed J, Messmore HL, et al. Reference ranges of the dilute tissue thromboplastin in- hibition and dilute Russell's viper venom tests revisited. Clin Appl Thromb Hemost 2002;8:51. 190. Lawrie AS, Mackie IJ, Purdy G, et al. The sensitivity and specificity of commercial reagents for the detection of lupus anticoagulant show marked differences in perfor- mance between photo-optical and mechanical coagu- lometers. Thromb Haemost 1999;81:758. 191. Triplett DA, Brandt JT, Kaczor D, et al. Laboratory diag- nosis of lupus inhibitors: A comparison of the tissue thromboplastin inhibition procedure with a new platelet neutralization procedure. Am J Clin Pathol 1983;79:678. 192. Arnout J, Huybrechts E, Vanrusselt M, et al. A new lupus anticoagulant neutralization test based on platelet-de- rived vesicles. Br J Haematol 1992;80:341. 193. Triplett DA, Stocker KF, Unger GA, et al. The Textarin/Ecarin ratio: A confirmatory test for lupus an- ticoagulants. Thromb Haemost 1993;70:925. 194. Reber G, Roisin JP, Migaud M, et al. Comparison of a platelet neutralization procedure with a hexagonal phase phospholipid neutralization assay as confirmatory tests for the presence of lupus anticoagulants. Thromb Res 1994;73:131. 195. Chantarangkul V, Tripodi A, Arbini A, et al. Silica clot- ting time (SCT) as a screening and confirmatory test for detection of the lupus anticoagulants. Thromb Res 1992;67:355. 196. Galli M, Finazzi G, Bevers EM, et al. Kaolin clotting time and dilute Russell's viper venom time distinguish be- tween prothrombin-dependent and beta 2-glycoprotein I-dependent antiphospholipid antibodies. Blood 1995;86:617. 197. Pengo V, Biasiolo A, Rampazzo P, et al. dRVVT is more sensitive than KCT or TTI for detecting lupus anticoagu- lant activity of anti-beta2-glycoprotein I autoantibodies. Thromb Haemost 1999;81:256. 198. Liestol S, Jacobsen EM, Wisloff F. Dilute prothrombin time-based lupus ratio test. Integrated LA testing with recombinant tissue thromboplastin. Thromb Res 2002;105:177. 199. Rooney AM, McNally T, Mackie IJ, et al. The Taipan snake venom time:a new test for lupus anticoagulant. J Clin Pathol 1994;47:497. 200. Lindhoff-Last E, Humpich M, Schmitt J, et al. MIXCON- LA: A precise, sensitive and specific aPTT-based assay for detection of lupus anticoagulant. Clin Appl Thromb Hemost 2002;8:163. 201. Exner T. Conceptions and misconceptions in testing for lupus anticoagulants. J Autoimmun 2000;15:179. 202. Lazarchick J, Kizer J. The laboratory diagnosis of lupus anticoagulants. Arch Pathol Lab Med 1989;113:177. 203. Mader R, Ziporen L, Mader R, et al. Antiphospholipid antibodies in a heterogeneous group of patients: Experience from a central laboratory. Clin Rheumatol 2002;21:386. 204. Sakakura M, Wada H, Watanabe R, et al. Coagulation tests and anti-phospholipid antibodies in patients posi- tive for lupus anticoagulant. Clin Appl Thromb Hemost 2000;6:144. 205. Segal JB, Lehmann HP, Petri M, et al. Testing strategies for diagnosing lupus anticoagulant: Decision analysis. Am J Hematol 2002;70:195. 206. Wisloff F, Jacobsen EM, Liestol S. Laboratory diagnosis of the antiphospholipid syndrome. Thromb Res 2002;108:263. 207. Galli M, Finazzi G, Barbui T. Antiphospholipid antibod- ies: Predictive value of laboratory tests. Thromb Haemost 1997;78:75. 208. Galli M, Dlott J, Norbis F, et al. Lupus anticoagulants and thrombosis: Clinical association of different coagu- lation and immunologic tests. Thromb Haemost 2000;84:1012. 209. Wasmuth JC, Minarro D, Homrighausen A, et al. Phos- pholipid autoantibodies and the antiphospholipid anti- body syndrome: Diagnostic accuracy of 23 methods studied by variation in ROC curves with number of clin- ical manifestations. Clin Chem 2002;48:1004. 210. McIntyre JA, Wagenknecht DR, Faulk WP. Antiphos- pholipid antibodies: Discovery, definitions, detection and disease. Prog Lipid Res 2003;42:176. 211. Helbert M, Bodger S, Cavenagh J, et al. Optimising test- ing for phospholipid antibodies. J Clin Pathol 2001; 54:693. 212. Sanna G, Bertolaccini ML, Cuadrado MJ, et al. Central nervous system involvement in the antiphospholipid (Hughes) syndrome. Rheumatology (Oxford) 2003; 42:200. 213. Brey RL, Gharavi AE, Lockshin MD. Neurologic compli- cations of antiphospholipid antibodies. Rheum Dis Clin North Am 1993;19:833. 214. Cuadrado MJ, Hughes GR. Hughes (antiphospholipid) syndrome. Clinical features. Rheum Dis Clin North Am 2001;27:507. 215. Dunn JP, Noorily SW, Petri M, et al. Antiphospholipid antibodies and retinal vascular disease. Lupus 1996;5:313. 216. Castanon C, Amigo MC, Banales JL, et al. Ocular vaso- occlusive disease in primary antiphospholipid syndrome. Ophthalmology 1995;102:256. 217. Naarendorp M, Spiera H. Sudden sensorineural hearing loss in patients with systemic lupus erythematosus or lupus-like syndromes and antiphospholipid antibodies. J Rheumatol 1998;25:589. 218. Kaplan SD, Chartash EK, Pizzarello RA, et al. Cardiac manifestations of the antiphospholipid syndrome. Am Heart J 1992;124:1331. M. AKIF ÖZTÜRK ET AL120 219. Cervera R, Khamashta MA, Font J, et al. High prevalence of significant heart valve lesions in patients with the 'pri- mary' antiphospholipid syndrome. Lupus 1991;1:43. 220. Nayak AK, Komatireddy G. Cardiac manifestations of the antiphospholipid antibody syndrome: A review. Mo Med 2002;99:171. 221. Baker WF Jr, Bick RL. Antiphospholipid antibodies in coronary artery disease: A review. Semin Thromb Hemost 1994;20:27. 222. Kattwinkel N, Villanueva AG, Labib SB, et al. Myocardial infarction caused by cardiac microvasculopathy in a pa- tient with the primary antiphospholipid syndrome. Ann Intern Med 1992;116:974. 223. Gibson GE, Su WP, Pittelkow MR. Antiphospholipid syn- drome and the skin. J Am Acad Dermatol 1997;36:970. 224. Espinosa G, Cervera R, Font J, et al. The lung in the an- tiphospholipid syndrome. Ann Rheum Dis 2002;61:195. 225. Nochy D, Daugas E, Huong DL, et al. Kidney involve- ment in the antiphospholipid syndrome. J Autoimmun 2000;15:127. 226. Isom R, Nickolas TL, Radhakrishnan J. Nephrological and obstetric complications of the antiphospholipid syn- drome. Expert Opin Investig Drugs 2002;11:819. 227. Diz-Kucukkaya R, Hacihanefioglu A, Yenerel M, et al. Antiphospholipid antibodies and antiphospholipid syn- drome in patients presenting with immune thrombocy- topenic purpura: A prospective cohort study. Blood 2001;98:1760. 228. Espinosa G, Santos E, Cervera R, et al. Adrenal involve- ment in the antiphospholipid syndrome: Clinical and im- munologic characteristics of 86 patients. Medicine 2003;82:106. 229. Tektonidou MG, Malagari K, Vlachoyiannopoulos PG, et al. Asymptomatic avascular necrosis in patients with pri- mary antiphospholipid syndrome in the absence of cor- ticosteroid use: A prospective study by magnetic reso- nance imaging. Arthritis Rheum 2003;48:732. 230. Heilmann L, von Tempelhoff GF, Pollow K. Anti- phospholipid syndrome in obstetrics. Clin Appl Thromb Hemost 2003;9:143. 231. Wilson WA, Gharavi AE, Koike T, et al. International consensus statement on preliminary classification crite- ria for definite antiphospholipid syndrome: Report of an international workshop. Arthritis Rheum 1999; 42:1309. 232. Asherson RA.The catastrophic antiphospholipid syn- drome, 1998. A review of the clinical features, possible pathogenesis and treatment. Lupus 1998;7 Suppl 2:S55. 233. Asherson RA, Cervera R. Catastrophic antiphospholipid syndrome. Curr Opin Hematol 2000;7:325. 234. Harris EN, Gharavi AE, Boey ML, et al. Anticardiolipin antibodies: Detection by radioimmunoassay and associ- ation with thrombosis in systemic lupus erythematosus. Lancet 1983;ii:1211. 235. Horbach DA, Oort EV, Donders RAJM, et al. Lupus anti- coagulant is the strongest risk factor for both venous and arterial thrombosis in patients with systemic lupus ery- thematosus. Thromb Haemost 1996;76:916. 236. Tuhrim S, Rand JH, Wu XX, et al. Elevated anticardi- olipin antibody titer is a stroke risk factor in a multieth- nic population independent of isotype or degree of pos- itivity. Stroke 1999;30:1561. 237. Oger E, Lernyer C, Dueymes M, et al. Association be- tween IgM anticardiolipin antibodies and deep venous thrombosis in patients without systemic lupus erythe- matosus. Lupus 1997;6:455. 238. Schulman S, Svenungsson E, Granqvist S. Anticardio- lipin antibodies predict early recurrence of thromboem- bolism and death among patients with venous throm- boembolism following anticoagulant therapy. Duration of Anticoagulation Study Group. Am J Med 1998;104:332. 239. Lam EY, Taylor LM Jr, Landry GJ, et al. Relationship be- tween antiphospholipid antibodies and progression of lower extremity arterial occlusive disease after lower ex- tremity bypass operations. J Vasc Surg 2001;33:976. 240. Silver RM, Porter TF, van Leeuween I, et al. Anti- cardiolipin antibodies: Clinical consequences of "low titers." Obstet Gynecol 1996;87:494. 241. Galli M, Luciani D, Bertolini G, et al. Lupus anticoagu- lants are stronger risk factors for thrombosis than anti- cardiolipin antibodies in the antiphospholipid syndrome: A systematic review of the literature. Blood 2003;101:1827. 242. Diri E, Cucurull E, Gharavi AE, et al. Antiphospholipid (Hughes') syndrome in African-Americans: IgA aCL and abeta2 glycoprotein-I is the most frequent isotype. Lupus 1999;8:263. 243. Fanopoulos D, Teodorescu MR, Varga J, et al. High fre- quency of abnormal levels of IgA anti-beta2-glycopro- tein I antibodies in patients with systemic lupus erythe- matosus: Relationship with antiphospholipid syndrome. J Rheumatol 1998;25:675. 244. Bertolaccini ML, Atsumi T, Escudero Contreras A, et al. The value of IgA antiphospholipid testing for diagnosis of antiphospholipid (Hughes) syndrome in systemic lupus erythematosus. J Rheumatol 2001;28:2637. 245. Selva-O'Callaghan A, Ordi-Ros J, Monegal-Ferran F, et al. IgA anticardiolipin antibodies--relation with other antiphospholipid antibodies and clinical significance. Thromb Haemost 1998;79:282. 246. Muir KW, Squire IB, Alwan W, et al. Anticardiolipin an- tibodies in an unselected stroke population. Lancet 1994;344:452. 247. Runchey SS, Folsom AR, Tsai MY, et al. Anticardiolipin antibodies as a risk factor for venous thromboembolism in a population-based prospective study. Br J Haematol 2002;119:1005. 248. Sletnes KE, Smith P, Abdelnoor M, et al. Anti- phospholipid antibodies after myocardial infarction and their relation to mortality, reinfarction, and non-haem- orrhagic stroke. Lancet 1992;339:451. 249. Miret C, Cervera R, Reverter JC, et al. Antiphospholipid syndrome without antiphospholipid antibodies at the time of the thrombotic event: Transient 'seronegative' antiphospholipid syndrome? Clin Exp Rheumatol 1997;15:541. 250. Carreras LO, Forastiero RR, Martinuzzo ME. Which are best biological markers of the antiphospolipid syn- drome? J Autoimmun 2000;15:163. 251. Fijnheer R, Horbach DA, Donders RC, et al. Factor V Leiden, antiphospholipid antibodies and thrombosis in systemic lupus erythematosus. Thromb Haemost 1996;76:514. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 121 252. Ginsberg JS, Wells PS, Brill-Edwards P, et al. Anti- phospholipid antibodies and venous thromboembolism. Blood 1995;86:3685. 253. Wahl DG, Guillemin F, de Maistre E, et al. Meta-analysis of the risk of venous thrombosis in individuals with an- tiphospholipid antibodies without underlying autoim- mune disease or previous thrombosis. Lupus 1998;7:15. 254. Wahl DG, Guillemin F, de Maistre E, et al. Risk for ve- nous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus--a meta-analysis. Lupus 1997;6:467. 255. Tincani A, Spatola L, Prati E, et al. The anti-beta2-gly- coprotein I activity in human anti-phospholipid syn- drome sera is due to monoreactive low-affinity autoan- tibodies directed to epitopes located on native beta2-gly- coprotein I and preserved during species' evolution. J Immunol 1996;157:5732. 256. Forastiero RR, Martinuzzo ME, Kordich LC, et al. Reactivity to beta 2 glycoprotein I clearly differentiates anticardiolipin antibodies from antiphospholipid syn- drome and syphilis. Thromb Haemost 1996;75:717. 257. Alarcon-Segovia D, Mestanza M, Cabiedes J, et al. The antiphospholipid/cofactor syndromes. II. A variant in pa- tients with systemic lupus erythematosus with antibod- ies to beta 2-glycoprotein I but no antibodies detectable in standard antiphospholipid assays. J Rheumatol 1997;24:1545. 258. Amengual O, Atsumi T, Khamashta MA, et al. Specificity of ELISA for antibody to beta 2-glycoprotein I in patients with antiphospholipid syndrome. Br J Rheumatol 1996;35:1239. 259. Najmey SS, Keil LB, Adib DY, et al.The association of an- tibodies to beta 2 glycoprotein I with the antiphospho- lipid syndrome: A meta-analysis. Ann Clin Lab Sci 1997;27:41. 260. Cabiedes J, Cabral AR, Alarcon-Segovia D. Clinical man- ifestations of the antiphospholipid syndrome in patients with systemic lupus erythematosus associate more strongly with anti-beta 2-glycoprotein-I than with an- tiphospholipid antibodies. J Rheumatol 1995;22:1899. 261. Roubey RA, Maldonado MA, Byrd SN. Comparison of an enzyme-linked immunosorbent assay for antibodies to beta2-glycoprotein I and a conventional anticardiolipin immunoassay. Arthritis Rheum 1996;39:1606. 262. McNally T, Mackie IJ, Machin SJ, et al. Increased levels of beta 2 glycoprotein-I antigen and beta 2 glycoprotein- Ibinding antibodies are associated with a history of thromboembolic complicationsin patients with SLE and primary antiphospholipid syndrome. Br J Rheumatol 1995;34:1031. 263. Previtali S, Barbui T, Galli M. Anti-beta2-glycoprotein I and anti-prothrombin antibodies in antiphospholipid- negative patients with thrombosis: A case control study. Thromb Haemost 2002;88:729. 264. Detkova D, Gil-Aguado A, Lavilla P, et al. Do antibodies to beta2-glycoprotein 1 contribute to the better charac- terization of the antiphospholipid syndrome? Lupus 1999;8:430. 265. Tubach F, Hayem G, Marchand JL, et al. IgG anti-beta2- glycoprotein I antibodies in adult patients with systemic lupus erythematosus: Prevalence and diagnostic value for the antiphospholipid syndrome. J Rheumatol 2000; 27:1437. 266. Sebastiani GD, Galeazzi M, Tincani A, et al. Anticard- iolipin and anti-beta2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Prevalence and clinical associations. European Concerted Action on the Immunogenetics of SLE. Scand J Rheumatol 1999;28:344. 267. Galli M, Luciani D, Bertolini G, et al. Anti-2-glycopro- tein I, antiprothrombin antibodies and the risk of throm- bosis in the antiphospholipid syndrome. Blood 2003;102:2717. 268. Lee RM, Emlen W, Scott JR, et al. Anti-beta2-glycopro- tein I antibodies in women with recurrent spontaneous abortion, unexplained fetal death, and antiphospholipid syndrome. Am J Obstet Gynecol 1999;181:642. 269. Lynch A, Byers T, Emlen W, et al. Association of anti- bodies to beta2-glycoprotein 1 with pregnancy loss and pregnancy-induced hypertension:a prospective study in low-risk pregnancy. Obstet Gynecol 1999;93:193. 270. Franklin RD, Hollier N, Kutteh. beta2-Glycoprotein 1 as a marker of antiphospholipid syndrome in women with recurrent pregnancy loss. Fertil Steril 2000;73:531. 271. Audrain MA, El-Kouri D, Hamidou MA, et al. Value of autoantibodies to beta(2)-glycoprotein 1 in the diagno- sis of antiphospholipid syndrome. Rheumatology (Oxford) 2002;41:550. 272. Galli M. Should we include anti-prothrombin antibodies in the screening for the antiphospholipid syndrome? J Autoimmun 2000;15:101. 273. Bajaj SP, Rapaport SI, Fierer DS, et al. A mechanism for the hypoprothrombinemia of the acquired hypopro- thrombinemia-lupus anticoagulant syndrome. Blood 1983;61:684. 274. Edson JR, Vogt JM, Hasegawa DK. Abnormal prothrom- bin crossed immunoelectrophoresis in patients with lupus inhibitors. Blood 1984;64:807. 275. Fleck RA, Rapaport SI, Rao LV. Anti-prothrombin anti- bodies and the lupus anticoagulant. Blood 1988;72:512. 276. Arvieux J, Darnige L, Caron C, et al. Development of an ELISA for autoantibodies to prothrombin showing their prevalence in patients with lupus anticoagulants. Thromb Haemost 1995;74:1120. 277. Lakos G, Kiss E, Regeczy N, et al. Antiprothrombin and antiannexin V antibodies imply risk of thrombosis in pa- tients with systemic autoimmune diseases. J Rheumatol 2000;27:924. 278. Puurunen M, Vaarala O, Julkunen H, et al. Antibodies to phospholipid-binding plasma proteins and occurrence of thrombosis in patients with systemic lupus erythe- matosus. Clin Immunol Immunopathol 1996;80:16. 279. Sorice M, Pittoni V, Circella A, et al. Anti-prothrombin but not "pure" anti-cardiolipin antibodies are associated with the clinical features of the antiphospholipid anti- body syndrome. Thromb Haemost 1998;80:713. 280. Bertolaccini ML, Atsumi T, Khamashta MA, et al. Autoantibodies to human prothrombin and clinical man- ifestations in 207 patients with systemic lupus erythe- matosus. J Rheumatol 1998;25:1104. 281. Munoz-Rodriguez FJ, Reverter JC, Font J, et al. Prevalence and clinical significance of antiprothrombin antibodies in patients with systemic lupus erythematosus or with primary antiphospholipid syndrome. Haematologica 2000;85:632. M. AKIF ÖZTÜRK ET AL122 282. Nojima J, Kuratsune H, Suehisa E, et al. Anti-prothrom- bin antibodies combined with lupus anti-coagulant ac- tivity is an essential risk factor for venous thromboem- bolism in patients with systemic lupus erythematosus. Br J Haematol 2001;114:647. 283. Pengo V, Biasiolo A, Brocco T, et al. Autoantibodies to phospholipid-binding plasma proteins in patients with thrombosis and phospholipid-reactive antibodies. Thromb Haemost 1996;75:721. 284. D'Angelo A, Safa O, Crippa L, et al. Relationship of lupus anticoagulant, anticardiolipin, anti-beta2-GPI and anti- prothrombin autoantibodies with history of thrombosis in patients with the clinical suspicion of APA-syndrome. Thromb Haemost 1997;78:967. 285. Forastiero RR, Martinuzzo ME, Cerrato GS, et al. Relationship of anti beta2-glycoprotein I and anti pro- thrombin antibodies to thrombosis and pregnancy loss in patients with antiphospholipid antibodies. Thromb Haemost 1997;78:1008. 286. Galli M, Beretta G, Daldossi M, et al. Different antico- agulant and immunological properties of anti-pro- thrombin antibodies in patients with antiphospholipid antibodies. Thromb Haemost 1997;77:486. 287. Atsumi T, Ieko M, Bertolaccini ML, et al. Association of autoantibodies against the phosphatidylserine-pro- thrombin complex with manifestations of the antiphos- pholipid syndrome and with the presence of lupus anti- coagulant. Arthritis Rheum 2000;43:1982. 288. Amengual O, Atsumi T, Koike T. Specificities, proper- ties, and clinical significance of antiprothrombin anti- bodies. Arthritis Rheum 2003;48:886. 289. Nakamura N, Kuragaki C, Shidara Y, et al. Antibody to annexin V has anti-phospholipid and lupus anticoagu- lant properties. Am J Hematol 1995;49:347. 290. Satoh A, Suzuki K, Takayama E, et al. Detection of anti- annexin IV and V antibodies in patients with antiphos- pholipid syndrome and systemic lupus erythematosus. J Rheumatol 1999;26:1715. 291. Ogawa H, Zhao D, Dlott JS, et al. Elevated anti-annexin V antibody levels in antiphospholipid syndrome and their involvement in antiphospholipid antibody speci- ficities. Am J Clin Pathol 2000;114:619. 292. Kaburaki J, Kuwana M, Yamamoto M, et al. Clinical sig- nificance of anti-annexin V antibodies in patients with systemic lupus erythematosus. Am J Hematol 1997; 54:209. 293. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989;86:1372. 294. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88:1785. 295. Wu R, Lefvert AK. Autoantibodies against oxidized low density lipoproteins (oxLDL): Characterization of anti- body isotype, subclass, affinity and effect on the macrophage uptake of oxLDL. Clin Exp Immunol 1995;102:174. 296. Puurunen M, Manttari M, Manninen V, et al. Antibody against oxidized low-density lipoprotein predicting my- ocardial infarction. Arch Intern Med 1994;154:2605. 297. Deguchi H, Fernandez JA, Hackeng TM, et al. Cardiolipin is a normal component of human plasma lipoproteins. Proc Natl Acad Sci USA 2000;97:1743. 298. Horkko S, Olee T, Mo L, et al. Anticardiolipin antibodies from patients with the antiphospholipid antibody syn- drome recognize epitopes in both beta(2)-glycoprotein 1 and oxidized low-density lipoprotein. Circulation 2001;103:941. 299. Amengual O, Atsumi T, Khamashta MA, et al. Auto- antibodies against oxidized low-density lipoprotein in antiphospholipid syndrome. Br J Rheumatol 1997; 36:964. 