Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

Identifieur interne : 001D01 ( Ncbi/Checkpoint ); précédent : 001D00; suivant : 001D02

Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice

Auteurs : Kalina Makowiecki ; Alan R. Harvey ; Rachel M. Sherrard [France] ; Jennifer Rodger

Source :

RBID : PMC:4122806

Descripteurs français

English descriptors

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5−/− (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5−/− mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5−/− mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5−/− mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.


Url:
DOI: 10.1523/JNEUROSCI.0723-14.2014
PubMed: 25100609
PubMed Central: 4122806


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4122806

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice</title>
<author>
<name sortKey="Makowiecki, Kalina" sort="Makowiecki, Kalina" uniqKey="Makowiecki K" first="Kalina" last="Makowiecki">Kalina Makowiecki</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Alan R" sort="Harvey, Alan R" uniqKey="Harvey A" first="Alan R." last="Harvey">Alan R. Harvey</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009</nlm:aff>
<wicri:noCountry code="subfield">Western Australia 6009</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
<affiliation wicri:level="3">
<nlm:aff id="aff3">Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodger, Jennifer" sort="Rodger, Jennifer" uniqKey="Rodger J" first="Jennifer" last="Rodger">Jennifer Rodger</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25100609</idno>
<idno type="pmc">4122806</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122806</idno>
<idno type="RBID">PMC:4122806</idno>
<idno type="doi">10.1523/JNEUROSCI.0723-14.2014</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001994</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001994</idno>
<idno type="wicri:Area/Pmc/Curation">001852</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">001852</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001485</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">001485</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">003567</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003567</idno>
<idno type="wicri:Area/PubMed/Curation">003454</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003454</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003454</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003454</idno>
<idno type="wicri:Area/Ncbi/Merge">001D01</idno>
<idno type="wicri:Area/Ncbi/Curation">001D01</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001D01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice</title>
<author>
<name sortKey="Makowiecki, Kalina" sort="Makowiecki, Kalina" uniqKey="Makowiecki K" first="Kalina" last="Makowiecki">Kalina Makowiecki</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Alan R" sort="Harvey, Alan R" uniqKey="Harvey A" first="Alan R." last="Harvey">Alan R. Harvey</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009</nlm:aff>
<wicri:noCountry code="subfield">Western Australia 6009</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
<affiliation wicri:level="3">
<nlm:aff id="aff3">Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodger, Jennifer" sort="Rodger, Jennifer" uniqKey="Rodger J" first="Jennifer" last="Rodger">Jennifer Rodger</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1">Experimental and Regenerative Neuroscience, School of Animal Biology</nlm:aff>
<wicri:noCountry code="subfield">School of Animal Biology</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Neuroscience</title>
<idno type="ISSN">0270-6474</idno>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Biophysics</term>
<term>Brain Diseases (genetics)</term>
<term>Brain Diseases (pathology)</term>
<term>Brain Diseases (therapy)</term>
<term>Brain Mapping</term>
<term>Brain-Derived Neurotrophic Factor (genetics)</term>
<term>Brain-Derived Neurotrophic Factor (metabolism)</term>
<term>Ephrin-A2 (deficiency)</term>
<term>Ephrin-A2 (genetics)</term>
<term>Ephrin-A5 (deficiency)</term>
<term>Ephrin-A5 (genetics)</term>
<term>Geniculate Bodies (abnormalities)</term>
<term>Geniculate Bodies (pathology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Neural Pathways (abnormalities)</term>
<term>Neural Pathways (pathology)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Transcranial Magnetic Stimulation</term>
<term>Up-Regulation (genetics)</term>
<term>Up-Regulation (physiology)</term>
<term>Visual Cortex (abnormalities)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Analyse de variance</term>
<term>Animaux</term>
<term>Biophysique</term>
<term>Cartographie cérébrale</term>
<term>Corps géniculés (anatomopathologie)</term>
<term>Corps géniculés (malformations)</term>
<term>Cortex visuel (malformations)</term>
<term>Encéphalopathies ()</term>
<term>Encéphalopathies (anatomopathologie)</term>
<term>Encéphalopathies (génétique)</term>
<term>Facteur neurotrophique dérivé du cerveau (génétique)</term>
<term>Facteur neurotrophique dérivé du cerveau (métabolisme)</term>
<term>Régulation positive (génétique)</term>
<term>Régulation positive (physiologie)</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Stimulation magnétique transcrânienne</term>
<term>Voies nerveuses (anatomopathologie)</term>
<term>Voies nerveuses (malformations)</term>
<term>Éphrine A2 (déficit)</term>
<term>Éphrine A2 (génétique)</term>
<term>Éphrine A5 (déficit)</term>
<term>Éphrine A5 (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Ephrin-A2</term>
<term>Ephrin-A5</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Brain-Derived Neurotrophic Factor</term>
<term>Ephrin-A2</term>
<term>Ephrin-A5</term>
</keywords>
<keywords scheme="MESH" qualifier="abnormalities" xml:lang="en">
<term>Geniculate Bodies</term>
<term>Neural Pathways</term>
<term>Visual Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Corps géniculés</term>
<term>Encéphalopathies</term>
<term>Voies nerveuses</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Éphrine A2</term>
<term>Éphrine A5</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brain Diseases</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Encéphalopathies</term>
<term>Facteur neurotrophique dérivé du cerveau</term>
<term>Régulation positive</term>
<term>Éphrine A2</term>
<term>Éphrine A5</term>
</keywords>
<keywords scheme="MESH" qualifier="malformations" xml:lang="fr">
<term>Corps géniculés</term>
<term>Cortex visuel</term>
<term>Voies nerveuses</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Brain-Derived Neurotrophic Factor</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Facteur neurotrophique dérivé du cerveau</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain Diseases</term>
<term>Geniculate Bodies</term>
<term>Neural Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation positive</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Brain Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Biophysics</term>
<term>Brain Mapping</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de variance</term>
<term>Animaux</term>
<term>Biophysique</term>
<term>Cartographie cérébrale</term>
<term>Encéphalopathies</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Stimulation magnétique transcrânienne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type,
<italic>n</italic>
= 22) and ephrin-A2A5
<sup>−/−</sup>
(
<italic>n</italic>
= 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5
<sup>−/−</sup>
mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5
<sup>−/−</sup>
mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5
<sup>−/−</sup>
mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.</p>
</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Harvey, Alan R" sort="Harvey, Alan R" uniqKey="Harvey A" first="Alan R." last="Harvey">Alan R. Harvey</name>
<name sortKey="Makowiecki, Kalina" sort="Makowiecki, Kalina" uniqKey="Makowiecki K" first="Kalina" last="Makowiecki">Kalina Makowiecki</name>
<name sortKey="Rodger, Jennifer" sort="Rodger, Jennifer" uniqKey="Rodger J" first="Jennifer" last="Rodger">Jennifer Rodger</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M." last="Sherrard">Rachel M. Sherrard</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Ncbi/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd -nk 001D01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Ncbi
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4122806
   |texte=   Low-Intensity Repetitive Transcranial Magnetic Stimulation Improves Abnormal Visual Cortical Circuit Topography and Upregulates BDNF in Mice
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/RBID.i   -Sk "pubmed:25100609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024