300. Zhao D, Ogawa H, Wang X, et al. Oxidized low-density lipoprotein and autoimmune antibodies in patients with antiphospholipid syndrome with a history of thrombo- sis. Am J Clin Pathol 2001;116:760. 301. Hayem G, Nicaise-Roland P, Palazzo E, et al. Anti-oxi- dized low-density-lipoprotein (OxLDL) antibodies in sys- temic lupus erythematosus with and without antiphos- pholipid syndrome. Lupus 2001;10:346. 302. Romero FI, Amengual O, Atsumi T, et al. Arterial dis- ease in lupus and secondary antiphospholipid syndrome: Association with anti-beta2-glycoprotein I antibodies but not with antibodies against oxidized low-density lipoprotein. Br J Rheumatol 1998;37:883. 303. Cervera R, Khamashta MA, Font J, et al. Antiendothelial cell antibodies in patients with the antiphospholipid syn- drome. Autoimmunity 1991;11:1. 304. Vismara A, Meroni PL, Tincani A, et al. Relationship be- tween anti-cardiolipin and anti-endothelial cell antibod- ies in systemic lupus erythematosus. Clin Exp Immunol 1988;74:247. 305. Meroni PL, Raschi E, Testoni C, et al. Antiphospholipid antibodies and the endothelium. Rheum Dis Clin North Am 2001;27:587. 306. McCrae KR, DeMichele A, Samuels P, et al. Detection of endothelial cell-reactive immunoglobulin in patients with anti-phospholipid antibodies. Br J Haematol 1991;79:595. 307. Sugi T, McIntyre JA. Certain autoantibodies to phos- phatidylethanolamine (aPE) recognize factor XI and prekallikrein independently or in addition to the kinino- gens. J Autoimmun 2001;17:207. 308. Jone DW, Nicholls PJ, Donohoe S, et al. Antibodies to factor XII are distinct from antibodies to prothrombin in patients with the anti-phospholipid syndrome. Thromb Haemost 2002;87:426. 309. Galli M. Non beta 2-glycoprotein I cofactors for an- tiphospholipid antibodies. Lupus 1996;5:388. 310. Laperche S, Abuaf N, Meyer O, et al. Association of an- timitochondrial antibodies type 5 and anti-beta 2 glyco- protein I antibodies in the antiphospholipid syndrome. J Rheumatol 1994;21:1678. 311. Tektonidou MG, Petrovas CA, Ioannidis JP, et al. Clinical importance of antibodies against platelet activating fac- tor in antiphospholipid syndrome manifestations. Eur J Clin Invest 2000;30:646. 312. Cugno M, Dominguez M, Cabibbe M, et al. Antibodies to tissue-type plasminogen activator in plasma from pa- tients with primary antiphospholipid syndrome. Br J Haematol 2000;108:871. 313. Rampazzo P, Biasiolo A, Garin J, et al. Some patients with antiphospholipid syndrome express hitherto unde- scribed antibodies to cardiolipin-binding proteins. Thromb Haemost 2001;85:57. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 123 314. Bidot CJ, Jy W, Horstman LL, Huisheng H, et al. Factor VII/VIIa: A new antigen in the anti-phospholipid anti- body syndrome. Br J Haematol 2003;120:618. 315. Romero FI, Atsumi T, Tinahones FJ, et al. Auto- antibodies against malondialdehyde-modified lipopro- tein(a) in antiphospholipid syndrome. Arthritis Rheum 1999;42:2606. 316. Laroche P, Berard M, Rouquette AM, et al. Advantage of using both anionic and zwitterionic phospholipid anti- gens for the detection of antiphospholipid antibodies. Am J Clin Pathol 1996;106:549. 317. Bertolaccini ML, Roch B, Amengual O, et al. Multiple an- tiphospholipid tests do not increase the diagnostic yield in antiphospholipid syndrome. Br J Rheumatol 1998;37:1229. 318. Harris EN, Gharavi AE, Loizou S, et al. Crossreactivity of antiphospholipid antibodies. J Clin Lab Immunol 1985;16:1. 319. Berard M, Chantome R, Marcelli A, et al. Anti- phosphatidylethanolamine antibodies as the only an- tiphospholipid antibodies. I. Association with thrombosis and vascular cutaneous diseases. J Rheumatol 1996;23:1369. 320. Karmochkine M, Berard M, Piette JC, et al. Anti- phosphatidylethanolamine antibodies in systemic lupus erythematosus. Lupus 1993;2:157. 321. Toschi V, Motta A, Castelli C, et al. Prevalence and clin- ical significance of antiphospholipid antibodies to non- cardiolipin antigens in systemic lupus erythematosus. Haemostasis 1993;23:275. 322. Toschi V, Motta A, Castelli C, et al. High prevalence of antiphosphatidylinositol antibodies in young patients with cerebral ischemia of undetermined cause. Stroke 1998;29:1759. 323. Falcon CR, Hoffer AM, Carreras LO. Antiphospha- tidylinositol antibodies as markers of the antiphospho- lipid syndrome. Thromb Haemost 1990;63:321. 324. Lopez-Soto A, Cervera R, Font J, et al. Isotype distribu- tion and clinical significance of antibodies to cardiolipin, phosphatidic acid, phosphatidylinositol and phos- phatidylserine in systemic lupus erythematosus: Prospective analysis of a series of 92 patients. Clin Exp Rheumatol 1997;15:143. 325. Weidmann CE, Wallace DJ, Peter JB, et al. Studies of IgG, IgM and IgA antiphospholipid antibody isotypes in systemic lupus erythematosus. J Rheumatol 1988;15:74. 326. Branch DW, Silver R, Pierangeli S, et al. Anti- phospholipid antibodies other than lupus anticoagulant and anticardiolipin antibodies in women with recurrent pregnancy loss, fertile controls, and antiphospholipid syndrome. Obstet Gynecol 1997;89:549. 327. Loizou S, McCrea JD, Rudge AC, et al. Measurement of anti-cardiolipin antibodies by an enzyme-linked im- munosorbentassay (ELISA): Standardization and quan- titation of results. Clin Exp Immunol 1985;62:738. 328. Vila P, Hernandez MC, Lopez-Fernandez MF, et al. Prevalence, follow-up and clinical significance of the an- ticardiolipin antibodies in normal subjects. Thromb Haemost 1994;72:209. 329. Wilson WA. Classification criteria for antiphospholipid syndrome. Rheum Dis Clin North Am 2001;27:499. 330. Lockshin MD, Sammaritano LR, Schwartzman S. Validation of the Sapporo criteria for antiphospholipid syndrome. Arthritis Rheum 2000;43:440. 331. Wilson WA, Gharavi AE, Piette JC. International classi- fication criteria for antiphospholipid syndrome: Synopsis of a post-conference workshop held at the Ninth International (Tours) aPL Symposium. Lupus 2001;10:457. 332. Piette JC, Wechsler B, Frances C, et al. Exclusion criteria for primary antiphospholipid syndrome. J Rheumatol 1993;20:1802. 333. Cowchock FS, Reece EA, Balaban D, et al. Repeated fetal losses associated with antiphospholipid antibodies: A collaborative randomized trial comparing prednisone with low-dose heparin treatment. Am J Obstet Gynecol 1992;166:1318. 334. Balasch J, Carmona F, Lopez-Soto A, et al. Low-dose as- pirin for prevention of pregnancy losses in women with primary antiphospholipid syndrome. Hum Reprod 1993;8:2234. 335. Farquharson RG, Quenby S, Greaves M. Antiphos- pholipid syndrome in pregnancy: A randomized, con- trolled trial of treatment. Obstet Gynecol 2002;100:408. 336. Erkan D, Merrill JT, Yazici Y, et al. High thrombosis rate after fetal loss in antiphospholipid syndrome: Effective prophylaxis with aspirin. Arthritis Rheum 2001;44:1466. 337. Wahl DG, Bounameaux H, de Moerloose P, et al. Pro- phylactic antithrombotic therapy for patients with sys- temic lupus erythematosus with or without antiphos- pholipid antibodies: Do the benefits outweigh the risks? A decision analysis. Arch Intern Med 2000;160:2042. 338. Petri M. Hydroxychloroquine: Past, present, future. Lupus 1998;7:65. 339. Petri M. Management of thrombosis in antiphospholipid antibody syndrome. Rheum Dis Clin North Am 2001; 27:633. 340. Lockshin MD. Antiphospholipid antibody syndrome. In: Ruddy S, Harris ED, Sledge CB, eds. Kelly's Textbook of Rheumatology. Philadelphia: W.B. Saunders Company, 2001;1145. 341. Myones BL, McCurdy D. The antiphospholipid syn- drome: Immunologic and clinical aspects. Clinical spec- trum and treatment. J Rheumatol 2000;27 Suppl 58:20. 342. Baker WF Jr, Bick RL. Treatment of hereditary and ac- quired thrombophilic disorders. Semin Thromb Hemost 1999;25:387. 343. Harpaz D, Glikson M, Sidi Y, et al. Successful throm- bolytic therapy for acute myocardial infarction in a pa- tient with the antiphospholipid antibody syndrome. Am Heart J 1991;122:1492. 344. Ho YL, Chen MF, Wu CC, et al. Successful treatment of acute myocardial infarction by thrombolytic therapy in a patient with primary antiphospholipid antibody syn- drome. Cardiology 1996;87:354. 345. Jankowski M, Dudek D, Dubiel JS, et al. Successful coro- nary stent implantation in a patient with primary an- tiphospholipid syndrome. Blood Coagul Fibrinolysis 1998;9:753. 346. Khamashta MA, Cuadrado MJ, Mujic F, et al. The man- agement of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995;332:993. 347. Derksen RHWM, de Groot PG. Do we know which pa- tients with the antiphospholipid syndrome should re- ceive long-term high dose anti-coagulation? J Autoimmun 2000;15:255. M. AKIF ÖZTÜRK ET AL124 348. Alarcon-Segovia D, Boffa MC, Branch W, et al. Prophylaxis of the antiphospholipid syndrome: A con- sensus report. Lupus 2003;12:499. 349. al Sayegh FA, Ensworth S, Huang S, et al. Hemorrhagic complications of long-term anticoagulant therapy in seven patients with systemic lupus erythematosus and antiphospholipid syndrome. J Rheumatol 1997;24:1716. 350. van der Meer FJ, Rosendaal FR, Vandenbroucke JP, et al. Bleeding complications in oral anticoagulant therapy. An analysis of risk factors. Arch Intern Med 1993; 153:1557. 351. Douketis JD, Crowther MA, Julian JA, et al. The effects of low-intensity warfarin on coagulation activation in patients with antiphospholipid antibodies and systemic lupus erythematosus. Thromb Haemost 1999;82:1028. 352. Crowther MA, Ginsberg JS, Julian J, et al. A comparison of two intensities of warfarin for the prevention of re- current thrombosis in patients with the antiphospholipid antibody syndrome. N Engl J Med 2003;349:1133. 353. Moll S, Ortel TL. Monitoring warfarin therapy in patients with lupus anticoagulants. Ann Intern Med 1997; 127:177. 354. Della Valle P, Crippa L, Safa O, et al. Potential failure of the International Normalized Ratio (INR) System in the monitoring of oral anticoagulation in patients with lupus anticoagulants. Ann Med Interne (Paris) 1996;147 Suppl 1:10. 355. Bick RL, Rice J. Long-term outpatient dalteparin (frag- min) therapy for arterial and venous thrombosis: Efficacy and safety--a preliminary report. Clin Appl Thromb Hemost 1999;5 (Suppl 1):S67. 356. Guerin J, Sheng Y, Reddel S, et al. Heparin inhibits the binding of beta 2-glycoprotein I to phospholipids and promotes the plasmin-mediated inactivation of this blood protein. Elucidation of the consequences of the two biological events in patients with the anti-phospho- lipid syndrome. J Biol Chem 2002;277:2644. 357. Suarez IM, Diaz RA, Aguayo Canela D, et al. Correction of severe thrombocytopenia with chloroquine in the pri- mary antiphospholipid syndrome. Lupus 1996;5:81. 358. Alarcon-Segovia D, Sanchez-Guerrero J. Correction of thrombocytopenia with small dose aspirin in the prima- ry antiphospholipid syndrome. J Rheumatol 1989; 16:1359. 359. Blanco R, Martinez-Taboada VM, Rodriguez-Valverde V, et al. Successful therapy with danazol in refractory au- toimmune thrombocytopenia associated with rheumatic diseases. Br J Rheumatol 1997;36:1095. 360. Heilmann L, von Tempelhoff GF, Kuse S. The influence of antiphospholipid antibodies on the pregnancy out- come of patients with recurrent spontaneous abortion. Clin Appl Thromb Hemost 2001;7:281. 361. Shehata HA, Nelson-Piercy C, Khamasta MA. Manage- ment of pregnancy in antiphospholipid syndrome. Rheum Dis Clin North Am 2001;27:661. 362. Rai R, Cohen H, Dave M, et al. Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phos- pholipid antibodies (or antiphospholipid antibodies). BMJ 1997;314:253. 363. Kutteh WH. Antiphospholipid antibody-associated re- current pregnancy loss-treatment with heparin and low dose aspirin is superior to low-dose aspirin alone. Am J Obstet Gynecol 1996;174:1584. 364. Pattison NS, Chamley LW, Birdsall M, et al. Does aspirin have a role in improving pregnancy outcome for women with the antiphospholipid syndrome? A randomized controlled trial. Am J Obstet Gynecol 2000;183:1008. 365. Ginsberg JS, Greer I, Hirsh J. Use of antithrombotic agents during pregnancy. Chest 2001;119 Suppl:122S. 366. Bick RL. Recurrent miscarriage syndrome due to blood coagulation protein/platelet defects: Prevalence, treat- ment and outcome results. DRW Metroplex Recurrent Miscarriage Syndrome Cooperative Group. Clin Appl Thromb Hemost 2000;6:115. 367. Di Simone N, Caliandro D, Castellani R, et al. Low-mol- ecular weight heparin restores in-vitro trophoblast inva- siveness and differentiation in presence of immunoglob- ulin G fractions obtained from patients with antiphos- pholipid syndrome. Hum Reprod 1999;14:489. 368. Di Simone N, Ferrazzani S, Castellani R, et al. Heparin and low-dose aspirin restore placental human chorionic gonadotrophin secretion abolished by antiphospholipid antibody-containing sera. Hum Reprod 1997;12:2061. 369. Silver RK, MacGregor SN, Sholl JS, et al. Comparative trial of prednisone plus aspirin versus aspirin alone in the treatment of anticardiolipin antibody-positive ob- stetric patients. Am J Obstet Gynecol 1993;169:1411. 370. Laskin CA, Bombardier C, Hannah ME, et al. Prednisone and aspirin in women with autoantibodies and unex- plained recurrent fetal loss. N Engl J Med 1997;337: 148. 371. Spinnato JA, Clark AL, Pierangeli SS, et al. Intravenous immunoglobulin therapy for the antiphospholipid syn- drome in pregnancy. Am J Obstet Gynecol 1995;172:690. 372. Kaaja R, Julkunen H, Ammala P, et al. Intravenous im- munoglobulin treatment of pregnant patients with re- current pregnancy losses associated with antiphospho- lipid antibodies. Acta Obstet Gynecol Scand 1993;72:63. 373. The Pregnancy Loss Study Group. Branch DW, Peaceman AM, Druzin M, et al. A multicenter, placebo- controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during preg- nancy. Am J Obstet Gynecol 2000;182:122. 374. Triolo G, Ferrante A, Ciccia F, et al. Randomized study of subcutaneous low molecular weight heparin plus as- pirin versus intravenous immunoglobulin in the treat- ment of recurrent fetal loss associated with antiphos- pholipid antibodies. Arthritis Rheum 2003;48:728. 375. Cowchock S, Reece EA. Do low-risk pregnant women with antiphospholipid antibodies need to be treated? Organizing Group of the Antiphospholipid Antibody Treatment Trial. Am J Obstet Gynecol 1997;176:1099. 376. Asherson RA, Cervera R, de Groot PG, et al. Catastrophic Antiphospholipid Syndrome Registry Project Group. Catastrophic antiphospholipid syndrome: International consensus statement on classification criteria and treat- ment guidelines. Lupus 2003;12:530. 377. Visvanathan S, Scott JK, Hwang KK, et al. Identification and characterization of a peptide mimetic that may de- tect a species of disease-associated anticardiolipin anti- bodies in patients with the antiphospholipid syndrome. Arthritis Rheum 2003;48:737. 378. Ellis MH, Kesler A, Friedman Z, et al. Value of pro- thrombin fragment 1.2 (F 1.2) in the diagnosis of stroke in young patients with antiphospholipid antibodies. Clin Appl Thromb Hemost 2000;6:61. CURRENT DEBATES IN ANTIPHOSPHOLIPID SYNDROME 125 379. Erkan D, Yazici Y, Harrison MJ, et al. APLASA study: Primary thrombosis prevention in asymptomatic an- tiphospholipid antibody (APL) patients with low dose aspirin (ASA). Lupus 2002;11:573. 380. Cooper C, Choy E, Arthritis Research Campaign's Clinical Trials Committee. The blossoming of evidence- based clinical rheumatology: The Arthritis Research Campaign's Clinical Trials Collaboration in association with the MRC Clinical Trials Unit, BSR and BOA. Rheumatology 2003;42:713. 381. Finazzi G, Barbui T. Feasibility of a randomized clinical trial for the prevention of recurrent thrombosis in the antiphospholipid syndrome:the WAPS project. Provisional Steering Committee of the Warfarin in Antiphospholipid Syndrome (WAPS) Study. Ann Med Interne (Paris) 1996;147 Suppl 1:38. 382. Meroni PL, Raschi E, Testoni C, et al. Statins prevent en- dothelial cell activation induced by antiphospholipid (anti-beta2-glycoprotein I) antibodies: Effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum 2001;44:2870. 383. Ferrara DE, Liu X, Espinola RG, et al. Inhibition of the thrombogenic and inflammatory properties of antiphos- pholipid antibodies by fluvastatin in an in vivo animal model. Arthritis Rheum 2003;48:3272. 384. Bajaj MS, Bajaj SP. Tissue factor pathway inhibitor: Potential therapeutic applications. Thromb Haemost 1997;78:471. 385. Roubey RAS. New approaches to prevention of throm- bosis in the antiphospholipid syndrome: Hopes, trials, and tribulations. Arthritis Rheum 2003;48:3004. M. AKIF ÖZTÜRK ET AL126 </meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Levine JS</surname>
</name>
,
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>Rauch J.</surname>
</name>
<article-title>The antiphospholipid syndrome</article-title>
.
<source>N Engl J Med</source>
<year>2002</year>
;
<volume>346</volume>
:
<fpage>752</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arnout J</surname>
</name>
,
<name name-style="western">
<surname>Meijer P</surname>
</name>
,
<name name-style="western">
<surname>Vermylen J.</surname>
</name>
<article-title>Lupus anticoagulant testing in Europe: An analysis of results from the first European Concerted Action on Thrombophilia (ECAT) survey using plasmas spiked with monoclonal antibodies against human beta2-glycoprotein I</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>81</volume>
:
<fpage>929</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Comfurius P</surname>
</name>
,
<name name-style="western">
<surname>Maassen C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor</article-title>
.
<source>Lancet</source>
<year>1990</year>
;
<volume>335</volume>
:
<fpage>1544</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bevers EM</surname>
</name>
,
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Barbui T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant IgG’s (LA) are not directed to phospholipids only, but to a complex of lipid-bound human prothrombin</article-title>
.
<source>Thromb Haemost</source>
<year>1991</year>
;
<volume>66</volume>
:
<fpage>629</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roubey RA</surname>
</name>
,
<name name-style="western">
<surname>Pratt CW</surname>
</name>
,
<name name-style="western">
<surname>Buyon JP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant activity of autoimmune antiphospholipid antibodies is dependent upon beta 2-glycoprotein I</article-title>
.
<source>J Clin Invest</source>
<year>1992</year>
;
<volume>90</volume>
:
<fpage>1100</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Oosting JD</surname>
</name>
,
<name name-style="western">
<surname>Derksen RH</surname>
</name>
,
<name name-style="western">
<surname>Entjes HT</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant activity is frequently dependent on the presence of beta2-glycoprotein I</article-title>
.
<source>Thromb Haemost</source>
<year>1992</year>
;
<volume>67</volume>
:
<fpage>499</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roubey RA</surname>
</name>
.
<article-title>Autoantibodies to phospholipid-binding plasma proteins: A new view of lupus anticoagulants and other “antiphospholipid” autoantibodies</article-title>
.
<source>Blood</source>
<year>1994</year>
;
<volume>84</volume>
:
<fpage>2854</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roubey RA</surname>
</name>
,
<name name-style="western">
<surname>Eisenberg RA</surname>
</name>
,
<name name-style="western">
<surname>Harper MF</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>“Anti-cardiolipin” autoantibodies recognize beta 2-glycoprotein I in the absence of phospholipid. Importance of Ag density and bivalent binding</article-title>
.
<source>J Immunol</source>
<year>1995</year>
;
<volume>154</volume>
:
<fpage>954</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Matsuura E</surname>
</name>
,
<name name-style="western">
<surname>Igarashi Y</surname>
</name>
,
<name name-style="western">
<surname>Yasuda T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies recognize beta 2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface</article-title>
.
<source>J Exp Med</source>
<year>1994</year>
;
<volume>179</volume>
:
<fpage>457</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sheng Y</surname>
</name>
,
<name name-style="western">
<surname>Kandiah DA</surname>
</name>
,
<name name-style="western">
<surname>Krilis SA</surname>
</name>
.
<article-title>Anti-beta 2-glycoprotein I autoantibodies from patients with the “antiphospholipid” syndrome bind to beta 2-glycoprotein I with low affinity: Dimerization of beta 2-glycoprotein I induces a significant increase in anti-beta 2-glycoprotein I antibody affinity</article-title>
.
<source>J Immunol</source>
<year>1998</year>
;
<volume>161</volume>
:
<fpage>2038</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pengo V</surname>
</name>
,
<name name-style="western">
<surname>Biasiolo A</surname>
</name>
,
<name name-style="western">
<surname>Fior MG</surname>
</name>
.
<article-title>Autoimmune antiphospholipid antibodies are directed against a cryptic epitope expressed when beta 2-glycoprotein I is bound to a suitable surface</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>73</volume>
:
<fpage>29</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Chamley LW</surname>
</name>
,
<name name-style="western">
<surname>Duncalf AM</surname>
</name>
,
<name name-style="western">
<surname>Konarkowska B</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Conformationally altered beta 2-glycoprotein I is the antigen for anti-cardiolipin antibodies</article-title>
.
<source>Clin Exp Immunol</source>
<year>1999</year>
;
<volume>11</volume>
:
<fpage>571</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Giles IP</surname>
</name>
,
<name name-style="western">
<surname>Isenberg DA</surname>
</name>
,
<name name-style="western">
<surname>Latchman DS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>How do antiphospholipid antibodies bind β2-glycoprotein I?</article-title>
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>2111</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harris EN</surname>
</name>
,
<name name-style="western">
<surname>Loizou S</surname>
</name>
,
<name name-style="western">
<surname>Englert H</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies and lupus anticoagulant</article-title>
.
<source>Lancet</source>
<year>1984</year>
;
<volume>ii</volume>
:
<fpage>1099</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Triplett DA</surname>
</name>
,
<name name-style="western">
<surname>Brandt JT</surname>
</name>
,
<name name-style="western">
<surname>Musgrave KA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The relationship between lupus anticoagulants and antibodies to phospholipid</article-title>
.
<source>JAMA</source>
<year>1988</year>
;
<volume>259</volume>
:
<fpage>550</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Alving BM</surname>
</name>
,
<name name-style="western">
<surname>Barr CF</surname>
</name>
,
<name name-style="western">
<surname>Tang DB</surname>
</name>
.
<article-title>Correlation between lupus anticoagulants and anticardiolipin antibodies in patients with prolonged activated partial thromboplastin times</article-title>
.
<source>Am J Med</source>
<year>1990</year>
;
<volume>88</volume>
:
<fpage>112</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cabral AR</surname>
</name>
,
<name name-style="western">
<surname>Amigo MC</surname>
</name>
,
<name name-style="western">
<surname>Cabiedes J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The antiphospholipid/cofactor syndromes: A primary variant with antibodies to beta 2-glycoprotein-I but no antibodies detectable in standard antiphospholipid assays</article-title>
.
<source>Am J Med</source>
<year>1996</year>
;
<volume>101</volume>
:
<fpage>472</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Antiphospholipid thrombosis syndromes</article-title>
.
<source>Hematol Oncol Clin North Am</source>
<year>2003</year>
;
<volume>17</volume>
:
<fpage>115</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gilman-Sachs A</surname>
</name>
,
<name name-style="western">
<surname>Lubinski J</surname>
</name>
,
<name name-style="western">
<surname>Beer AE</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Patterns of anti-phospholipid antibody specificities</article-title>
.
<source>J Clin Lab Immunol</source>
<year>1991</year>
;
<volume>35</volume>
:
<fpage>83</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Silver RM</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Edwin SS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Pathogenic antibodies in women with obstetric features of antiphospholipid syndrome who have negative test results for lupus anticoagulant and anticardiolipin antibodies</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1997</year>
;
<volume>176</volume>
:
<fpage>628</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Merrill JT</surname>
</name>
.
<article-title>Which antiphospholipid antibody tests are most useful?</article-title>
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>525</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gomez-Pacheco L</surname>
</name>
,
<name name-style="western">
<surname>Villa AR</surname>
</name>
,
<name name-style="western">
<surname>Drenkard C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Serum anti-beta2-glycoprotein-I and anticardiolipin antibodies during thrombosis in systemic lupus erythematosus patients</article-title>
.
<source>Am J Med</source>
<year>1999</year>
;
<volume>106</volume>
:
<fpage>417</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Piette JC</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Euro-Phospholipid Project Group. Antiphospholipid syndrome: Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients</article-title>
.
<source>Arthritis Rheum</source>
<year>2002</year>
;
<volume>46</volume>
:
<fpage>1019</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Love PE</surname>
</name>
,
<name name-style="western">
<surname>Santoro SA</surname>
</name>
.
<article-title>Antiphospholipid antibodies: Anticardiolipin and the lupus anticoagulant in systemic lupus erythematosus (SLE) and in non-SLE disorders</article-title>
.
<source>Ann Intern Med</source>
<year>1990</year>
;
<volume>112</volume>
:
<fpage>682</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Alarcon-Segovia D</surname>
</name>
,
<name name-style="western">
<surname>Deleze M</surname>
</name>
,
<name name-style="western">
<surname>Oria CV</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies and the antiphospholipid syndrome in systemic lupus erythematosus. A prospective analysis of 500 consecutive patients</article-title>
.
<source>Medicine (Baltimore)</source>
<year>1989</year>
;
<volume>68</volume>
:
<fpage>353</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Antiphospholipid thrombosis syndromes</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2001</year>
;
<volume>7</volume>
:
<fpage>241</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
,
<name name-style="western">
<surname>Arun B</surname>
</name>
,
<name name-style="western">
<surname>Frenkel EP</surname>
</name>
.
<article-title>Antiphospholipid-thrombosis syndromes</article-title>
.
<source>Haemostasis</source>
<year>1999</year>
;
<volume>29</volume>
:
<fpage>100</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
,
<name name-style="western">
<surname>Baker WF</surname>
</name>
.
<article-title>Antiphospholipid syndrome and thrombosis</article-title>
.
<source>Semin Thromb Hemost</source>
<year>1999</year>
;
<volume>25</volume>
:
<fpage>333</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Levine SR</surname>
</name>
,
<name name-style="western">
<surname>Deegan MJ</surname>
</name>
,
<name name-style="western">
<surname>Futrell N</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Cerebrovascular and neurologic disease associated with antiphospholipid antibodies: 48 cases</article-title>
.
<source>Neurology</source>
<year>1990</year>
;
<volume>40</volume>
:
<fpage>1181</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hunt JE</surname>
</name>
,
<name name-style="western">
<surname>McNeil HP</surname>
</name>
,
<name name-style="western">
<surname>Morgan GJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A phospholipid-beta 2-glycoprotein I complex is an antigen for anticardiolipin antibodies occurring in autoimmune disease but not with infection</article-title>
.
<source>Lupus</source>
<year>1992</year>
;
<volume>1</volume>
:
<fpage>75</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Guglielmone H</surname>
</name>
,
<name name-style="western">
<surname>Vitozzi S</surname>
</name>
,
<name name-style="western">
<surname>Elbarcha O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Cofactor dependence and isotype distribution of anticardiolipin antibodies in viral infections</article-title>
.
<source>Ann Rheum Dis</source>
<year>2001</year>
;
<volume>60</volume>
:
<fpage>500</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Asherson RA</surname>
</name>
,
<name name-style="western">
<surname>Cervera R.</surname>
</name>
<article-title>Antiphospholipid antibodies and infections</article-title>
.
<source>Ann Rheum Dis</source>
<year>2003</year>
;
<volume>62</volume>
:
<fpage>388</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Uthman I</surname>
</name>
,
<name name-style="western">
<surname>Tabbarah Z</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
.
<article-title>Hughes syndrome associated with cytomegalovirus infection</article-title>
.
<source>Lupus</source>
<year>1999</year>
;
<volume>8</volume>
:
<fpage>775</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Labarca JA</surname>
</name>
,
<name name-style="western">
<surname>Rabaggliati RM</surname>
</name>
,
<name name-style="western">
<surname>Radrigan FJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid syndrome associated with cytomegalovirus infection: Case report and review</article-title>
.
<source>Clin Infect Dis</source>
<year>1997</year>
;
<volume>24</volume>
:
<fpage>197</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Constans J</surname>
</name>
,
<name name-style="western">
<surname>Guerin V</surname>
</name>
,
<name name-style="western">
<surname>Couchouron A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Auto-antibodies directed against phospholipids or human beta 2-glycoprotein I in HIV-seropositive patients: Relationship with endothelial activation and antimalonic dialdehyde antibodies</article-title>
.
<source>Eur J Clin Invest</source>
<year>1998</year>
;
<volume>28</volume>
:
<fpage>115</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Uthman IW</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
.
<article-title>Viral infections and antiphospholipid antibodies</article-title>
.
<source>Semin Arthritis Rheum</source>
<year>2002</year>
;
<volume>31</volume>
:
<fpage>256</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Guzman J</surname>
</name>
,
<name name-style="western">
<surname>Cabral AR</surname>
</name>
,
<name name-style="western">
<surname>Cabiedes J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies in patients with idiopathic autoimmune haemolytic anemia</article-title>
.
<source>Autoimmunity</source>
<year>1994</year>
;
<volume>18</volume>
:
<fpage>51</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rand JH</surname>
</name>
.
<article-title>Molecular pathogenesis of the antiphospholipid syndrome</article-title>
.
<source>Circ Res</source>
<year>2002</year>
;
<volume>90</volume>
:
<fpage>29</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Inanc M</surname>
</name>
,
<name name-style="western">
<surname>Donohoe S</surname>
</name>
,
<name name-style="western">
<surname>Ravirajan CT</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-beta2-glycoprotein I, anti-prothrombin and anticardiolipin antibodies in a longitudinal study of patients with systemic lupus erythematosus and the antiphospholipid syndrome</article-title>
.
<source>Br J Rheumatol</source>
<year>1998</year>
;
<volume>37</volume>
:
<fpage>1089</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Finazzi G</surname>
</name>
,
<name name-style="western">
<surname>Brancaccio V</surname>
</name>
,
<name name-style="western">
<surname>Moia M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Natural history and risk factors for thrombosis in 360 patients with antiphospholipid antibodies: A four-year prospective study from the Italian Registry</article-title>
.
<source>Am J Med</source>
<year>1996</year>
;
<volume>100</volume>
:
<fpage>530</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ginsburg KS</surname>
</name>
,
<name name-style="western">
<surname>Liang MH</surname>
</name>
,
<name name-style="western">
<surname>Newcomer L</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-cardiolipin antibodies and the risk for ischemic stroke and venous thrombosis</article-title>
.
<source>Ann Intern Med</source>
<year>1992</year>
;
<volume>117</volume>
:
<fpage>997</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Antiphospholipid Antibodies in Stroke Study Group</surname>
</name>
.
<article-title>Anticardiolipin antibodies are an independent risk factor for first ischemic stroke. The Antiphospholipid Antibodies in Stroke Study (APASS) Group</article-title>
.
<source>Neurology</source>
<year>1993</year>
;
<volume>43</volume>
:
<fpage>2069</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Vaarala O</surname>
</name>
,
<name name-style="western">
<surname>Manttari M</surname>
</name>
,
<name name-style="western">
<surname>Manninen V</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-cardiolipin antibodies and risk of myocardial infarction in a prospective cohort of middle-aged men</article-title>
.
<source>Circulation</source>
<year>1995</year>
;
<volume>91</volume>
:
<fpage>23</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Levine SR</surname>
</name>
,
<name name-style="western">
<surname>Salowich-Palm L</surname>
</name>
,
<name name-style="western">
<surname>Sawaya KL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>IgG anti-cardiolipin antibody titer >40 GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study</article-title>
.
<source>Stroke</source>
<year>1997</year>
;
<volume>28</volume>
:
<fpage>1660</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Levine SR</surname>
</name>
,
<name name-style="western">
<surname>Brey RL</surname>
</name>
,
<name name-style="western">
<surname>Sawaya KL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Recurrent stroke and thrombo-occlusive events in the antiphospholipid syndrome</article-title>
.
<source>Ann Neurol</source>
<year>1995</year>
;
<volume>38</volume>
:
<fpage>119</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Abu-Shakra M</surname>
</name>
,
<name name-style="western">
<surname>Gladman DD</surname>
</name>
,
<name name-style="western">
<surname>Urowitz MB</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-cardiolipin antibodies in systemic lupus erythematosus: Clinical and laboratory correlations</article-title>
.
<source>Am J Med</source>
<year>1995</year>
;
<volume>99</volume>
:
<fpage>624</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>Dudley DJ</surname>
</name>
,
<name name-style="western">
<surname>Mitchell MD</surname>
</name>
.
<article-title>Immunoglobulin G fractions from patients with antiphospholipid antibodies cause fetal death in Balb/c mice: A model for autoimmune fetal loss</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1990</year>
;
<volume>163</volume>
:
<fpage>210</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Piona A</surname>
</name>
,
<name name-style="western">
<surname>Larosa L</surname>
</name>
,
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Placental thrombosis and fetal loss after passive transfer of mouse lupus monoclonal or human polyclonal anti-cardiolipin antibodies in pregnant naive BALB/c mice</article-title>
.
<source>Scand J Immunol</source>
<year>1995</year>
;
<volume>41</volume>
:
<fpage>427</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>Cohen J</surname>
</name>
,
<name name-style="western">
<surname>Toder V</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of antiphospholipid syndrome in naive mice with mouse monoclonal and human polyclonal anticardiolipin antibodies</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<year>1991</year>
;
<volume>88</volume>
:
<fpage>3069</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>Shoenfeld Y.</surname>
</name>
<article-title>Induction of experimental antiphospholipid syndrome in naive mice with purified IgG antiphosphatidylserine antibodies</article-title>
.
<source>J Rheumatol</source>
<year>1994</year>
;
<volume>21</volume>
:
<fpage>100</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Suzuki T</surname>
</name>
,
<name name-style="western">
<surname>Takabayashi K</surname>
</name>
,
<name name-style="western">
<surname>Ichikawa K</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Effects of monoclonal anticardiolipin antibody in pregnant mice</article-title>
.
<source>J Rheumatol</source>
<year>1996</year>
;
<volume>23</volume>
:
<fpage>83</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Barker JH</surname>
</name>
,
<name name-style="western">
<surname>Stikovac D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Effect of human IgG antiphospholipid antibodies on an in vivo thrombosis model in mice</article-title>
.
<source>Thromb Haemost</source>
<year>1994</year>
;
<volume>71</volume>
:
<fpage>670</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Liu X</surname>
</name>
,
<name name-style="western">
<surname>Barker JH</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>74</volume>
:
<fpage>1361</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rosove MH</surname>
</name>
,
<name name-style="western">
<surname>Brewer PM</surname>
</name>
.
<article-title>Antiphospholipid thrombosis: Clinical course after the first thrombotic event in 70 patients</article-title>
.
<source>Ann Intern Med</source>
<year>1992</year>
;
<volume>117</volume>
:
<fpage>303</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Polz E</surname>
</name>
,
<name name-style="western">
<surname>Kostner GM</surname>
</name>
.
<article-title>The binding of beta 2-glycoprotein-I to human serum lipoproteins: Distribution among density fractions</article-title>
.
<source>FEBS Lett</source>
<year>1979</year>
;
<volume>102</volume>
:
<fpage>183</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Chonn A</surname>
</name>
,
<name name-style="western">
<surname>Semple SC</surname>
</name>
,
<name name-style="western">
<surname>Cullis PR</surname>
</name>
.
<article-title>Beta 2 glycoprotein I is a major protein associated with very rapidly cleared liposomes in vivo, suggesting a significant role in the immune clearance of “non-self” particles</article-title>
.
<source>J Biol Chem</source>
<year>1995</year>
;
<volume>270</volume>
:
<fpage>25845</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Manfredi AA</surname>
</name>
,
<name name-style="western">
<surname>Rovere P</surname>
</name>
,
<name name-style="western">
<surname>Heltai S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Apoptotic cell clearance in systemic lupus erythematosus. II. Role of beta2-glycoprotein I</article-title>
.
<source>Arthritis Rheum</source>
<year>1998</year>
;
<volume>41</volume>
:
<fpage>215</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Balasubramanian K</surname>
</name>
,
<name name-style="western">
<surname>Schroit AJ</surname>
</name>
.
<article-title>Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes</article-title>
.
<source>J Biol Chem</source>
<year>1998</year>
;
<volume>273</volume>
:
<fpage>29272</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Brighton TA</surname>
</name>
,
<name name-style="western">
<surname>Hogg PJ</surname>
</name>
,
<name name-style="western">
<surname>Dai YP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Beta 2-glycoprotein I in thrombosis: Evidence for a role as a natural anticoagulant</article-title>
.
<source>Br J Haematol</source>
<year>1996</year>
;
<volume>93</volume>
:
<fpage>185</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nimpf J</surname>
</name>
,
<name name-style="western">
<surname>Bevers EM</surname>
</name>
,
<name name-style="western">
<surname>Bomans PH</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prothrombinase activity of human platelets is inhibited by beta2-glycoprotein-I</article-title>
.
<source>Biochim Biophys Acta</source>
<year>1986</year>
;
<volume>884</volume>
:
<fpage>142</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nimpf J</surname>
</name>
,
<name name-style="western">
<surname>Wurm H</surname>
</name>
,
<name name-style="western">
<surname>Kostner GM</surname>
</name>
.
<article-title>Beta 2-glycoprotein-I (apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation</article-title>
.
<source>Atherosclerosis</source>
<year>1987</year>
;
<volume>63</volume>
:
<fpage>109</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Henry ML</surname>
</name>
,
<name name-style="western">
<surname>Everson B</surname>
</name>
,
<name name-style="western">
<surname>Ratnoff OD</surname>
</name>
.
<article-title>Inhibition of the activation of Hageman factor (factor XII) by beta2-glycoprotein I</article-title>
.
<source>J Lab Clin Med</source>
<year>1988</year>
;
<volume>111</volume>
:
<fpage>519</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Schousboe I.</surname>
</name>
<article-title>beta 2-Glycoprotein I: A plasma inhibitor of the contact activation of the intrinsic blood coagulation pathway</article-title>
.
<source>Blood</source>
<year>1985</year>
;
<volume>66</volume>
:
<fpage>1086</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Merrill JT</surname>
</name>
,
<name name-style="western">
<surname>Zhang HW</surname>
</name>
,
<name name-style="western">
<surname>Shen C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Enhancement of protein S anticoagulant function by beta2-glycoprotein I, a major target antigen of antiphospholipid antibodies: beta2-glycoprotein I interferes with binding of protein S to its plasma inhibitor, C4b-binding protein</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>81</volume>
:
<fpage>748</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ieko M</surname>
</name>
,
<name name-style="western">
<surname>Yasukouchi T</surname>
</name>
,
<name name-style="western">
<surname>Sawada KI</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The influence of beta2-glycoprotein I on tissue factor activity</article-title>
.
<source>Semin Thromb Hemost</source>
<year>1998</year>
;
<volume>24</volume>
:
<fpage>211</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bancsi LF</surname>
</name>
,
<name name-style="western">
<surname>van der Linden IK</surname>
</name>
,
<name name-style="western">
<surname>Bertina RM</surname>
</name>
.
<article-title>Beta 2-glycoprotein I deficiency and the risk of thrombosis</article-title>
.
<source>Thromb Haemost</source>
<year>1992</year>
;
<volume>67</volume>
:
<fpage>649</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arnout J.</surname>
</name>
<article-title>Antiphospholipid syndrome: Diagnostic aspects of lupus anticoagulants</article-title>
.
<source>Thromb Haemost</source>
<year>2001</year>
;
<volume>86</volume>
:
<fpage>83</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Angles-Cano E</surname>
</name>
,
<name name-style="western">
<surname>Guillin MC</surname>
</name>
.
<article-title>Antiphospholipid antibodies and the coagulation cascade</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>573</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rand JH</surname>
</name>
,
<name name-style="western">
<surname>Wu XX</surname>
</name>
,
<name name-style="western">
<surname>Andree HA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Pregnancy loss in the antiphospholipid-antibody syndrome—a possible thrombogenic mechanism</article-title>
.
<source>N Engl J Med</source>
<year>1997</year>
;
<volume>337</volume>
:
<fpage>154</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rand JH</surname>
</name>
,
<name name-style="western">
<surname>Wu XX</surname>
</name>
,
<name name-style="western">
<surname>Andree HA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies accelerate plasma coagulation by inhibiting annexin-V binding to phospholipids: A “lupus procoagulant” phenomenon</article-title>
.
<source>Blood</source>
<year>1998</year>
;
<volume>92</volume>
:
<fpage>1652</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hanly JG</surname>
</name>
,
<name name-style="western">
<surname>Smith SA</surname>
</name>
.
<article-title>Anti-beta2-glycoprotein I (GPI) autoantibodies, annexin V binding and the anti-phospholipid syndrome</article-title>
.
<source>Clin Exp Immunol</source>
<year>2000</year>
;
<volume>120</volume>
:
<fpage>537</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bevers EM</surname>
</name>
,
<name name-style="western">
<surname>Janssen MP</surname>
</name>
,
<name name-style="western">
<surname>Willems GM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>No evidence for enhanced thrombin formation through displacement of annexin V by antiphospholipid antibodies</article-title>
.
<source>Thromb Haemost</source>
<year>2000</year>
;
<volume>83</volume>
:
<fpage>792</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Willems GM</surname>
</name>
,
<name name-style="western">
<surname>Janssen MP</surname>
</name>
,
<name name-style="western">
<surname>Comfurius P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Competition of annexin V and anticardiolipin antibodies for binding to phosphatidylserine containing membranes</article-title>
.
<source>Biochemistry</source>
<year>2000</year>
;
<volume>39</volume>
:
<fpage>1982</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Esmon CT</surname>
</name>
.
<article-title>The anticoagulant and anti-inflammatory roles of the protein C anticoagulant pathway</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>113</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Dizon-Townson D</surname>
</name>
,
<name name-style="western">
<surname>Hutchison C</surname>
</name>
,
<name name-style="western">
<surname>Silver R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The factor V Leiden mutation which predisposes to thrombosis is not common in patients with antiphospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>74</volume>
:
<fpage>1029</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Crowther MA</surname>
</name>
,
<name name-style="western">
<surname>Johnston M</surname>
</name>
,
<name name-style="western">
<surname>Weitz J</surname>
</name>
,
<name name-style="western">
<surname>Ginsberg JS</surname>
</name>
.
<article-title>Free protein S deficiency may be found in patients with antiphospholipid antibodies who do not have systemic lupus erythematosus</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>76</volume>
:
<fpage>689</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ames PR</surname>
</name>
,
<name name-style="western">
<surname>Tommasino C</surname>
</name>
,
<name name-style="western">
<surname>Iannaccone L</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Coagulation activation and fibrinolytic imbalance in subjects with idiopathic antiphospholipid antibodies—a crucial role for acquired free protein S deficiency</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>76</volume>
:
<fpage>190</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Borrell M</surname>
</name>
,
<name name-style="western">
<surname>Sala N</surname>
</name>
,
<name name-style="western">
<surname>de Castellarnau C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Immunoglobulin fractions isolated from patients with antiphospholipid antibodies prevent the inactivation of factor Va by activated protein C on human endothelial cells</article-title>
.
<source>Thromb Haemost</source>
<year>1992</year>
;
<volume>68</volume>
:
<fpage>268</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Malia RG</surname>
</name>
,
<name name-style="western">
<surname>Kitchen S</surname>
</name>
,
<name name-style="western">
<surname>Greaves M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Inhibition of activated protein C and its cofactor protein S by antiphospholipid antibodies</article-title>
.
<source>Br J Haematol</source>
<year>1990</year>
;
<volume>76</volume>
:
<fpage>101</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nojima J</surname>
</name>
,
<name name-style="western">
<surname>Kuratsune H</surname>
</name>
,
<name name-style="western">
<surname>Suehisa E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Acquired activated protein C resistance is associated with the co-existence of anti-prothrombin antibodies and lupus anticoagulant activity in patients with systemic lupus erythematosus</article-title>
.
<source>Br J Haematol</source>
<year>2002</year>
;
<volume>118</volume>
:
<fpage>577</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tsakiris DA</surname>
</name>
,
<name name-style="western">
<surname>Settas L</surname>
</name>
,
<name name-style="western">
<surname>Makris PE</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant—antiphospholipid antibodies and thrombophilia. Relation to protein C—protein S—thrombomodulin</article-title>
.
<source>J Rheumatol</source>
<year>1990</year>
;
<volume>17</volume>
:
<fpage>785</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bokarewa MI</surname>
</name>
,
<name name-style="western">
<surname>Blomback M</surname>
</name>
,
<name name-style="western">
<surname>Egberg N</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A new variant of interaction between phospholipid antibodies and the protein C system</article-title>
.
<source>Blood Coagul Fibrinolysis</source>
<year>1994</year>
;
<volume>5</volume>
:
<fpage>37</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cariou R</surname>
</name>
,
<name name-style="western">
<surname>Tobelem G</surname>
</name>
,
<name name-style="western">
<surname>Bellucci S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Effect of lupus anticoagulant on antithrombogenic properties of endothelial cells—inhibition of thrombomodulin-dependent protein C activation</article-title>
.
<source>Thromb Haemost</source>
<year>1988</year>
;
<volume>60</volume>
:
<fpage>54</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gennari L</surname>
</name>
,
<name name-style="western">
<surname>Blanco A</surname>
</name>
,
<name name-style="western">
<surname>Alberto MF</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The concomitant presence of lupus anticoagulant, anticardiolipin and anti-beta2-glycoprotein antibodies could be associated with acquired activated protein C resistance in non-systemic lupus erythematosus patients</article-title>
.
<source>Br J Haematol</source>
<year>2003</year>
;
<volume>121</volume>
:
<fpage>527</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hwang KK</surname>
</name>
,
<name name-style="western">
<surname>Yang CD</surname>
</name>
,
<name name-style="western">
<surname>Yan W</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A thrombin-cross-reactive anticardiolipin antibody binds to and inhibits the anticoagulant function of activated protein C</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>1622</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Matsuda J</surname>
</name>
,
<name name-style="western">
<surname>Gohchi K</surname>
</name>
,
<name name-style="western">
<surname>Kawasugi K</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Inhibitory activity of anti-beta 2-glycoprotein I antibody on factor Va degradation by activated-protein C and its cofactor protein S</article-title>
.
<source>Am J Hematol</source>
<year>1995</year>
;
<volume>49</volume>
:
<fpage>89</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Binding of anticardiolipin antibodies to protein C via beta2-glycoprotein I (beta2-GPI): A possible mechanism in the inhibitory effect of antiphospholipid antibodies on the protein C system</article-title>
.
<source>Clin Exp Immunol</source>
<year>1998</year>
;
<volume>112</volume>
:
<fpage>325</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Oosting JD</surname>
</name>
,
<name name-style="western">
<surname>Derksen RH</surname>
</name>
,
<name name-style="western">
<surname>Bobbink IW</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies directed against a combination of phospholipids with prothrombin, protein C, or protein S: An explanation for their pathogenic mechanism?</article-title>
<source>Blood</source>
<year>1993</year>
;
<volume>81</volume>
:
<fpage>2618</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Carson CW</surname>
</name>
,
<name name-style="western">
<surname>Comp PC</surname>
</name>
,
<name name-style="western">
<surname>Rezaie AR</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibodies to thrombomodulin are found in patients with lupus anticoagulant and unexplained thrombosis</article-title>
.
<source>J Rheumatol</source>
<year>2000</year>
;
<volume>27</volume>
:
<fpage>384</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>de Groot PG</surname>
</name>
,
<name name-style="western">
<surname>Horbach DA</surname>
</name>
,
<name name-style="western">
<surname>Derksen RH</surname>
</name>
.
<article-title>Protein C and other cofactors involved in the binding of antiphospholipid antibodies: Relation to the pathogenesis of thrombosis</article-title>
.
<source>Lupus</source>
<year>1996</year>
;
<volume>5</volume>
:
<fpage>488</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Field SL</surname>
</name>
,
<name name-style="western">
<surname>Brighton TA</surname>
</name>
,
<name name-style="western">
<surname>McNeil HP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Recent insights into antiphospholipid antibody-mediated thrombosis</article-title>
.
<source>Baillieres Best Pract Res Clin Haematol</source>
<year>1999</year>
;
<volume>12</volume>
:
<fpage>407</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Smirnov MD</surname>
</name>
,
<name name-style="western">
<surname>Triplett DT</surname>
</name>
,
<name name-style="western">
<surname>Comp PC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>On the role of phosphatidylethanolamine in the inhibition of activated protein C activity by antiphospholipid antibodies</article-title>
.
<source>J Clin Invest</source>
<year>1995</year>
;
<volume>95</volume>
:
<fpage>309</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Esmon NL</surname>
</name>
,
<name name-style="western">
<surname>Safa O</surname>
</name>
,
<name name-style="western">
<surname>Smirnov MD</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies and the protein C pathway</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>221</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Carreras LO</surname>
</name>
,
<name name-style="western">
<surname>Vermylen JG</surname>
</name>
.
<article-title>“Lupus” anticoagulant and thrombosis—possible role of inhibition of prostacyclin formation</article-title>
.
<source>Thromb Haemost</source>
<year>1982</year>
;
<volume>48</volume>
:
<fpage>38</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lellouche F</surname>
</name>
,
<name name-style="western">
<surname>Martinuzzo M</surname>
</name>
,
<name name-style="western">
<surname>Said P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Imbalance of thromboxane/prostacyclin biosynthesis in patients with lupus anticoagulant</article-title>
.
<source>Blood</source>
<year>1991</year>
;
<volume>78</volume>
:
<fpage>2894</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nakamura N</surname>
</name>
,
<name name-style="western">
<surname>Shidara Y</surname>
</name>
,
<name name-style="western">
<surname>Kawaguchi N</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant autoantibody induces apoptosis in umbilical vein endothelial cells: Involvement of annexin V</article-title>
.
<source>Biochem Biophys Res Commun</source>
<year>1994</year>
;
<volume>205</volume>
:
<fpage>1488</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nakamura N</surname>
</name>
,
<name name-style="western">
<surname>Ban T</surname>
</name>
,
<name name-style="western">
<surname>Yamaji K</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Localization of the apoptosis-inducing activity of lupus anticoagulant in an annexin V-binding antibody subset</article-title>
.
<source>J Clin Invest</source>
<year>1998</year>
;
<volume>101</volume>
:
<fpage>1951</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bombeli T</surname>
</name>
,
<name name-style="western">
<surname>Karsan A</surname>
</name>
,
<name name-style="western">
<surname>Tait JF</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Apoptotic vascular endothelial cells become procoagulant</article-title>
.
<source>Blood</source>
<year>1997</year>
;
<volume>89</volume>
:
<fpage>2429</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cho CS</surname>
</name>
,
<name name-style="western">
<surname>Cho ML</surname>
</name>
,
<name name-style="western">
<surname>Chen PP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies induce monocyte chemoattractant protein-1 in endothelial cells</article-title>
.
<source>J Immunol</source>
<year>2002</year>
;
<volume>168</volume>
:
<fpage>4209</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Del Papa N</surname>
</name>
,
<name name-style="western">
<surname>Guidali L</surname>
</name>
,
<name name-style="western">
<surname>Sala A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Endothelial cells as target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and induce endothelial activation</article-title>
.
<source>Arthritis Rheum</source>
<year>1997</year>
;
<volume>40</volume>
:
<fpage>551</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Del Papa N</surname>
</name>
,
<name name-style="western">
<surname>Guidali L</surname>
</name>
,
<name name-style="western">
<surname>Spatola L</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship between anti-phospholipid and anti-endothelial cell antibodies III: beta 2 glycoprotein I mediates the antibody binding to endothelial membranes and induces the expression of adhesion molecules</article-title>
.
<source>Clin Exp Rheumatol</source>
<year>1995</year>
;
<volume>13</volume>
:
<fpage>179</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Simantov R</surname>
</name>
,
<name name-style="western">
<surname>LaSala JM</surname>
</name>
,
<name name-style="western">
<surname>Lo SK</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Activation of cultured vascular endothelial cells by antiphospholipid antibodies</article-title>
.
<source>J Clin Invest</source>
<year>1995</year>
;
<volume>96</volume>
:
<fpage>2211</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>George J</surname>
</name>
,
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>Levy Y</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Differential effects of anti-beta2-glycoprotein I antibodies on endothelial cells and on the manifestations of experimental antiphospholipid syndrome</article-title>
.
<source>Circulation</source>
<year>1998</year>
;
<volume>97</volume>
:
<fpage>900</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Colden-Stanfield M</surname>
</name>
,
<name name-style="western">
<surname>Liu X</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo</article-title>
.
<source>Circulation</source>
<year>1999</year>
;
<volume>99</volume>
:
<fpage>1997</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kaplanski G</surname>
</name>
,
<name name-style="western">
<surname>Cacoub P</surname>
</name>
,
<name name-style="western">
<surname>Farnarier C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Increased soluble vascular cell adhesion molecule 1 concentrations in patients with primary or systemic lupus erythematosus-related antiphospholipid syndrome: Correlations with the severity of thrombosis</article-title>
.
<source>Arthritis Rheum</source>
<year>2000</year>
;
<volume>43</volume>
:
<fpage>55</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Harris EN</surname>
</name>
.
<article-title>Experimental thrombosis and antiphospholipid antibodies: New insights</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>241</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Semeraro N</surname>
</name>
,
<name name-style="western">
<surname>Colucci M.</surname>
</name>
<article-title>Tissue factor in health and disease</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>78</volume>
:
<fpage>759</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1998</year>
;
<volume>79</volume>
:
<fpage>276</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cuadrado MJ</surname>
</name>
,
<name name-style="western">
<surname>Lopez-Pedrera C</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Thrombosis in primary antiphospholipid syndrome: A pivotal role for monocyte tissue factor expression</article-title>
.
<source>Arthritis Rheum</source>
<year>1997</year>
;
<volume>40</volume>
:
<fpage>834</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Dobado-Berrios PM</surname>
</name>
,
<name name-style="western">
<surname>Lopez-Pedrera C</surname>
</name>
,
<name name-style="western">
<surname>Velasco F</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Increased levels of tissue factor mRNA in mononuclear blood cells of patients with primary antiphospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>82</volume>
:
<fpage>1578</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kornberg A</surname>
</name>
,
<name name-style="western">
<surname>Renaudineau Y</surname>
</name>
,
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-beta 2-glycoprotein I antibodies and anti-endothelial cell antibodies induce tissue factor in endothelial cells</article-title>
.
<source>Isr Med Assoc J</source>
<year>2000</year>
;
<volume>2</volume>
<issue>Suppl</issue>
:
<fpage>27</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>Rodgers GM</surname>
</name>
.
<article-title>Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: A possible mechanism of thrombosis</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1993</year>
;
<volume>168</volume>
:
<fpage>206</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kornberg A</surname>
</name>
,
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>Kaufman S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of tissue factor-like activity in monocytes by anti-cardiolipin antibodies</article-title>
.
<source>J Immunol</source>
<year>1994</year>
;
<volume>153</volume>
:
<fpage>1328</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Salemink I</surname>
</name>
,
<name name-style="western">
<surname>Blezer R</surname>
</name>
,
<name name-style="western">
<surname>Willems GM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibodies to beta2-glycoprotein I associated with antiphospholipid syndrome suppress the inhibitory activity of tissue factor pathway inhibitor</article-title>
.
<source>Thromb Haemost</source>
<year>2000</year>
;
<volume>84</volume>
:
<fpage>653</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Adams MJ</surname>
</name>
,
<name name-style="western">
<surname>Donohoe S</surname>
</name>
,
<name name-style="western">
<surname>Mackie IJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-tissue factor pathway inhibitor activity in patients with primary antiphospholipid syndrome</article-title>
.
<source>Br J Haematol</source>
<year>2001</year>
;
<volume>114</volume>
:
<fpage>375</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Marcus DM</surname>
</name>
,
<name name-style="western">
<surname>Schwarting GA</surname>
</name>
.
<article-title>Immunochemical properties of glycolipids and phospholipids</article-title>
.
<source>Adv Immunol</source>
<year>1976</year>
;
<volume>23</volume>
:
<fpage>203</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Sammaritano LR</surname>
</name>
,
<name name-style="western">
<surname>Wen J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of antiphospholipid autoantibodies by immunization with beta 2 glycoprotein I (apolipoprotein H)</article-title>
.
<source>J Clin Invest</source>
<year>1992</year>
;
<volume>90</volume>
:
<fpage>1105</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Sammaritano LR</surname>
</name>
,
<name name-style="western">
<surname>Bovastro JL Jr</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Specificities and characteristics of beta 2 glycoprotein I-induced antiphospholipid antibodies</article-title>
.
<source>J Lab Clin Med</source>
<year>1995</year>
;
<volume>125</volume>
:
<fpage>775</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Blank M</surname>
</name>
,
<name name-style="western">
<surname>Faden D</surname>
</name>
,
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice</article-title>
.
<source>J Autoimmun</source>
<year>1994</year>
;
<volume>7</volume>
:
<fpage>441</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Garcia CO</surname>
</name>
,
<name name-style="western">
<surname>Kanbour-Shakir A</surname>
</name>
,
<name name-style="western">
<surname>Tang H</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of experimental antiphospholipid syndrome in PL/J mice following immunization with beta2 GPI</article-title>
.
<source>Am J Reprod Immunol</source>
<year>1997</year>
;
<volume>37</volume>
:
<fpage>118</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Colden-Stanfield M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>GDKV-induced antiphospholipid antibodies enhance thrombosis and activate endothelial cells in vivo and in vitro</article-title>
.
<source>J Immunol</source>
<year>1999</year>
;
<volume>163</volume>
:
<fpage>2922</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi EE</surname>
</name>
,
<name name-style="western">
<surname>Chaimovich H</surname>
</name>
,
<name name-style="western">
<surname>Cucurull E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides</article-title>
.
<source>Lupus</source>
<year>1999</year>
;
<volume>8</volume>
:
<fpage>449</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Espinola RG</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo</article-title>
.
<source>Arthritis Rheum</source>
<year>2002</year>
;
<volume>46</volume>
:
<fpage>545</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Harris EN</surname>
</name>
.
<article-title>Origin of antiphospholipid antibodies</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>551</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arnout J</surname>
</name>
,
<name name-style="western">
<surname>Vermylen J.</surname>
</name>
<article-title>Current status and implications of autoimmune antiphospholipid antibodies in relation to thrombotic disease</article-title>
.
<source>J Thromb Haemost</source>
<year>2003</year>
;
<volume>1</volume>
:
<fpage>931</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bevers EM</surname>
</name>
,
<name name-style="western">
<surname>Comfurius P</surname>
</name>
,
<name name-style="western">
<surname>Zwaal RF</surname>
</name>
.
<article-title>Changes in membrane phospholipid distribution during platelet activation</article-title>
.
<source>Biochim Biophys Acta</source>
<year>1983</year>
;
<volume>736</volume>
:
<fpage>57</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Price BE</surname>
</name>
,
<name name-style="western">
<surname>Rauch J</surname>
</name>
,
<name name-style="western">
<surname>Shia MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein I-dependent manner</article-title>
.
<source>J Immunol</source>
<year>1996</year>
;
<volume>157</volume>
:
<fpage>2201</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sorice M</surname>
</name>
,
<name name-style="western">
<surname>Circella A</surname>
</name>
,
<name name-style="western">
<surname>Misasi R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Cardiolipin on the surface of apoptotic cells as a possible trigger for antiphospholipids antibodies</article-title>
.
<source>Clin Exp Immunol</source>
<year>2000</year>
;
<volume>122</volume>
:
<fpage>277</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Manfredi AA</surname>
</name>
,
<name name-style="western">
<surname>Rovere P</surname>
</name>
,
<name name-style="western">
<surname>Galati G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies</article-title>
.
<source>Arthritis Rheum</source>
<year>1998</year>
;
<volume>41</volume>
:
<fpage>205</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Levine JS</surname>
</name>
,
<name name-style="western">
<surname>Subang R</surname>
</name>
,
<name name-style="western">
<surname>Koh JS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Induction of anti-phospholipid autoantibodies by beta2-glycoprotein I bound to apoptotic thymocytes</article-title>
.
<source>J Autoimmun</source>
<year>1998</year>
;
<volume>11</volume>
:
<fpage>413</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Subang R</surname>
</name>
,
<name name-style="western">
<surname>Levine JS</surname>
</name>
,
<name name-style="western">
<surname>Janoff AS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Phospholipid-bound beta 2-glycoprotein I induces the production of anti-phospholipid antibodies</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>21</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pittoni V</surname>
</name>
,
<name name-style="western">
<surname>Ravirajan CT</surname>
</name>
,
<name name-style="western">
<surname>Donohoe S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Human monoclonal anti-phospholipid antibodies selectively bind to membrane phospholipid and beta2-glycoprotein I (beta2-GPI) on apoptotic cells</article-title>
.
<source>Clin Exp Immunol</source>
<year>2000</year>
;
<volume>119</volume>
:
<fpage>533</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rauch J</surname>
</name>
,
<name name-style="western">
<surname>Subang R</surname>
</name>
,
<name name-style="western">
<surname>D’Agnillo P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Apoptosis and the antiphospholipid syndrome</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>231</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Horkko S</surname>
</name>
,
<name name-style="western">
<surname>Miller E</surname>
</name>
,
<name name-style="western">
<surname>Dudl E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein</article-title>
.
<source>J Clin Invest</source>
<year>1996</year>
;
<volume>98</volume>
:
<fpage>815</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Horkko S</surname>
</name>
,
<name name-style="western">
<surname>Miller E</surname>
</name>
,
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The epitopes for some antiphospholipid antibodies are adducts of oxidized phospholipid and beta2 glycoprotein 1 (and other proteins)</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<year>1997</year>
;
<volume>94</volume>
:
<fpage>10356</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Fabisiak JP</surname>
</name>
,
<name name-style="western">
<surname>Kagan VE</surname>
</name>
,
<name name-style="western">
<surname>Ritov VB</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Bcl-2 inhibits selective oxidation and externalization of phosphatidylserine during paraquat-induced apoptosis</article-title>
.
<source>Am J Physiol</source>
<year>1997</year>
;
<volume>272</volume>
(
<issue>2</issue>
Pt 1):
<fpage>C675</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hockenbery DM</surname>
</name>
,
<name name-style="western">
<surname>Oltvai ZN</surname>
</name>
,
<name name-style="western">
<surname>Yin XM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Bcl-2 functions in an antioxidant pathway to prevent apoptosis</article-title>
.
<source>Cell</source>
<year>1993</year>
;
<volume>75</volume>
:
<fpage>241</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Vazquez-Mellado J</surname>
</name>
,
<name name-style="western">
<surname>Llorente L</surname>
</name>
,
<name name-style="western">
<surname>Richaud-Patin Y</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Exposure of anionic phospholipids upon platelet activation permits binding of beta 2 glycoprotein I and through it that of IgG antiphospholipid antibodies. Studies in platelets from patients with antiphospholipid syndrome and normal subjects</article-title>
.
<source>J Autoimmun</source>
<year>1994</year>
;
<volume>7</volume>
:
<fpage>335</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Shi W</surname>
</name>
,
<name name-style="western">
<surname>Chong BH</surname>
</name>
,
<name name-style="western">
<surname>Chesterman CN</surname>
</name>
.
<article-title>β2-Glycoprotein-I is a requirement for anticardiolipin antibodies binding to activated platelets: Differences with lupus anticoagulants</article-title>
.
<source>Blood</source>
<year>1993</year>
;
<volume>81</volume>
:
<fpage>1255</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Martinuzzo ME</surname>
</name>
,
<name name-style="western">
<surname>Maclouf J</surname>
</name>
,
<name name-style="western">
<surname>Carreras LO</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies enhance thrombin-induced platelet activation and thromboxane formation</article-title>
.
<source>Thromb Haemost</source>
<year>1993</year>
;
<volume>70</volume>
:
<fpage>667</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Reverter JC</surname>
</name>
,
<name name-style="western">
<surname>Tassies D</surname>
</name>
,
<name name-style="western">
<surname>Escolar G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Effect of plasma from patients with primary antiphospholipid syndrome on platelet function in a collagen rich perfusion system</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>73</volume>
:
<fpage>132</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Campbell AL</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Wellhausen S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Comparison of the effects of anticardiolipin antibodies from patients with the antiphospholipid syndrome and with syphilis on platelet activation and aggregation</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>73</volume>
:
<fpage>529</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arvieux J</surname>
</name>
,
<name name-style="western">
<surname>Roussel B</surname>
</name>
,
<name name-style="western">
<surname>Pouzol P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Platelet activating properties of murine monoclonal antibodies to beta 2-glycoprotein I</article-title>
.
<source>Thromb Haemost</source>
<year>1993</year>
;
<volume>70</volume>
:
<fpage>336</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nojima J</surname>
</name>
,
<name name-style="western">
<surname>Suehisa E</surname>
</name>
,
<name name-style="western">
<surname>Kuratsune H</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Platelet activation induced by combined effects of anticardiolipin and lupus anticoagulant IgG antibodies in patients with systemic lupus erythematosus—possible association with thrombotic and thrombocytopenic complications</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>81</volume>
:
<fpage>436</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wiener MH</surname>
</name>
,
<name name-style="western">
<surname>Burke M</surname>
</name>
,
<name name-style="western">
<surname>Fried M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Thrombo-agglutination by anticardiolipin antibody complex in the antiphospholipid syndrome: A possible mechanism of immune-mediated thrombosis</article-title>
.
<source>Thromb Res</source>
<year>2001</year>
;
<volume>103</volume>
:
<fpage>193</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Emmi L</surname>
</name>
,
<name name-style="western">
<surname>Bergamini C</surname>
</name>
,
<name name-style="western">
<surname>Spinelli A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Possible pathogenetic role of activated platelets in the primary antiphospholipid syndrome involving the central nervous system</article-title>
.
<source>Ann NY Acad Sci</source>
<year>1997</year>
;
<volume>823</volume>
:
<fpage>188</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ford I</surname>
</name>
,
<name name-style="western">
<surname>Urbaniak S</surname>
</name>
,
<name name-style="western">
<surname>Greaves M.</surname>
</name>
<article-title>IgG from patients with antiphospholipid syndrome binds to platelets without induction of platelet activation</article-title>
.
<source>Br J Haematol</source>
<year>1998</year>
;
<volume>102</volume>
:
<fpage>841</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Greaves M.</surname>
</name>
<article-title>Antiphospholipid antibodies and thrombosis</article-title>
.
<source>Lancet</source>
<year>1999</year>
;
<volume>353</volume>
:
<fpage>1348</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Godeau B</surname>
</name>
,
<name name-style="western">
<surname>Piette JC</surname>
</name>
,
<name name-style="western">
<surname>Fromont P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Specific antiplatelet glycoprotein autoantibodies are associated with the thrombocytopenia of primary antiphospholipid syndrome</article-title>
.
<source>Br J Haematol</source>
<year>1997</year>
;
<volume>98</volume>
:
<fpage>873</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Macchi L</surname>
</name>
,
<name name-style="western">
<surname>Rispal P</surname>
</name>
,
<name name-style="western">
<surname>Clofent-Sanchez G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-platelet antibodies in patients with systemic lupus erythematosus and the primary antiphospholipid antibody syndrome: Their relationship with the observed thrombocytopenia</article-title>
.
<source>Br J Haematol</source>
<year>1997</year>
;
<volume>98</volume>
:
<fpage>336</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arnout J.</surname>
</name>
<article-title>The pathogenesis of the antiphospholipid syndrome: A hypothesis based on parellelism with heparin-induced thrombocytopenia</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>75</volume>
:
<fpage>536</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Walenga JM</surname>
</name>
,
<name name-style="western">
<surname>Michal K</surname>
</name>
,
<name name-style="western">
<surname>Hoppensteadt D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Vascular damage correlates between heparin-induced thrombocytopenia and the antiphospholipid syndrome</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>1999</year>
;
<volume>5</volume>
<issue>Suppl</issue>
<fpage>1</fpage>
: S76.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Jankowski M</surname>
</name>
,
<name name-style="western">
<surname>Vreys I</surname>
</name>
,
<name name-style="western">
<surname>Wittevrongel C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Thrombogenicity of beta-2-glycoprotein I dependent antiphospholipid antibodies in a photochemically induced thrombosis in the hamster</article-title>
.
<source>Blood</source>
<year>2003</year>
;
<volume>101</volume>
:
<fpage>157</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lockwood CJ</surname>
</name>
,
<name name-style="western">
<surname>Rand JH</surname>
</name>
.
<article-title>The immunobiology and obstetrical consequences of antiphospholipid antibodies</article-title>
.
<source>Obstet Gynecol Surv</source>
<year>1994</year>
;
<volume>49</volume>
:
<fpage>432</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Out HJ</surname>
</name>
,
<name name-style="western">
<surname>Kooijman CD</surname>
</name>
,
<name name-style="western">
<surname>Bruinse HW</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Histopathological findings in placentae from patients with intra-uterine fetal death and anti-phospholipid antibodies</article-title>
.
<source>Eur J Obstet Gynecol Reprod Biol</source>
<year>1991</year>
;
<volume>41</volume>
:
<fpage>179</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Krikun G</surname>
</name>
,
<name name-style="western">
<surname>Lockwood CJ</surname>
</name>
,
<name name-style="western">
<surname>Wu XX</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The expression of the placental anticoagulant protein, annexin V, by villous trophoblasts: Immunolocalization and in vitro regulation</article-title>
.
<source>Placenta</source>
<year>1994</year>
;
<volume>15</volume>
:
<fpage>601</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wang X</surname>
</name>
,
<name name-style="western">
<surname>Campos B</surname>
</name>
,
<name name-style="western">
<surname>Kaetzel MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Annexin V is critical in the maintenance of murine placental integrity</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1999</year>
;
<volume>180</volume>
:
<fpage>1008</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rand JH</surname>
</name>
,
<name name-style="western">
<surname>Wu XX</surname>
</name>
,
<name name-style="western">
<surname>Guller S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Reduction of annexin-V (placental anticoagulant protein-I) on placental villi of women with antiphospholipid antibodies and recurrent spontaneous abortion</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1994</year>
;
<volume>171</volume>
:
<fpage>1566</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rote NS</surname>
</name>
,
<name name-style="western">
<surname>Vogt E</surname>
</name>
,
<name name-style="western">
<surname>DeVere G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The role of placental trophoblast in the pathophysiology of the antiphospholipid antibody syndrome</article-title>
.
<source>Am J Reprod Immunol</source>
<year>1998</year>
;
<volume>39</volume>
:
<fpage>125</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lakasing L</surname>
</name>
,
<name name-style="western">
<surname>Campa JS</surname>
</name>
,
<name name-style="western">
<surname>Poston R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Normal expression of tissue factor, thrombomodulin, and annexin V in placentas from women with antiphospholipid syndrome</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1999</year>
;
<volume>181</volume>
:
<fpage>180</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Luzzana C</surname>
</name>
,
<name name-style="western">
<surname>Gerosa M</surname>
</name>
,
<name name-style="western">
<surname>Riboldi P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Up-date on the antiphospholipid syndrome</article-title>
.
<source>J Nephrol</source>
<year>2002</year>
;
<volume>15</volume>
:
<fpage>342</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>De Carolis S</surname>
</name>
,
<name name-style="western">
<surname>Lanzone A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>In vitro effect of antiphospholipid antibody-containing sera on basal and gonadotrophin releasing hormone-dependent human chorionic gonadotrophin release by cultured trophoblast cells</article-title>
.
<source>Placenta</source>
<year>1995</year>
;
<volume>16</volume>
:
<fpage>75</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>Castellani R</surname>
</name>
,
<name name-style="western">
<surname>Caliandro D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Monoclonal anti-annexin V antibody inhibits trophoblast gonadotropin secretion and induces syncytiotrophoblast apoptosis</article-title>
.
<source>Biol Reprod</source>
<year>2001</year>
;
<volume>65</volume>
:
<fpage>1766</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>Meroni PL</surname>
</name>
,
<name name-style="western">
<surname>del Papa N</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered beta2-glycoprotein I</article-title>
.
<source>Arthritis Rheum</source>
<year>2000</year>
;
<volume>43</volume>
:
<fpage>140</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Zhou Y</surname>
</name>
,
<name name-style="western">
<surname>Fisher SJ</surname>
</name>
,
<name name-style="western">
<surname>Janatpour M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?</article-title>
<source>J Clin Invest</source>
<year>1997</year>
;
<volume>99</volume>
:
<fpage>2139</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sueoka K</surname>
</name>
,
<name name-style="western">
<surname>Shiokawa S</surname>
</name>
,
<name name-style="western">
<surname>Miyazaki T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Integrins and reproductive physiology: Expression and modulation in fertilization, embryogenesis, and implantation</article-title>
.
<source>Fertil Steril</source>
<year>1997</year>
;
<volume>67</volume>
:
<fpage>799</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>Castellani R</surname>
</name>
,
<name name-style="western">
<surname>Caliandro D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholid antibodies regulate the expression of trophoblast cell adhesion molecules</article-title>
.
<source>Fertil Steril</source>
<year>2002</year>
;
<volume>77</volume>
:
<fpage>805</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hellan M</surname>
</name>
,
<name name-style="western">
<surname>Kuhnel E</surname>
</name>
,
<name name-style="western">
<surname>Speiser W</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Familial lupus anticoagulant: A case report and review of the literature</article-title>
.
<source>Blood Coagul Fibrinolysis</source>
<year>1998</year>
;
<volume>9</volume>
:
<fpage>195</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Tsutsumi A</surname>
</name>
,
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Correlation between beta2-glycoprotein I valine/leucine247 polymorphism and anti-beta2-glycoproteinI antibodies in patients with primary antiphospholipid syndrome</article-title>
.
<source>Rheumatology</source>
<year>1999</year>
;
<volume>38</volume>
:
<fpage>721</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hirose N</surname>
</name>
,
<name name-style="western">
<surname>Williams R</surname>
</name>
,
<name name-style="western">
<surname>Alberts AR</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A role for the polymorphism at position 247 of the beta2-glycoprotein I gene in the generation of anti-beta2-glycoprotein I antibodies in the antiphospholipid syndrome</article-title>
.
<source>Arthritis Rheum</source>
<year>1999</year>
;
<volume>42</volume>
:
<fpage>1655</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Asherson RA</surname>
</name>
,
<name name-style="western">
<surname>Doherty DG</surname>
</name>
,
<name name-style="western">
<surname>Vergani D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Major histocompatibility complex associations with primary antiphospholipid syndrome</article-title>
.
<source>Arthritis Rheum</source>
<year>1992</year>
;
<volume>35</volume>
:
<fpage>124</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Vargas-Alarcon G</surname>
</name>
,
<name name-style="western">
<surname>Granados J</surname>
</name>
,
<name name-style="western">
<surname>Bekker C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association of HLA-DR5 (possibly DRB1*1201) with the primary antiphospholipid syndrome in Mexican patients</article-title>
.
<source>Arthritis Rheum</source>
<year>1995</year>
;
<volume>38</volume>
:
<fpage>1340</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Camps MT</surname>
</name>
,
<name name-style="western">
<surname>Cuadrado MJ</surname>
</name>
,
<name name-style="western">
<surname>Ocon P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association between HLA class II antigens and primary antiphospholipid syndrome from the south of Spain</article-title>
.
<source>Lupus</source>
<year>1995</year>
;
<volume>4</volume>
:
<fpage>51</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Goldstein R</surname>
</name>
,
<name name-style="western">
<surname>Moulds JM</surname>
</name>
,
<name name-style="western">
<surname>Smith CD</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>MHC studies of the primary antiphospholipid antibody syndrome and of antiphospholipid antibodies in systemic lupus erythematosus</article-title>
.
<source>J Rheumatol</source>
<year>1996</year>
;
<volume>23</volume>
:
<fpage>1173</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Granados J</surname>
</name>
,
<name name-style="western">
<surname>Vargas-Alarcon G</surname>
</name>
,
<name name-style="western">
<surname>Drenkard C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship of anticardiolipin antibodies and antiphospholipid syndrome to HLA-DR7 in Mexican patients with systemic lupus erythematosus (SLE)</article-title>
.
<source>Lupus</source>
<year>1997</year>
;
<volume>6</volume>
:
<fpage>57</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>de Pablo P</surname>
</name>
,
<name name-style="western">
<surname>Ramirez A</surname>
</name>
,
<name name-style="western">
<surname>Cortina E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Increased fibrin polymerization rate in patients with primary antiphospholipid syndrome and systemic lupus erythematosus</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2003</year>
;
<volume>9</volume>
:
<fpage>221</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Takeuchi R</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Ieko M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Suppressed intrinsic fibrinolytic activity by monoclonal anti-beta-2 glycoprotein I autoantibodies: Possible mechanism for thrombosis in patients with antiphospholipid syndrome</article-title>
.
<source>Br J Haematol</source>
<year>2002</year>
;
<volume>119</volume>
:
<fpage>781</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ieko M</surname>
</name>
,
<name name-style="western">
<surname>Ichikawa K</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Effects of beta2-glycoprotein I and monoclonal anticardiolipin antibodies on extrinsic fibrinolysis</article-title>
.
<source>Semin Thromb Hemost</source>
<year>2000</year>
;
<volume>26</volume>
:
<fpage>85</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Shibata S</surname>
</name>
,
<name name-style="western">
<surname>Harpel PC</surname>
</name>
,
<name name-style="western">
<surname>Gharavi A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Autoantibodies to heparin from patients with antiphospholipid antibody syndrome inhibit formation of antithrombin III-thrombin complexes</article-title>
.
<source>Blood</source>
<year>1994</year>
;
<volume>83</volume>
:
<fpage>2532</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Chi HS</surname>
</name>
.
<article-title>Recent advances in the diagnosis of antiphospholipid syndrome</article-title>
.
<source>Int J Hematol</source>
<year>2002</year>
;
<volume>76</volume>
<issue>Suppl 2</issue>
:
<fpage>47</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Reyes H</surname>
</name>
,
<name name-style="western">
<surname>Dearing L</surname>
</name>
,
<name name-style="western">
<surname>Bick RL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Laboratory diagnosis of antiphospholipid syndromes</article-title>
.
<source>Clin Lab Med</source>
<year>1995</year>
;
<volume>15</volume>
:
<fpage>85</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Antiphospholipid thrombosis syndromes: Etiology, pathophysiology, diagnosis and management</article-title>
.
<source>Int J Hematol</source>
<year>1997</year>
;
<volume>65</volume>
:
<fpage>193</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Harris EN</surname>
</name>
.
<article-title>Testing for antiphospholipid antibodies: Problems and solutions</article-title>
.
<source>Clin Obstet Gynecol</source>
<year>2001</year>
;
<volume>44</volume>
:
<fpage>48</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Abuaf N</surname>
</name>
,
<name name-style="western">
<surname>Meyer O</surname>
</name>
,
<name name-style="western">
<surname>Laperche S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Conclusions of the first French workshop of standardization of anticardiolipin antibody determination associated with autoimmune pathology</article-title>
.
<source>Ann Biol Clin</source>
<year>1994</year>
;
<volume>52</volume>
:
<fpage>365</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Favaloro EJ</surname>
</name>
,
<name name-style="western">
<surname>Silvestrini R.</surname>
</name>
<article-title>Assessing the usefulness of anticardiolipin antibody assays: A cautious approach is suggested by high variation and limited consensus in multilaboratory testing</article-title>
.
<source>Am J Clin Pathol</source>
<year>2002</year>
;
<volume>118</volume>
:
<fpage>548</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Exner T</surname>
</name>
,
<name name-style="western">
<surname>Triplett DA</surname>
</name>
,
<name name-style="western">
<surname>Taberner D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Guidelines for testing and revised criteria for lupus anticoagulants. SSC Subcommittee for the Standardization of Lupus Anticoagulants</article-title>
.
<source>Thromb Haemost</source>
<year>1991</year>
;
<volume>65</volume>
:
<fpage>320</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kaczor DA</surname>
</name>
,
<name name-style="western">
<surname>Bickford NN</surname>
</name>
,
<name name-style="western">
<surname>Triplett DA</surname>
</name>
.
<article-title>Evaluation of different mixing study reagents and dilution effect in lupus anticoagulant testing</article-title>
.
<source>Am J Clin Pathol</source>
<year>1991</year>
;
<volume>95</volume>
:
<fpage>408</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Brandt JT</surname>
</name>
,
<name name-style="western">
<surname>Triplett DA</surname>
</name>
.
<article-title>The effect of phospholipid on the detection of lupus anticoagulants by the dilute Russell viper venom time</article-title>
.
<source>Arch Pathol Lab Med</source>
<year>1989</year>
;
<volume>113</volume>
:
<fpage>1376</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gerbutavicius R</surname>
</name>
,
<name name-style="western">
<surname>Fareed J</surname>
</name>
,
<name name-style="western">
<surname>Messmore HL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Reference ranges of the dilute tissue thromboplastin inhibition and dilute Russell’s viper venom tests revisited</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2002</year>
;
<volume>8</volume>
:
<fpage>51</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lawrie AS</surname>
</name>
,
<name name-style="western">
<surname>Mackie IJ</surname>
</name>
,
<name name-style="western">
<surname>Purdy G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The sensitivity and specificity of commercial reagents for the detection of lupus anticoagulant show marked differences in performance between photo-optical and mechanical coagulometers</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>81</volume>
:
<fpage>758</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Triplett DA</surname>
</name>
,
<name name-style="western">
<surname>Brandt JT</surname>
</name>
,
<name name-style="western">
<surname>Kaczor D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Laboratory diagnosis of lupus inhibitors: A comparison of the tissue thromboplastin inhibition procedure with a new platelet neutralization procedure</article-title>
.
<source>Am J Clin Pathol</source>
<year>1983</year>
;
<volume>79</volume>
:
<fpage>678</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arnout J</surname>
</name>
,
<name name-style="western">
<surname>Huybrechts E</surname>
</name>
,
<name name-style="western">
<surname>Vanrusselt M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A new lupus anticoagulant neutralization test based on platelet-derived vesicles</article-title>
.
<source>Br J Haematol</source>
<year>1992</year>
;
<volume>80</volume>
:
<fpage>341</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Triplett DA</surname>
</name>
,
<name name-style="western">
<surname>Stocker KF</surname>
</name>
,
<name name-style="western">
<surname>Unger GA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The Textarin/Ecarin ratio: A confirmatory test for lupus anticoagulants</article-title>
.
<source>Thromb Haemost</source>
<year>1993</year>
;
<volume>70</volume>
:
<fpage>925</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Reber G</surname>
</name>
,
<name name-style="western">
<surname>Roisin JP</surname>
</name>
,
<name name-style="western">
<surname>Migaud M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Comparison of a platelet neutralization procedure with a hexagonal phase phospholipid neutralization assay as confirmatory tests for the presence of lupus anticoagulants</article-title>
.
<source>Thromb Res</source>
<year>1994</year>
;
<volume>73</volume>
:
<fpage>131</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Chantarangkul V</surname>
</name>
,
<name name-style="western">
<surname>Tripodi A</surname>
</name>
,
<name name-style="western">
<surname>Arbini A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Silica clotting time (SCT) as a screening and confirmatory test for detection of the lupus anticoagulants</article-title>
.
<source>Thromb Res</source>
<year>1992</year>
;
<volume>67</volume>
:
<fpage>355</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Finazzi G</surname>
</name>
,
<name name-style="western">
<surname>Bevers EM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Kaolin clotting time and dilute Russell’s viper venom time distinguish between prothrombin-dependent and beta 2-glycoprotein I-dependent antiphospholipid antibodies</article-title>
.
<source>Blood</source>
<year>1995</year>
;
<volume>86</volume>
:
<fpage>617</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pengo V</surname>
</name>
,
<name name-style="western">
<surname>Biasiolo A</surname>
</name>
,
<name name-style="western">
<surname>Rampazzo P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>dRVVT is more sensitive than KCT or TTI for detecting lupus anticoagulant activity of anti-beta2-glycoprotein I autoantibodies</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>81</volume>
:
<fpage>256</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Liestol S</surname>
</name>
,
<name name-style="western">
<surname>Jacobsen EM</surname>
</name>
,
<name name-style="western">
<surname>Wisloff F.</surname>
</name>
<article-title>Dilute prothrombin time-based lupus ratio test. Integrated LA testing with recombinant tissue thromboplastin</article-title>
.
<source>Thromb Res</source>
<year>2002</year>
;
<volume>105</volume>
:
<fpage>177</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rooney AM</surname>
</name>
,
<name name-style="western">
<surname>McNally T</surname>
</name>
,
<name name-style="western">
<surname>Mackie IJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The Taipan snake venom time: a new test for lupus anticoagulant</article-title>
.
<source>J Clin Pathol</source>
<year>1994</year>
;
<volume>47</volume>
:
<fpage>497</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lindhoff-Last E</surname>
</name>
,
<name name-style="western">
<surname>Humpich M</surname>
</name>
,
<name name-style="western">
<surname>Schmitt J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>MIXCONLA: A precise, sensitive and specific aPTT-based assay for detection of lupus anticoagulant</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2002</year>
;
<volume>8</volume>
:
<fpage>163</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Exner T.</surname>
</name>
<article-title>Conceptions and misconceptions in testing for lupus anticoagulants</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>179</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lazarchick J</surname>
</name>
,
<name name-style="western">
<surname>Kizer J.</surname>
</name>
<article-title>The laboratory diagnosis of lupus anticoagulants</article-title>
.
<source>Arch Pathol Lab Med</source>
<year>1989</year>
;
<volume>113</volume>
:
<fpage>177</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Mader R</surname>
</name>
,
<name name-style="western">
<surname>Ziporen L</surname>
</name>
,
<name name-style="western">
<surname>Mader R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies in a heterogeneous group of patients: Experience from a central laboratory</article-title>
.
<source>Clin Rheumatol</source>
<year>2002</year>
;
<volume>21</volume>
:
<fpage>386</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sakakura M</surname>
</name>
,
<name name-style="western">
<surname>Wada H</surname>
</name>
,
<name name-style="western">
<surname>Watanabe R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Coagulation tests and anti-phospholipid antibodies in patients positive for lupus anticoagulant</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2000</year>
;
<volume>6</volume>
:
<fpage>144</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Segal JB</surname>
</name>
,
<name name-style="western">
<surname>Lehmann HP</surname>
</name>
,
<name name-style="western">
<surname>Petri M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Testing strategies for diagnosing lupus anticoagulant: Decision analysis</article-title>
.
<source>Am J Hematol</source>
<year>2002</year>
;
<volume>70</volume>
:
<fpage>195</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wisloff F</surname>
</name>
,
<name name-style="western">
<surname>Jacobsen EM</surname>
</name>
,
<name name-style="western">
<surname>Liestol S.</surname>
</name>
<article-title>Laboratory diagnosis of the antiphospholipid syndrome</article-title>
.
<source>Thromb Res</source>
<year>2002</year>
;
<volume>108</volume>
:
<fpage>263</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Finazzi G</surname>
</name>
,
<name name-style="western">
<surname>Barbui T.</surname>
</name>
<article-title>Antiphospholipid antibodies: Predictive value of laboratory tests</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>78</volume>
:
<fpage>75</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Dlott J</surname>
</name>
,
<name name-style="western">
<surname>Norbis F</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulants and thrombosis: Clinical association of different coagulation and immunologic tests</article-title>
.
<source>Thromb Haemost</source>
<year>2000</year>
;
<volume>84</volume>
:
<fpage>1012</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wasmuth JC</surname>
</name>
,
<name name-style="western">
<surname>Minarro D</surname>
</name>
,
<name name-style="western">
<surname>Homrighausen A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Phospholipid autoantibodies and the antiphospholipid antibody syndrome: Diagnostic accuracy of 23 methods studied by variation in ROC curves with number of clinical manifestations</article-title>
.
<source>Clin Chem</source>
<year>2002</year>
;
<volume>48</volume>
:
<fpage>1004</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>McIntyre JA</surname>
</name>
,
<name name-style="western">
<surname>Wagenknecht DR</surname>
</name>
,
<name name-style="western">
<surname>Faulk WP</surname>
</name>
.
<article-title>Antiphospholipid antibodies: Discovery, definitions, detection and disease</article-title>
.
<source>Prog Lipid Res</source>
<year>2003</year>
;
<volume>42</volume>
:
<fpage>176</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Helbert M</surname>
</name>
,
<name name-style="western">
<surname>Bodger S</surname>
</name>
,
<name name-style="western">
<surname>Cavenagh J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Optimising testing for phospholipid antibodies</article-title>
.
<source>J Clin Pathol</source>
<year>2001</year>
;
<volume>54</volume>
:
<fpage>693</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sanna G</surname>
</name>
,
<name name-style="western">
<surname>Bertolaccini ML</surname>
</name>
,
<name name-style="western">
<surname>Cuadrado MJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Central nervous system involvement in the antiphospholipid (Hughes) syndrome</article-title>
.
<source>Rheumatology (Oxford)</source>
<year>2003</year>
;
<volume>42</volume>
:
<fpage>200</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Brey RL</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Lockshin MD</surname>
</name>
.
<article-title>Neurologic complications of antiphospholipid antibodies</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>1993</year>
;
<volume>19</volume>
:
<fpage>833</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cuadrado MJ</surname>
</name>
,
<name name-style="western">
<surname>Hughes GR</surname>
</name>
.
<article-title>Hughes (antiphospholipid) syndrome. Clinical features</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>507</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Dunn JP</surname>
</name>
,
<name name-style="western">
<surname>Noorily SW</surname>
</name>
,
<name name-style="western">
<surname>Petri M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies and retinal vascular disease</article-title>
.
<source>Lupus</source>
<year>1996</year>
;
<volume>5</volume>
:
<fpage>313</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Castanon C</surname>
</name>
,
<name name-style="western">
<surname>Amigo MC</surname>
</name>
,
<name name-style="western">
<surname>Banales JL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Ocular vasoocclusive disease in primary antiphospholipid syndrome</article-title>
.
<source>Ophthalmology</source>
<year>1995</year>
;
<volume>102</volume>
:
<fpage>256</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Naarendorp M</surname>
</name>
,
<name name-style="western">
<surname>Spiera H.</surname>
</name>
<article-title>Sudden sensorineural hearing loss in patients with systemic lupus erythematosus or lupus-like syndromes and antiphospholipid antibodies</article-title>
.
<source>J Rheumatol</source>
<year>1998</year>
;
<volume>25</volume>
:
<fpage>589</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kaplan SD</surname>
</name>
,
<name name-style="western">
<surname>Chartash EK</surname>
</name>
,
<name name-style="western">
<surname>Pizzarello RA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Cardiac manifestations of the antiphospholipid syndrome</article-title>
.
<source>Am Heart J</source>
<year>1992</year>
;
<volume>124</volume>
:
<fpage>1331</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>High prevalence of significant heart valve lesions in patients with the ‘primary’ antiphospholipid syndrome</article-title>
.
<source>Lupus</source>
<year>1991</year>
;
<volume>1</volume>
:
<fpage>43</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nayak AK</surname>
</name>
,
<name name-style="western">
<surname>Komatireddy G.</surname>
</name>
<article-title>Cardiac manifestations of the antiphospholipid antibody syndrome: A review</article-title>
.
<source>Mo Med</source>
<year>2002</year>
;
<volume>99</volume>
:
<fpage>171</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Baker WF Jr</surname>
</name>
,
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Antiphospholipid antibodies in coronary artery disease: A review</article-title>
.
<source>Semin Thromb Hemost</source>
<year>1994</year>
;
<volume>20</volume>
:
<fpage>27</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kattwinkel N</surname>
</name>
,
<name name-style="western">
<surname>Villanueva AG</surname>
</name>
,
<name name-style="western">
<surname>Labib SB</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Myocardial infarction caused by cardiac microvasculopathy in a patient with the primary antiphospholipid syndrome</article-title>
.
<source>Ann Intern Med</source>
<year>1992</year>
;
<volume>116</volume>
:
<fpage>974</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Gibson GE</surname>
</name>
,
<name name-style="western">
<surname>Su WP</surname>
</name>
,
<name name-style="western">
<surname>Pittelkow MR</surname>
</name>
.
<article-title>Antiphospholipid syndrome and the skin</article-title>
.
<source>J Am Acad Dermatol</source>
<year>1997</year>
;
<volume>36</volume>
:
<fpage>970</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Espinosa G</surname>
</name>
,
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The lung in the antiphospholipid syndrome</article-title>
.
<source>Ann Rheum Dis</source>
<year>2002</year>
;
<volume>61</volume>
:
<fpage>195</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nochy D</surname>
</name>
,
<name name-style="western">
<surname>Daugas E</surname>
</name>
,
<name name-style="western">
<surname>Huong DL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Kidney involvement in the antiphospholipid syndrome</article-title>
.
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>127</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Isom R</surname>
</name>
,
<name name-style="western">
<surname>Nickolas TL</surname>
</name>
,
<name name-style="western">
<surname>Radhakrishnan J.</surname>
</name>
<article-title>Nephrological and obstetric complications of the antiphospholipid syndrome</article-title>
.
<source>Expert Opin Investig Drugs</source>
<year>2002</year>
;
<volume>11</volume>
:
<fpage>819</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Diz-Kucukkaya R</surname>
</name>
,
<name name-style="western">
<surname>Hacihanefioglu A</surname>
</name>
,
<name name-style="western">
<surname>Yenerel M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies and antiphospholipid syndrome in patients presenting with immune thrombocytopenic purpura: A prospective cohort study</article-title>
.
<source>Blood</source>
<year>2001</year>
;
<volume>98</volume>
:
<fpage>1760</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Espinosa G</surname>
</name>
,
<name name-style="western">
<surname>Santos E</surname>
</name>
,
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Adrenal involvement in the antiphospholipid syndrome: Clinical and immunologic characteristics of 86 patients</article-title>
.
<source>Medicine</source>
<year>2003</year>
;
<volume>82</volume>
:
<fpage>106</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tektonidou MG</surname>
</name>
,
<name name-style="western">
<surname>Malagari K</surname>
</name>
,
<name name-style="western">
<surname>Vlachoyiannopoulos PG</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Asymptomatic avascular necrosis in patients with primary antiphospholipid syndrome in the absence of corticosteroid use: A prospective study by magnetic resonance imaging</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>732</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Heilmann L</surname>
</name>
,
<name name-style="western">
<surname>von Tempelhoff GF</surname>
</name>
,
<name name-style="western">
<surname>Pollow K.</surname>
</name>
<article-title>Anti-phospholipid syndrome in obstetrics</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2003</year>
;
<volume>9</volume>
:
<fpage>143</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wilson WA</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Koike T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: Report of an international workshop</article-title>
.
<source>Arthritis Rheum</source>
<year>1999</year>
;
<volume>42</volume>
:
<fpage>1309</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Asherson RA</surname>
</name>
.
<article-title>The catastrophic antiphospholipid syndrome, 1998. A review of the clinical features, possible pathogenesis and treatment</article-title>
.
<source>Lupus</source>
<year>1998</year>
;
<volume>7</volume>
<issue>Suppl 2</issue>
:
<fpage>S55</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Asherson RA</surname>
</name>
,
<name name-style="western">
<surname>Cervera R.</surname>
</name>
<article-title>Catastrophic antiphospholipid syndrome</article-title>
.
<source>Curr Opin Hematol</source>
<year>2000</year>
;
<volume>7</volume>
:
<fpage>325</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harris EN</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Boey ML</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies: Detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus</article-title>
.
<source>Lancet</source>
<year>1983</year>
;
<volume>ii</volume>
:
<fpage>1211</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Horbach DA</surname>
</name>
,
<name name-style="western">
<surname>Oort EV</surname>
</name>
,
<name name-style="western">
<surname>Donders RAJM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulant is the strongest risk factor for both venous and arterial thrombosis in patients with systemic lupus erythematosus</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>76</volume>
:
<fpage>916</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tuhrim S</surname>
</name>
,
<name name-style="western">
<surname>Rand JH</surname>
</name>
,
<name name-style="western">
<surname>Wu XX</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Elevated anticardiolipin antibody titer is a stroke risk factor in a multiethnic population independent of isotype or degree of positivity</article-title>
.
<source>Stroke</source>
<year>1999</year>
;
<volume>30</volume>
:
<fpage>1561</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Oger E</surname>
</name>
,
<name name-style="western">
<surname>Lernyer C</surname>
</name>
,
<name name-style="western">
<surname>Dueymes M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association between IgM anticardiolipin antibodies and deep venous thrombosis in patients without systemic lupus erythematosus</article-title>
.
<source>Lupus</source>
<year>1997</year>
;
<volume>6</volume>
:
<fpage>455</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Schulman S</surname>
</name>
,
<name name-style="western">
<surname>Svenungsson E</surname>
</name>
,
<name name-style="western">
<surname>Granqvist S.</surname>
</name>
<article-title>Anticardiolipin antibodies predict early recurrence of thromboembolism and death among patients with venous thromboembolism following anticoagulant therapy. Duration of Anticoagulation Study Group</article-title>
.
<source>Am J Med</source>
<year>1998</year>
;
<volume>104</volume>
:
<fpage>332</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lam EY</surname>
</name>
,
<name name-style="western">
<surname>Taylor LM Jr</surname>
</name>
,
<name name-style="western">
<surname>Landry GJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship between antiphospholipid antibodies and progression of lower extremity arterial occlusive disease after lower extremity bypass operations</article-title>
.
<source>J Vasc Surg</source>
<year>2001</year>
;
<volume>33</volume>
:
<fpage>976</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Silver RM</surname>
</name>
,
<name name-style="western">
<surname>Porter TF</surname>
</name>
,
<name name-style="western">
<surname>van Leeuween I</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-cardiolipin antibodies: Clinical consequences of “low titers.”</article-title>
<source>Obstet Gynecol</source>
<year>1996</year>
;
<volume>87</volume>
:
<fpage>494</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Luciani D</surname>
</name>
,
<name name-style="western">
<surname>Bertolini G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Lupus anticoagulants are stronger risk factors for thrombosis than anti-cardiolipin antibodies in the antiphospholipid syndrome: A systematic review of the literature</article-title>
.
<source>Blood</source>
<year>2003</year>
;
<volume>101</volume>
:
<fpage>1827</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Diri E</surname>
</name>
,
<name name-style="western">
<surname>Cucurull E</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid (Hughes’) syndrome in African-Americans: IgA aCL and abeta2 glycoprotein-I is the most frequent isotype</article-title>
.
<source>Lupus</source>
<year>1999</year>
;
<volume>8</volume>
:
<fpage>263</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Fanopoulos D</surname>
</name>
,
<name name-style="western">
<surname>Teodorescu MR</surname>
</name>
,
<name name-style="western">
<surname>Varga J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>High frequency of abnormal levels of IgA anti-beta2-glycoprotein I antibodies in patients with systemic lupus erythematosus: Relationship with antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>1998</year>
;
<volume>25</volume>
:
<fpage>675</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bertolaccini ML</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Escudero Contreras A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The value of IgA antiphospholipid testing for diagnosis of antiphospholipid (Hughes) syndrome in systemic lupus erythematosus</article-title>
.
<source>J Rheumatol</source>
<year>2001</year>
;
<volume>28</volume>
:
<fpage>2637</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Selva-O’Callaghan A</surname>
</name>
,
<name name-style="western">
<surname>Ordi-Ros J</surname>
</name>
,
<name name-style="western">
<surname>Monegal-Ferran F</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>IgA anticardiolipin antibodies—relation with other antiphospholipid antibodies and clinical significance</article-title>
.
<source>Thromb Haemost</source>
<year>1998</year>
;
<volume>79</volume>
:
<fpage>282</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Muir KW</surname>
</name>
,
<name name-style="western">
<surname>Squire IB</surname>
</name>
,
<name name-style="western">
<surname>Alwan W</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies in an unselected stroke population</article-title>
.
<source>Lancet</source>
<year>1994</year>
;
<volume>344</volume>
:
<fpage>452</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Runchey SS</surname>
</name>
,
<name name-style="western">
<surname>Folsom AR</surname>
</name>
,
<name name-style="western">
<surname>Tsai MY</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies as a risk factor for venous thromboembolism in a population-based prospective study</article-title>
.
<source>Br J Haematol</source>
<year>2002</year>
;
<volume>119</volume>
:
<fpage>1005</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sletnes KE</surname>
</name>
,
<name name-style="western">
<surname>Smith P</surname>
</name>
,
<name name-style="western">
<surname>Abdelnoor M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies after myocardial infarction and their relation to mortality, reinfarction, and non-haemorrhagic stroke</article-title>
.
<source>Lancet</source>
<year>1992</year>
;
<volume>339</volume>
:
<fpage>451</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Miret C</surname>
</name>
,
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Reverter JC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid syndrome without antiphospholipid antibodies at the time of the thrombotic event: Transient ‘seronegative’ antiphospholipid syndrome?</article-title>
<source>Clin Exp Rheumatol</source>
<year>1997</year>
;
<volume>15</volume>
:
<fpage>541</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Carreras LO</surname>
</name>
,
<name name-style="western">
<surname>Forastiero RR</surname>
</name>
,
<name name-style="western">
<surname>Martinuzzo ME</surname>
</name>
.
<article-title>Which are best biological markers of the antiphospolipid syndrome?</article-title>
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>163</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Fijnheer R</surname>
</name>
,
<name name-style="western">
<surname>Horbach DA</surname>
</name>
,
<name name-style="western">
<surname>Donders RC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Factor V Leiden, antiphospholipid antibodies and thrombosis in systemic lupus erythematosus</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>76</volume>
:
<fpage>514</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ginsberg JS</surname>
</name>
,
<name name-style="western">
<surname>Wells PS</surname>
</name>
,
<name name-style="western">
<surname>Brill-Edwards P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies and venous thromboembolism</article-title>
.
<source>Blood</source>
<year>1995</year>
;
<volume>86</volume>
:
<fpage>3685</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wahl DG</surname>
</name>
,
<name name-style="western">
<surname>Guillemin F</surname>
</name>
,
<name name-style="western">
<surname>de Maistre E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Meta-analysis of the risk of venous thrombosis in individuals with antiphospholipid antibodies without underlying autoimmune disease or previous thrombosis</article-title>
.
<source>Lupus</source>
<year>1998</year>
;
<volume>7</volume>
:
<fpage>15</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wahl DG</surname>
</name>
,
<name name-style="western">
<surname>Guillemin F</surname>
</name>
,
<name name-style="western">
<surname>de Maistre E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Risk for venous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus—a meta-analysis</article-title>
.
<source>Lupus</source>
<year>1997</year>
;
<volume>6</volume>
:
<fpage>467</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>Spatola L</surname>
</name>
,
<name name-style="western">
<surname>Prati E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The anti-beta2-glycoprotein I activity in human anti-phospholipid syndrome sera is due to monoreactive low-affinity autoantibodies directed to epitopes located on native beta2-glycoprotein I and preserved during species’ evolution</article-title>
.
<source>J Immunol</source>
<year>1996</year>
;
<volume>157</volume>
:
<fpage>5732</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Forastiero RR</surname>
</name>
,
<name name-style="western">
<surname>Martinuzzo ME</surname>
</name>
,
<name name-style="western">
<surname>Kordich LC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Reactivity to beta 2 glycoprotein I clearly differentiates anticardiolipin antibodies from antiphospholipid syndrome and syphilis</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>75</volume>
:
<fpage>717</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Alarcon-Segovia D</surname>
</name>
,
<name name-style="western">
<surname>Mestanza M</surname>
</name>
,
<name name-style="western">
<surname>Cabiedes J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The antiphospholipid/cofactor syndromes. II. A variant in patients with systemic lupus erythematosus with antibodies to beta 2-glycoprotein I but no antibodies detectable in standard antiphospholipid assays</article-title>
.
<source>J Rheumatol</source>
<year>1997</year>
;
<volume>24</volume>
:
<fpage>1545</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Specificity of ELISA for antibody to beta 2-glycoprotein I in patients with antiphospholipid syndrome</article-title>
.
<source>Br J Rheumatol</source>
<year>1996</year>
;
<volume>35</volume>
:
<fpage>1239</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Najmey SS</surname>
</name>
,
<name name-style="western">
<surname>Keil LB</surname>
</name>
,
<name name-style="western">
<surname>Adib DY</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The association of antibodies to beta 2 glycoprotein I with the antiphospholipid syndrome: A meta-analysis</article-title>
.
<source>Ann Clin Lab Sci</source>
<year>1997</year>
;
<volume>27</volume>
:
<fpage>41</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cabiedes J</surname>
</name>
,
<name name-style="western">
<surname>Cabral AR</surname>
</name>
,
<name name-style="western">
<surname>Alarcon-Segovia D.</surname>
</name>
<article-title>Clinical manifestations of the antiphospholipid syndrome in patients with systemic lupus erythematosus associate more strongly with anti-beta 2-glycoprotein-I than with antiphospholipid antibodies</article-title>
.
<source>J Rheumatol</source>
<year>1995</year>
;
<volume>22</volume>
:
<fpage>1899</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roubey RA</surname>
</name>
,
<name name-style="western">
<surname>Maldonado MA</surname>
</name>
,
<name name-style="western">
<surname>Byrd SN</surname>
</name>
.
<article-title>Comparison of an enzyme-linked immunosorbent assay for antibodies to beta2-glycoprotein I and a conventional anticardiolipin immunoassay</article-title>
.
<source>Arthritis Rheum</source>
<year>1996</year>
;
<volume>39</volume>
:
<fpage>1606</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>McNally T</surname>
</name>
,
<name name-style="western">
<surname>Mackie IJ</surname>
</name>
,
<name name-style="western">
<surname>Machin SJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Increased levels of beta 2 glycoprotein-I antigen and beta 2 glycoprotein-Ibinding antibodies are associated with a history of thromboembolic complicationsin patients with SLE and primary antiphospholipid syndrome</article-title>
.
<source>Br J Rheumatol</source>
<year>1995</year>
;
<volume>34</volume>
:
<fpage>1031</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Previtali S</surname>
</name>
,
<name name-style="western">
<surname>Barbui T</surname>
</name>
,
<name name-style="western">
<surname>Galli M.</surname>
</name>
<article-title>Anti-beta2-glycoprotein I and anti-prothrombin antibodies in antiphospholipid-negative patients with thrombosis: A case control study</article-title>
.
<source>Thromb Haemost</source>
<year>2002</year>
;
<volume>88</volume>
:
<fpage>729</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Detkova D</surname>
</name>
,
<name name-style="western">
<surname>Gil-Aguado A</surname>
</name>
,
<name name-style="western">
<surname>Lavilla P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Do antibodies to beta2-glycoprotein 1 contribute to the better characterization of the antiphospholipid syndrome?</article-title>
<source>Lupus</source>
<year>1999</year>
;
<volume>8</volume>
:
<fpage>430</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tubach F</surname>
</name>
,
<name name-style="western">
<surname>Hayem G</surname>
</name>
,
<name name-style="western">
<surname>Marchand JL</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>IgG anti-beta2-glycoprotein I antibodies in adult patients with systemic lupus erythematosus: Prevalence and diagnostic value for the antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>2000</year>
;
<volume>27</volume>
:
<fpage>1437</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sebastiani GD</surname>
</name>
,
<name name-style="western">
<surname>Galeazzi M</surname>
</name>
,
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin and anti-beta2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Prevalence and clinical associations. European Concerted Action on the Immunogenetics of SLE</article-title>
.
<source>Scand J Rheumatol</source>
<year>1999</year>
;
<volume>28</volume>
:
<fpage>344</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Luciani D</surname>
</name>
,
<name name-style="western">
<surname>Bertolini G</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-β2-glycoprotein I, antiprothrombin antibodies and the risk of thrombosis in the antiphospholipid syndrome</article-title>
.
<source>Blood</source>
<year>2003</year>
;
<volume>102</volume>
:
<fpage>2717</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lee RM</surname>
</name>
,
<name name-style="western">
<surname>Emlen W</surname>
</name>
,
<name name-style="western">
<surname>Scott JR</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-beta2-glycoprotein I antibodies in women with recurrent spontaneous abortion, unexplained fetal death, and antiphospholipid syndrome</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1999</year>
;
<volume>181</volume>
:
<fpage>642</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lynch A</surname>
</name>
,
<name name-style="western">
<surname>Byers T</surname>
</name>
,
<name name-style="western">
<surname>Emlen W</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association of antibodies to beta2-glycoprotein 1 with pregnancy loss and pregnancy-induced hypertension: a prospective study in low-risk pregnancy</article-title>
.
<source>Obstet Gynecol</source>
<year>1999</year>
;
<volume>93</volume>
:
<fpage>193</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Franklin RD</surname>
</name>
,
<name name-style="western">
<surname>Hollier N</surname>
</name>
,
<article-title>Kutteh. beta2-Glycoprotein 1 as a marker of antiphospholipid syndrome in women with recurrent pregnancy loss</article-title>
.
<source>Fertil Steril</source>
<year>2000</year>
;
<volume>73</volume>
:
<fpage>531</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Audrain MA</surname>
</name>
,
<name name-style="western">
<surname>El-Kouri D</surname>
</name>
,
<name name-style="western">
<surname>Hamidou MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Value of autoantibodies to beta(2)-glycoprotein 1 in the diagnosis of antiphospholipid syndrome</article-title>
.
<source>Rheumatology (Oxford)</source>
<year>2002</year>
;
<volume>41</volume>
:
<fpage>550</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M.</surname>
</name>
<article-title>Should we include anti-prothrombin antibodies in the screening for the antiphospholipid syndrome?</article-title>
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>101</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bajaj SP</surname>
</name>
,
<name name-style="western">
<surname>Rapaport SI</surname>
</name>
,
<name name-style="western">
<surname>Fierer DS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A mechanism for the hypoprothrombinemia of the acquired hypoprothrombinemia-lupus anticoagulant syndrome</article-title>
.
<source>Blood</source>
<year>1983</year>
;
<volume>61</volume>
:
<fpage>684</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Edson JR</surname>
</name>
,
<name name-style="western">
<surname>Vogt JM</surname>
</name>
,
<name name-style="western">
<surname>Hasegawa DK</surname>
</name>
.
<article-title>Abnormal prothrombin crossed immunoelectrophoresis in patients with lupus inhibitors</article-title>
.
<source>Blood</source>
<year>1984</year>
;
<volume>64</volume>
:
<fpage>807</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Fleck RA</surname>
</name>
,
<name name-style="western">
<surname>Rapaport SI</surname>
</name>
,
<name name-style="western">
<surname>Rao LV</surname>
</name>
.
<article-title>Anti-prothrombin antibodies and the lupus anticoagulant</article-title>
.
<source>Blood</source>
<year>1988</year>
;
<volume>72</volume>
:
<fpage>512</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Arvieux J</surname>
</name>
,
<name name-style="western">
<surname>Darnige L</surname>
</name>
,
<name name-style="western">
<surname>Caron C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Development of an ELISA for autoantibodies to prothrombin showing their prevalence in patients with lupus anticoagulants</article-title>
.
<source>Thromb Haemost</source>
<year>1995</year>
;
<volume>74</volume>
:
<fpage>1120</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lakos G</surname>
</name>
,
<name name-style="western">
<surname>Kiss E</surname>
</name>
,
<name name-style="western">
<surname>Regeczy N</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiprothrombin and antiannexin V antibodies imply risk of thrombosis in patients with systemic autoimmune diseases</article-title>
.
<source>J Rheumatol</source>
<year>2000</year>
;
<volume>27</volume>
:
<fpage>924</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Puurunen M</surname>
</name>
,
<name name-style="western">
<surname>Vaarala O</surname>
</name>
,
<name name-style="western">
<surname>Julkunen H</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibodies to phospholipid-binding plasma proteins and occurrence of thrombosis in patients with systemic lupus erythematosus</article-title>
.
<source>Clin Immunol Immunopathol</source>
<year>1996</year>
;
<volume>80</volume>
:
<fpage>16</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sorice M</surname>
</name>
,
<name name-style="western">
<surname>Pittoni V</surname>
</name>
,
<name name-style="western">
<surname>Circella A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-prothrombin but not “pure” anti-cardiolipin antibodies are associated with the clinical features of the antiphospholipid antibody syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1998</year>
;
<volume>80</volume>
:
<fpage>713</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bertolaccini ML</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Autoantibodies to human prothrombin and clinical manifestations in 207 patients with systemic lupus erythematosus</article-title>
.
<source>J Rheumatol</source>
<year>1998</year>
;
<volume>25</volume>
:
<fpage>1104</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Munoz-Rodriguez FJ</surname>
</name>
,
<name name-style="western">
<surname>Reverter JC</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prevalence and clinical significance of antiprothrombin antibodies in patients with systemic lupus erythematosus or with primary antiphospholipid syndrome</article-title>
.
<source>Haematologica</source>
<year>2000</year>
;
<volume>85</volume>
:
<fpage>632</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nojima J</surname>
</name>
,
<name name-style="western">
<surname>Kuratsune H</surname>
</name>
,
<name name-style="western">
<surname>Suehisa E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-prothrombin antibodies combined with lupus anti-coagulant activity is an essential risk factor for venous thromboembolism in patients with systemic lupus erythematosus</article-title>
.
<source>Br J Haematol</source>
<year>2001</year>
;
<volume>114</volume>
:
<fpage>647</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pengo V</surname>
</name>
,
<name name-style="western">
<surname>Biasiolo A</surname>
</name>
,
<name name-style="western">
<surname>Brocco T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Autoantibodies to phospholipid-binding plasma proteins in patients with thrombosis and phospholipid-reactive antibodies</article-title>
.
<source>Thromb Haemost</source>
<year>1996</year>
;
<volume>75</volume>
:
<fpage>721</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>D’Angelo A</surname>
</name>
,
<name name-style="western">
<surname>Safa O</surname>
</name>
,
<name name-style="western">
<surname>Crippa L</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship of lupus anticoagulant, anticardiolipin, anti-beta2-GPI and anti-prothrombin autoantibodies with history of thrombosis in patients with the clinical suspicion of APA-syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>78</volume>
:
<fpage>967</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Forastiero RR</surname>
</name>
,
<name name-style="western">
<surname>Martinuzzo ME</surname>
</name>
,
<name name-style="western">
<surname>Cerrato GS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship of anti beta2-glycoprotein I and anti prothrombin antibodies to thrombosis and pregnancy loss in patients with antiphospholipid antibodies</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>78</volume>
:
<fpage>1008</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M</surname>
</name>
,
<name name-style="western">
<surname>Beretta G</surname>
</name>
,
<name name-style="western">
<surname>Daldossi M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Different anticoagulant and immunological properties of anti-prothrombin antibodies in patients with antiphospholipid antibodies</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>77</volume>
:
<fpage>486</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Ieko M</surname>
</name>
,
<name name-style="western">
<surname>Bertolaccini ML</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association of autoantibodies against the phosphatidylserine-prothrombin complex with manifestations of the antiphospholipid syndrome and with the presence of lupus anticoagulant</article-title>
.
<source>Arthritis Rheum</source>
<year>2000</year>
;
<volume>43</volume>
:
<fpage>1982</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Koike T.</surname>
</name>
<article-title>Specificities, properties, and clinical significance of antiprothrombin antibodies</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>886</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nakamura N</surname>
</name>
,
<name name-style="western">
<surname>Kuragaki C</surname>
</name>
,
<name name-style="western">
<surname>Shidara Y</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibody to annexin V has anti-phospholipid and lupus anticoagulant properties</article-title>
.
<source>Am J Hematol</source>
<year>1995</year>
;
<volume>49</volume>
:
<fpage>347</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Satoh A</surname>
</name>
,
<name name-style="western">
<surname>Suzuki K</surname>
</name>
,
<name name-style="western">
<surname>Takayama E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Detection of anti-annexin IV and V antibodies in patients with antiphospholipid syndrome and systemic lupus erythematosus</article-title>
.
<source>J Rheumatol</source>
<year>1999</year>
;
<volume>26</volume>
:
<fpage>1715</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ogawa H</surname>
</name>
,
<name name-style="western">
<surname>Zhao D</surname>
</name>
,
<name name-style="western">
<surname>Dlott JS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Elevated anti-annexin V antibody levels in antiphospholipid syndrome and their involvement in antiphospholipid antibody specificities</article-title>
.
<source>Am J Clin Pathol</source>
<year>2000</year>
;
<volume>114</volume>
:
<fpage>619</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kaburaki J</surname>
</name>
,
<name name-style="western">
<surname>Kuwana M</surname>
</name>
,
<name name-style="western">
<surname>Yamamoto M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Clinical significance of anti-annexin V antibodies in patients with systemic lupus erythematosus</article-title>
.
<source>Am J Hematol</source>
<year>1997</year>
;
<volume>54</volume>
:
<fpage>209</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Palinski W</surname>
</name>
,
<name name-style="western">
<surname>Rosenfeld ME</surname>
</name>
,
<name name-style="western">
<surname>Yla-Herttuala S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Low density lipoprotein undergoes oxidative modification in vivo</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<year>1989</year>
;
<volume>86</volume>
:
<fpage>1372</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Witztum JL</surname>
</name>
,
<name name-style="western">
<surname>Steinberg D.</surname>
</name>
<article-title>Role of oxidized low density lipoprotein in atherogenesis</article-title>
.
<source>J Clin Invest</source>
<year>1991</year>
;
<volume>88</volume>
:
<fpage>1785</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wu R</surname>
</name>
,
<name name-style="western">
<surname>Lefvert AK</surname>
</name>
.
<article-title>Autoantibodies against oxidized low density lipoproteins (oxLDL): Characterization of antibody isotype, subclass, affinity and effect on the macrophage uptake of oxLDL</article-title>
.
<source>Clin Exp Immunol</source>
<year>1995</year>
;
<volume>102</volume>
:
<fpage>174</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Puurunen M</surname>
</name>
,
<name name-style="western">
<surname>Manttari M</surname>
</name>
,
<name name-style="western">
<surname>Manninen V</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibody against oxidized low-density lipoprotein predicting myocardial infarction</article-title>
.
<source>Arch Intern Med</source>
<year>1994</year>
;
<volume>154</volume>
:
<fpage>2605</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Deguchi H</surname>
</name>
,
<name name-style="western">
<surname>Fernandez JA</surname>
</name>
,
<name name-style="western">
<surname>Hackeng TM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Cardiolipin is a normal component of human plasma lipoproteins</article-title>
.
<source>Proc Natl Acad Sci USA</source>
<year>2000</year>
;
<volume>97</volume>
:
<fpage>1743</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Horkko S</surname>
</name>
,
<name name-style="western">
<surname>Olee T</surname>
</name>
,
<name name-style="western">
<surname>Mo L</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anticardiolipin antibodies from patients with the antiphospholipid antibody syndrome recognize epitopes in both beta(2)-glycoprotein 1 and oxidized low-density lipoprotein</article-title>
.
<source>Circulation</source>
<year>2001</year>
;
<volume>103</volume>
:
<fpage>941</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Auto-antibodies against oxidized low-density lipoprotein in antiphospholipid syndrome</article-title>
.
<source>Br J Rheumatol</source>
<year>1997</year>
;
<volume>36</volume>
:
<fpage>964</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Zhao D</surname>
</name>
,
<name name-style="western">
<surname>Ogawa H</surname>
</name>
,
<name name-style="western">
<surname>Wang X</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Oxidized low-density lipoprotein and autoimmune antibodies in patients with antiphospholipid syndrome with a history of thrombosis</article-title>
.
<source>Am J Clin Pathol</source>
<year>2001</year>
;
<volume>116</volume>
:
<fpage>760</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Hayem G</surname>
</name>
,
<name name-style="western">
<surname>Nicaise-Roland P</surname>
</name>
,
<name name-style="western">
<surname>Palazzo E</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-oxidized low-density-lipoprotein (OxLDL) antibodies in systemic lupus erythematosus with and without antiphospholipid syndrome</article-title>
.
<source>Lupus</source>
<year>2001</year>
;
<volume>10</volume>
:
<fpage>346</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Romero FI</surname>
</name>
,
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Arterial disease in lupus and secondary antiphospholipid syndrome: Association with anti-beta2-glycoprotein I antibodies but not with antibodies against oxidized low-density lipoprotein</article-title>
.
<source>Br J Rheumatol</source>
<year>1998</year>
;
<volume>37</volume>
:
<fpage>883</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiendothelial cell antibodies in patients with the antiphospholipid syndrome</article-title>
.
<source>Autoimmunity</source>
<year>1991</year>
;
<volume>11</volume>
:
<fpage>1</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Vismara A</surname>
</name>
,
<name name-style="western">
<surname>Meroni PL</surname>
</name>
,
<name name-style="western">
<surname>Tincani A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Relationship between anti-cardiolipin and anti-endothelial cell antibodies in systemic lupus erythematosus</article-title>
.
<source>Clin Exp Immunol</source>
<year>1988</year>
;
<volume>74</volume>
:
<fpage>247</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Meroni PL</surname>
</name>
,
<name name-style="western">
<surname>Raschi E</surname>
</name>
,
<name name-style="western">
<surname>Testoni C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antiphospholipid antibodies and the endothelium</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>587</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>McCrae KR</surname>
</name>
,
<name name-style="western">
<surname>DeMichele A</surname>
</name>
,
<name name-style="western">
<surname>Samuels P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Detection of endothelial cell-reactive immunoglobulin in patients with anti-phospholipid antibodies</article-title>
.
<source>Br J Haematol</source>
<year>1991</year>
;
<volume>79</volume>
:
<fpage>595</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sugi T</surname>
</name>
,
<name name-style="western">
<surname>McIntyre JA</surname>
</name>
.
<article-title>Certain autoantibodies to phosphatidylethanolamine (aPE) recognize factor XI and prekallikrein independently or in addition to the kininogens</article-title>
.
<source>J Autoimmun</source>
<year>2001</year>
;
<volume>17</volume>
:
<fpage>207</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Jone DW</surname>
</name>
,
<name name-style="western">
<surname>Nicholls PJ</surname>
</name>
,
<name name-style="western">
<surname>Donohoe S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibodies to factor XII are distinct from antibodies to prothrombin in patients with the anti-phospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>2002</year>
;
<volume>87</volume>
:
<fpage>426</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Galli M.</surname>
</name>
<article-title>Non beta 2-glycoprotein I cofactors for antiphospholipid antibodies</article-title>
.
<source>Lupus</source>
<year>1996</year>
;
<volume>5</volume>
:
<fpage>388</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Laperche S</surname>
</name>
,
<name name-style="western">
<surname>Abuaf N</surname>
</name>
,
<name name-style="western">
<surname>Meyer O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Association of antimitochondrial antibodies type 5 and anti-beta 2 glycoprotein I antibodies in the antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>1994</year>
;
<volume>21</volume>
:
<fpage>1678</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Tektonidou MG</surname>
</name>
,
<name name-style="western">
<surname>Petrovas CA</surname>
</name>
,
<name name-style="western">
<surname>Ioannidis JP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Clinical importance of antibodies against platelet activating factor in antiphospholipid syndrome manifestations</article-title>
.
<source>Eur J Clin Invest</source>
<year>2000</year>
;
<volume>30</volume>
:
<fpage>646</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cugno M</surname>
</name>
,
<name name-style="western">
<surname>Dominguez M</surname>
</name>
,
<name name-style="western">
<surname>Cabibbe M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Antibodies to tissue-type plasminogen activator in plasma from patients with primary antiphospholipid syndrome</article-title>
.
<source>Br J Haematol</source>
<year>2000</year>
;
<volume>108</volume>
:
<fpage>871</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rampazzo P</surname>
</name>
,
<name name-style="western">
<surname>Biasiolo A</surname>
</name>
,
<name name-style="western">
<surname>Garin J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Some patients with antiphospholipid syndrome express hitherto undescribed antibodies to cardiolipin-binding proteins</article-title>
.
<source>Thromb Haemost</source>
<year>2001</year>
;
<volume>85</volume>
:
<fpage>57</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bidot CJ</surname>
</name>
,
<name name-style="western">
<surname>Jy W</surname>
</name>
,
<name name-style="western">
<surname>Horstman LL</surname>
</name>
,
<name name-style="western">
<surname>Huisheng H</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Factor VII/VIIa: A new antigen in the anti-phospholipid anti body syndrome</article-title>
.
<source>Br J Haematol</source>
<year>2003</year>
;
<volume>120</volume>
:
<fpage>618</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Romero FI</surname>
</name>
,
<name name-style="western">
<surname>Atsumi T</surname>
</name>
,
<name name-style="western">
<surname>Tinahones FJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Auto-antibodies against malondialdehyde-modified lipoprotein(a) in antiphospholipid syndrome</article-title>
.
<source>Arthritis Rheum</source>
<year>1999</year>
;
<volume>42</volume>
:
<fpage>2606</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Laroche P</surname>
</name>
,
<name name-style="western">
<surname>Berard M</surname>
</name>
,
<name name-style="western">
<surname>Rouquette AM</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Advantage of using both anionic and zwitterionic phospholipid antigens for the detection of antiphospholipid antibodies</article-title>
.
<source>Am J Clin Pathol</source>
<year>1996</year>
;
<volume>106</volume>
:
<fpage>549</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bertolaccini ML</surname>
</name>
,
<name name-style="western">
<surname>Roch B</surname>
</name>
,
<name name-style="western">
<surname>Amengual O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Multiple antiphospholipid tests do not increase the diagnostic yield in antiphospholipid syndrome</article-title>
.
<source>Br J Rheumatol</source>
<year>1998</year>
;
<volume>37</volume>
:
<fpage>1229</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harris EN</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Loizou S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Crossreactivity of antiphospholipid antibodies</article-title>
.
<source>J Clin Lab Immunol</source>
<year>1985</year>
;
<volume>16</volume>
:
<fpage>1</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Berard M</surname>
</name>
,
<name name-style="western">
<surname>Chantome R</surname>
</name>
,
<name name-style="western">
<surname>Marcelli A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phosphatidylethanolamine antibodies as the only antiphospholipid antibodies. I. Association with thrombosis and vascular cutaneous diseases</article-title>
.
<source>J Rheumatol</source>
<year>1996</year>
;
<volume>23</volume>
:
<fpage>1369</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Karmochkine M</surname>
</name>
,
<name name-style="western">
<surname>Berard M</surname>
</name>
,
<name name-style="western">
<surname>Piette JC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phosphatidylethanolamine antibodies in systemic lupus erythematosus</article-title>
.
<source>Lupus</source>
<year>1993</year>
;
<volume>2</volume>
:
<fpage>157</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Toschi V</surname>
</name>
,
<name name-style="western">
<surname>Motta A</surname>
</name>
,
<name name-style="western">
<surname>Castelli C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prevalence and clinical significance of antiphospholipid antibodies to noncardiolipin antigens in systemic lupus erythematosus</article-title>
.
<source>Haemostasis</source>
<year>1993</year>
;
<volume>23</volume>
:
<fpage>275</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Toschi V</surname>
</name>
,
<name name-style="western">
<surname>Motta A</surname>
</name>
,
<name name-style="western">
<surname>Castelli C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>High prevalence of antiphosphatidylinositol antibodies in young patients with cerebral ischemia of undetermined cause</article-title>
.
<source>Stroke</source>
<year>1998</year>
;
<volume>29</volume>
:
<fpage>1759</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Falcon CR</surname>
</name>
,
<name name-style="western">
<surname>Hoffer AM</surname>
</name>
,
<name name-style="western">
<surname>Carreras LO</surname>
</name>
.
<article-title>Antiphosphatidylinositol antibodies as markers of the antiphospholipid syndrome</article-title>
.
<source>Thromb Haemost</source>
<year>1990</year>
;
<volume>63</volume>
:
<fpage>321</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lopez-Soto A</surname>
</name>
,
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>Font J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Isotype distribution and clinical significance of antibodies to cardiolipin, phosphatidic acid, phosphatidylinositol and phosphatidylserine in systemic lupus erythematosus: Prospective analysis of a series of 92 patients</article-title>
.
<source>Clin Exp Rheumatol</source>
<year>1997</year>
;
<volume>15</volume>
:
<fpage>143</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Weidmann CE</surname>
</name>
,
<name name-style="western">
<surname>Wallace DJ</surname>
</name>
,
<name name-style="western">
<surname>Peter JB</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Studies of IgG, IgM and IgA antiphospholipid antibody isotypes in systemic lupus erythematosus</article-title>
.
<source>J Rheumatol</source>
<year>1988</year>
;
<volume>15</volume>
:
<fpage>74</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>Silver R</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Anti-phospholipid antibodies other than lupus anticoagulant and anticardiolipin antibodies in women with recurrent pregnancy loss, fertile controls, and antiphospholipid syndrome</article-title>
.
<source>Obstet Gynecol</source>
<year>1997</year>
;
<volume>89</volume>
:
<fpage>549</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Loizou S</surname>
</name>
,
<name name-style="western">
<surname>McCrea JD</surname>
</name>
,
<name name-style="western">
<surname>Rudge AC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Measurement of anti-cardiolipin antibodies by an enzyme-linked immunosorbentassay (ELISA): Standardization and quantitation of results</article-title>
.
<source>Clin Exp Immunol</source>
<year>1985</year>
;
<volume>62</volume>
:
<fpage>738</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Vila P</surname>
</name>
,
<name name-style="western">
<surname>Hernandez MC</surname>
</name>
,
<name name-style="western">
<surname>Lopez-Fernandez MF</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects</article-title>
.
<source>Thromb Haemost</source>
<year>1994</year>
;
<volume>72</volume>
:
<fpage>209</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wilson WA</surname>
</name>
.
<article-title>Classification criteria for antiphospholipid syndrome</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>499</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lockshin MD</surname>
</name>
,
<name name-style="western">
<surname>Sammaritano LR</surname>
</name>
,
<name name-style="western">
<surname>Schwartzman S.</surname>
</name>
<article-title>Validation of the Sapporo criteria for antiphospholipid syndrome</article-title>
.
<source>Arthritis Rheum</source>
<year>2000</year>
;
<volume>43</volume>
:
<fpage>440</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wilson WA</surname>
</name>
,
<name name-style="western">
<surname>Gharavi AE</surname>
</name>
,
<name name-style="western">
<surname>Piette JC</surname>
</name>
.
<article-title>International classification criteria for antiphospholipid syndrome: Synopsis of a post-conference workshop held at the Ninth International (Tours) aPL Symposium</article-title>
.
<source>Lupus</source>
<year>2001</year>
;
<volume>10</volume>
:
<fpage>457</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Piette JC</surname>
</name>
,
<name name-style="western">
<surname>Wechsler B</surname>
</name>
,
<name name-style="western">
<surname>Frances C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Exclusion criteria for primary antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>1993</year>
;
<volume>20</volume>
:
<fpage>1802</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cowchock FS</surname>
</name>
,
<name name-style="western">
<surname>Reece EA</surname>
</name>
,
<name name-style="western">
<surname>Balaban D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Repeated fetal losses associated with antiphospholipid antibodies: A collaborative randomized trial comparing prednisone with low-dose heparin treatment</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1992</year>
;
<volume>166</volume>
:
<fpage>1318</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Balasch J</surname>
</name>
,
<name name-style="western">
<surname>Carmona F</surname>
</name>
,
<name name-style="western">
<surname>Lopez-Soto A</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Low-dose aspirin for prevention of pregnancy losses in women with primary antiphospholipid syndrome</article-title>
.
<source>Hum Reprod</source>
<year>1993</year>
;
<volume>8</volume>
:
<fpage>2234</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Farquharson RG</surname>
</name>
,
<name name-style="western">
<surname>Quenby S</surname>
</name>
,
<name name-style="western">
<surname>Greaves M.</surname>
</name>
<article-title>Antiphospholipid syndrome in pregnancy: A randomized, controlled trial of treatment</article-title>
.
<source>Obstet Gynecol</source>
<year>2002</year>
;
<volume>100</volume>
:
<fpage>408</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Erkan D</surname>
</name>
,
<name name-style="western">
<surname>Merrill JT</surname>
</name>
,
<name name-style="western">
<surname>Yazici Y</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>High thrombosis rate after fetal loss in antiphospholipid syndrome: Effective prophylaxis with aspirin</article-title>
.
<source>Arthritis Rheum</source>
<year>2001</year>
;
<volume>44</volume>
:
<fpage>1466</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wahl DG</surname>
</name>
,
<name name-style="western">
<surname>Bounameaux H</surname>
</name>
,
<name name-style="western">
<surname>de Moerloose P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prophylactic antithrombotic therapy for patients with systemic lupus erythematosus with or without antiphospholipid antibodies: Do the benefits outweigh the risks? A decision analysis</article-title>
.
<source>Arch Intern Med</source>
<year>2000</year>
;
<volume>160</volume>
:
<fpage>2042</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Petri M.</surname>
</name>
<article-title>Hydroxychloroquine: Past, present, future</article-title>
.
<source>Lupus</source>
<year>1998</year>
;
<volume>7</volume>
:
<fpage>65</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Petri M.</surname>
</name>
<article-title>Management of thrombosis in antiphospholipid antibody syndrome</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>633</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Lockshin MD</surname>
</name>
.
<article-title>Antiphospholipid antibody syndrome</article-title>
. In:
<name name-style="western">
<surname>Ruddy S</surname>
</name>
,
<name name-style="western">
<surname>Harris ED</surname>
</name>
,
<name name-style="western">
<surname>Sledge CB</surname>
</name>
, eds.
<source>Kelly’s Textbook of Rheumatology</source>
.
<publisher-loc>Philadelphia</publisher-loc>
:
<publisher-name>W.B. Saunders Company</publisher-name>
,
<year>2001</year>
;
<fpage>1145</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Myones BL</surname>
</name>
,
<name name-style="western">
<surname>McCurdy D.</surname>
</name>
<article-title>The antiphospholipid syndrome: Immunologic and clinical aspects. Clinical spectrum and treatment</article-title>
.
<source>J Rheumatol</source>
<year>2000</year>
;
<volume>27</volume>
<issue>Suppl 58</issue>
:
<fpage>20</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Baker WF Jr</surname>
</name>
,
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Treatment of hereditary and acquired thrombophilic disorders</article-title>
.
<source>Semin Thromb Hemost</source>
<year>1999</year>
;
<volume>25</volume>
:
<fpage>387</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harpaz D</surname>
</name>
,
<name name-style="western">
<surname>Glikson M</surname>
</name>
,
<name name-style="western">
<surname>Sidi Y</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Successful thrombolytic therapy for acute myocardial infarction in a patient with the antiphospholipid antibody syndrome</article-title>
.
<source>Am Heart J</source>
<year>1991</year>
;
<volume>122</volume>
:
<fpage>1492</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ho YL</surname>
</name>
,
<name name-style="western">
<surname>Chen MF</surname>
</name>
,
<name name-style="western">
<surname>Wu CC</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Successful treatment of acute myocardial infarction by thrombolytic therapy in a patient with primary antiphospholipid antibody syndrome</article-title>
.
<source>Cardiology</source>
<year>1996</year>
;
<volume>87</volume>
:
<fpage>354</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Jankowski M</surname>
</name>
,
<name name-style="western">
<surname>Dudek D</surname>
</name>
,
<name name-style="western">
<surname>Dubiel JS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Successful coronary stent implantation in a patient with primary antiphospholipid syndrome</article-title>
.
<source>Blood Coagul Fibrinolysis</source>
<year>1998</year>
;
<volume>9</volume>
:
<fpage>753</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Khamashta MA</surname>
</name>
,
<name name-style="western">
<surname>Cuadrado MJ</surname>
</name>
,
<name name-style="western">
<surname>Mujic F</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The management of thrombosis in the antiphospholipid-antibody syndrome</article-title>
.
<source>N Engl J Med</source>
<year>1995</year>
;
<volume>332</volume>
:
<fpage>993</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Derksen RHWM</surname>
</name>
,
<name name-style="western">
<surname>de Groot PG</surname>
</name>
.
<article-title>Do we know which patients with the antiphospholipid syndrome should receive long-term high dose anti-coagulation?</article-title>
<source>J Autoimmun</source>
<year>2000</year>
;
<volume>15</volume>
:
<fpage>255</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Alarcon-Segovia D</surname>
</name>
,
<name name-style="western">
<surname>Boffa MC</surname>
</name>
,
<name name-style="western">
<surname>Branch W</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prophylaxis of the antiphospholipid syndrome: A consensus report</article-title>
.
<source>Lupus</source>
<year>2003</year>
;
<volume>12</volume>
:
<fpage>499</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>al Sayegh FA</surname>
</name>
,
<name name-style="western">
<surname>Ensworth S</surname>
</name>
,
<name name-style="western">
<surname>Huang S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Hemorrhagic complications of long-term anticoagulant therapy in seven patients with systemic lupus erythematosus and antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>1997</year>
;
<volume>24</volume>
:
<fpage>1716</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>van der Meer FJ</surname>
</name>
,
<name name-style="western">
<surname>Rosendaal FR</surname>
</name>
,
<name name-style="western">
<surname>Vandenbroucke JP</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Bleeding complications in oral anticoagulant therapy. An analysis of risk factors</article-title>
.
<source>Arch Intern Med</source>
<year>1993</year>
;
<volume>153</volume>
:
<fpage>1557</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Douketis JD</surname>
</name>
,
<name name-style="western">
<surname>Crowther MA</surname>
</name>
,
<name name-style="western">
<surname>Julian JA</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>The effects of low-intensity warfarin on coagulation activation in patients with antiphospholipid antibodies and systemic lupus erythematosus</article-title>
.
<source>Thromb Haemost</source>
<year>1999</year>
;
<volume>82</volume>
:
<fpage>1028</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Crowther MA</surname>
</name>
,
<name name-style="western">
<surname>Ginsberg JS</surname>
</name>
,
<name name-style="western">
<surname>Julian J</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A comparison of two intensities of warfarin for the prevention of recurrent thrombosis in patients with the antiphospholipid antibody syndrome</article-title>
.
<source>N Engl J Med</source>
<year>2003</year>
;
<volume>349</volume>
:
<fpage>1133</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Moll S</surname>
</name>
,
<name name-style="western">
<surname>Ortel TL</surname>
</name>
.
<article-title>Monitoring warfarin therapy in patients with lupus anticoagulants</article-title>
.
<source>Ann Intern Med</source>
<year>1997</year>
;
<volume>127</volume>
:
<fpage>177</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Della Valle P</surname>
</name>
,
<name name-style="western">
<surname>Crippa L</surname>
</name>
,
<name name-style="western">
<surname>Safa O</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Potential failure of the International Normalized Ratio (INR) System in the monitoring of oral anticoagulation in patients with lupus anticoagulants</article-title>
.
<source>Ann Med Interne (Paris)</source>
<year>1996</year>
;
<volume>147</volume>
<issue>Suppl 1</issue>
:
<fpage>10</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
,
<name name-style="western">
<surname>Rice J.</surname>
</name>
<article-title>Long-term outpatient dalteparin (fragmin) therapy for arterial and venous thrombosis: Efficacy and safety—a preliminary report</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>1999</year>
;
<volume>5</volume>
(
<issue>Suppl 1</issue>
):
<fpage>S67</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Guerin J</surname>
</name>
,
<name name-style="western">
<surname>Sheng Y</surname>
</name>
,
<name name-style="western">
<surname>Reddel S</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Heparin inhibits the binding of beta 2-glycoprotein I to phospholipids and promotes the plasmin-mediated inactivation of this blood protein. Elucidation of the consequences of the two biological events in patients with the anti-phospholipid syndrome</article-title>
.
<source>J Biol Chem</source>
<year>2002</year>
;
<volume>277</volume>
:
<fpage>2644</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Suarez IM</surname>
</name>
,
<name name-style="western">
<surname>Diaz RA</surname>
</name>
,
<name name-style="western">
<surname>Aguayo Canela D</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Correction of severe thrombocytopenia with chloroquine in the primary antiphospholipid syndrome</article-title>
.
<source>Lupus</source>
<year>1996</year>
;
<volume>5</volume>
:
<fpage>81</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Alarcon-Segovia D</surname>
</name>
,
<name name-style="western">
<surname>Sanchez-Guerrero J.</surname>
</name>
<article-title>Correction of thrombocytopenia with small dose aspirin in the primary antiphospholipid syndrome</article-title>
.
<source>J Rheumatol</source>
<year>1989</year>
;
<volume>16</volume>
:
<fpage>1359</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Blanco R</surname>
</name>
,
<name name-style="western">
<surname>Martinez-Taboada VM</surname>
</name>
,
<name name-style="western">
<surname>Rodriguez-Valverde V</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Successful therapy with danazol in refractory autoimmune thrombocytopenia associated with rheumatic diseases</article-title>
.
<source>Br J Rheumatol</source>
<year>1997</year>
;
<volume>36</volume>
:
<fpage>1095</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Heilmann L</surname>
</name>
,
<name name-style="western">
<surname>von Tempelhoff GF</surname>
</name>
,
<name name-style="western">
<surname>Kuse S.</surname>
</name>
<article-title>The influence of antiphospholipid antibodies on the pregnancy outcome of patients with recurrent spontaneous abortion</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2001</year>
;
<volume>7</volume>
:
<fpage>281</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Shehata HA</surname>
</name>
,
<name name-style="western">
<surname>Nelson-Piercy C</surname>
</name>
,
<name name-style="western">
<surname>Khamasta MA</surname>
</name>
.
<article-title>Management of pregnancy in antiphospholipid syndrome</article-title>
.
<source>Rheum Dis Clin North Am</source>
<year>2001</year>
;
<volume>27</volume>
:
<fpage>661</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Rai R</surname>
</name>
,
<name name-style="western">
<surname>Cohen H</surname>
</name>
,
<name name-style="western">
<surname>Dave M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phospholipid antibodies (or antiphospholipid antibodies)</article-title>
.
<source>BMJ</source>
<year>1997</year>
;
<volume>314</volume>
:
<fpage>253</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kutteh WH</surname>
</name>
.
<article-title>Antiphospholipid antibody-associated recurrent pregnancy loss-treatment with heparin and low dose aspirin is superior to low-dose aspirin alone</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1996</year>
;
<volume>174</volume>
:
<fpage>1584</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pattison NS</surname>
</name>
,
<name name-style="western">
<surname>Chamley LW</surname>
</name>
,
<name name-style="western">
<surname>Birdsall M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Does aspirin have a role in improving pregnancy outcome for women with the antiphospholipid syndrome? A randomized controlled trial</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>2000</year>
;
<volume>183</volume>
:
<fpage>1008</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ginsberg JS</surname>
</name>
,
<name name-style="western">
<surname>Greer I</surname>
</name>
,
<name name-style="western">
<surname>Hirsh J.</surname>
</name>
<article-title>Use of antithrombotic agents during pregnancy</article-title>
.
<source>Chest</source>
<year>2001</year>
;
<volume>119</volume>
<issue>Suppl</issue>
:
<fpage>122S</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bick RL</surname>
</name>
.
<article-title>Recurrent miscarriage syndrome due to blood coagulation protein/platelet defects: Prevalence, treatment and outcome results. DRW Metroplex Recurrent Miscarriage Syndrome Cooperative Group</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2000</year>
;
<volume>6</volume>
:
<fpage>115</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>Caliandro D</surname>
</name>
,
<name name-style="western">
<surname>Castellani R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Low-molecular weight heparin restores in-vitro trophoblast invasiveness and differentiation in presence of immunoglobulin G fractions obtained from patients with antiphospholipid syndrome</article-title>
.
<source>Hum Reprod</source>
<year>1999</year>
;
<volume>14</volume>
:
<fpage>489</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Di Simone N</surname>
</name>
,
<name name-style="western">
<surname>Ferrazzani S</surname>
</name>
,
<name name-style="western">
<surname>Castellani R</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Heparin and low-dose aspirin restore placental human chorionic gonadotrophin secretion abolished by antiphospholipid antibody-containing sera</article-title>
.
<source>Hum Reprod</source>
<year>1997</year>
;
<volume>12</volume>
:
<fpage>2061</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Silver RK</surname>
</name>
,
<name name-style="western">
<surname>MacGregor SN</surname>
</name>
,
<name name-style="western">
<surname>Sholl JS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Comparative trial of prednisone plus aspirin versus aspirin alone in the treatment of anticardiolipin antibody-positive obstetric patients</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1993</year>
;
<volume>169</volume>
:
<fpage>1411</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Laskin CA</surname>
</name>
,
<name name-style="western">
<surname>Bombardier C</surname>
</name>
,
<name name-style="western">
<surname>Hannah ME</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Prednisone and aspirin in women with autoantibodies and unexplained recurrent fetal loss</article-title>
.
<source>N Engl J Med</source>
<year>1997</year>
;
<volume>337</volume>
:
<fpage>148</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Spinnato JA</surname>
</name>
,
<name name-style="western">
<surname>Clark AL</surname>
</name>
,
<name name-style="western">
<surname>Pierangeli SS</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Intravenous immunoglobulin therapy for the antiphospholipid syndrome in pregnancy</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1995</year>
;
<volume>172</volume>
:
<fpage>690</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kaaja R</surname>
</name>
,
<name name-style="western">
<surname>Julkunen H</surname>
</name>
,
<name name-style="western">
<surname>Ammala P</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Intravenous immunoglobulin treatment of pregnant patients with recurrent pregnancy losses associated with antiphospholipid antibodies</article-title>
.
<source>Acta Obstet Gynecol Scand</source>
<year>1993</year>
;
<volume>72</volume>
:
<fpage>63</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>The Pregnancy Loss Study Group</surname>
</name>
.
<name name-style="western">
<surname>Branch DW</surname>
</name>
,
<name name-style="western">
<surname>Peaceman AM</surname>
</name>
,
<name name-style="western">
<surname>Druzin M</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>A multicenter, placebo-controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during pregnancy</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>2000</year>
;
<volume>182</volume>
:
<fpage>122</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Triolo G</surname>
</name>
,
<name name-style="western">
<surname>Ferrante A</surname>
</name>
,
<name name-style="western">
<surname>Ciccia F</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Randomized study of subcutaneous low molecular weight heparin plus aspirin versus intravenous immunoglobulin in the treatment of recurrent fetal loss associated with antiphospholipid antibodies</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>728</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cowchock S</surname>
</name>
,
<name name-style="western">
<surname>Reece EA</surname>
</name>
.
<article-title>Do low-risk pregnant women with antiphospholipid antibodies need to be treated? Organizing Group of the Antiphospholipid Antibody Treatment Trial</article-title>
.
<source>Am J Obstet Gynecol</source>
<year>1997</year>
;
<volume>176</volume>
:
<fpage>1099</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Asherson RA</surname>
</name>
,
<name name-style="western">
<surname>Cervera R</surname>
</name>
,
<name name-style="western">
<surname>de Groot PG</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Catastrophic Antiphospholipid Syndrome Registry Project Group. Catastrophic antiphospholipid syndrome: International consensus statement on classification criteria and treatment guidelines</article-title>
.
<source>Lupus</source>
<year>2003</year>
;
<volume>12</volume>
:
<fpage>530</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Visvanathan S</surname>
</name>
,
<name name-style="western">
<surname>Scott JK</surname>
</name>
,
<name name-style="western">
<surname>Hwang KK</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Identification and characterization of a peptide mimetic that may detect a species of disease-associated anticardiolipin antibodies in patients with the antiphospholipid syndrome</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>737</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ellis MH</surname>
</name>
,
<name name-style="western">
<surname>Kesler A</surname>
</name>
,
<name name-style="western">
<surname>Friedman Z</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Value of prothrombin fragment 1.2 (F 1.2) in the diagnosis of stroke in young patients with antiphospholipid antibodies</article-title>
.
<source>Clin Appl Thromb Hemost</source>
<year>2000</year>
;
<volume>6</volume>
:
<fpage>61</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Erkan D</surname>
</name>
,
<name name-style="western">
<surname>Yazici Y</surname>
</name>
,
<name name-style="western">
<surname>Harrison MJ</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>APLASA study: Primary thrombosis prevention in asymptomatic antiphospholipid antibody (APL) patients with low dose aspirin (ASA)</article-title>
.
<source>Lupus</source>
<year>2002</year>
;
<volume>11</volume>
:
<fpage>573</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Cooper C</surname>
</name>
,
<name name-style="western">
<surname>Choy E</surname>
</name>
,
<article-title>Arthritis Research Campaign’s Clinical Trials Committee. The blossoming of evidence-based clinical rheumatology: The Arthritis Research Campaign’s Clinical Trials Collaboration in association with the MRC Clinical Trials Unit, BSR and BOA</article-title>
.
<source>Rheumatology</source>
<year>2003</year>
;
<volume>42</volume>
:
<fpage>713</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Finazzi G</surname>
</name>
,
<name name-style="western">
<surname>Barbui T.</surname>
</name>
<article-title>Feasibility of a randomized clinical trial for the prevention of recurrent thrombosis in the antiphospholipid syndrome: the WAPS project. Provisional Steering Committee of the Warfarin in Antiphospholipid Syndrome (WAPS) Study</article-title>
.
<source>Ann Med Interne (Paris)</source>
<year>1996</year>
;
<volume>147</volume>
<issue>Suppl 1</issue>
:
<fpage>38</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Meroni PL</surname>
</name>
,
<name name-style="western">
<surname>Raschi E</surname>
</name>
,
<name name-style="western">
<surname>Testoni C</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Statins prevent endothelial cell activation induced by antiphospholipid (anti-beta2-glycoprotein I) antibodies: Effect on the proadhesive and proinflammatory phenotype</article-title>
.
<source>Arthritis Rheum</source>
<year>2001</year>
;
<volume>44</volume>
:
<fpage>2870</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Ferrara DE</surname>
</name>
,
<name name-style="western">
<surname>Liu X</surname>
</name>
,
<name name-style="western">
<surname>Espinola RG</surname>
</name>
,
<name name-style="western">
<surname>et al.</surname>
</name>
<article-title>Inhibition of the thrombogenic and inflammatory properties of antiphospholipid antibodies by fluvastatin in an in vivo animal model</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>3272</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Bajaj MS</surname>
</name>
,
<name name-style="western">
<surname>Bajaj SP</surname>
</name>
.
<article-title>Tissue factor pathway inhibitor: Potential therapeutic applications</article-title>
.
<source>Thromb Haemost</source>
<year>1997</year>
;
<volume>78</volume>
:
<fpage>471</fpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Roubey RAS</surname>
</name>
.
<article-title>New approaches to prevention of thrombosis in the antiphospholipid syndrome: Hopes, trials, and tribulations</article-title>
.
<source>Arthritis Rheum</source>
<year>2003</year>
;
<volume>48</volume>
:
<fpage>3004</fpage>
.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia</title>
</titleInfo>
<name type="personal">
<namePart type="given">M. Akif</namePart>
<namePart type="family">Öztürk</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Gazi University School of Medicine, Department of Rheumatology</affiliation>
</name>
<name type="personal">
<namePart type="given">Ibrahim C.</namePart>
<namePart type="family">Haznedaroğlu</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</name>
<name type="personal">
<namePart type="given">Mehmet</namePart>
<namePart type="family">Turgut</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</name>
<name type="personal">
<namePart type="given">Hakan</namePart>
<namePart type="family">Göker</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>Hacettepe University School of Medicine, Department of Hematology, Ankara, Turkey</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Sage Publications</publisher>
<place>
<placeTerm type="text">Sage CA: Thousand Oaks, CA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-04</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Antiphospholipid (APL) syndrome is the most common form of acquired thrombophilia. It can cause significant morbidity and even mortality. The term “APL antibodies” represents a heterogeneous group of antibodies associated with this disorder. Currently no single assay can identify every APL antibody. Clinically relevant APL antibodies are mainly anticardiolipin antibodies (ACA) detected by solid phase enzyme-linked immunosorbent assay (ELISA) and lupus anticoagulants (LA) demonstrated by in vitro coagulation assay. However, there are some other antibodies associated with the APL syndrome (i.e., subgroup APL antibodies). ACAs, LAs, and subgroup APL antibodies represent intersecting, but non-identical, subsets of autoantibodies. Thus, those autoantibodies may coexist or may occur independently. Any organ system and any size of vessel can be affected during the clinical course of the disease. Therefore, the APL syndrome can manifest itself in a wide variety of clinical thrombotic features. Fetal loss and pregnancy morbidity represent a specific challenge. Despite tremendous advances in the understanding of the pathogenesis of APL syndrome during the past decade, the mainstay of management is still anticoagulation. However, there is no general agreement regarding the duration and intensity of anticoagulant therapy. In this review, we focused on the current dilemmas and their present clarifications in the wide clinicopathologic spectrum of APL syndrome and APL antibody-related distinct pathologic conditions.</abstract>
<subject>
<genre>keywords</genre>
<topic>Antiphospholipid antibody syndrome</topic>
<topic>Antiphospholipid antibodies</topic>
<topic>Lupus anticoagulants</topic>
<topic>Anticardiolipin antibodies</topic>
<topic>Terminology</topic>
<topic>Clinical features</topic>
<topic>Laboratory investigation</topic>
<topic>Pathobiology</topic>
<topic>Management</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Clinical and Applied Thrombosis/Hemostasis</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1076-0296</identifier>
<identifier type="eISSN">1938-2723</identifier>
<identifier type="PublisherID">CAT</identifier>
<identifier type="PublisherID-hwp">spcat</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>89</start>
<end>126</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">B827091BEADC215794937213345837B0228A0FE5</identifier>
<identifier type="ark">ark:/67375/M70-T6B88BCZ-M</identifier>
<identifier type="DOI">10.1177/107602960401000201</identifier>
<identifier type="ArticleID">10.1177_107602960401000201</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-0J1N7DQT-B">sage</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/M70-T6B88BCZ-M/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/ChloroquineV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002031 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002031 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    ChloroquineV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B827091BEADC215794937213345837B0228A0FE5
   |texte=   Current Debates in Antiphospholipid Syndrome: The Acquired Antibody-Mediated Thrombophilia
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Mar 25 22:43:59 2020. Site generation: Sun Jan 31 12:44:45 2021