Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.

Identifieur interne : 003567 ( PubMed/Corpus ); précédent : 003566; suivant : 003568

Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.

Auteurs : Kalina Makowiecki ; Alan R. Harvey ; Rachel M. Sherrard ; Jennifer Rodger

Source :

RBID : pubmed:25100609

English descriptors

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.

DOI: 10.1523/JNEUROSCI.0723-14.2014
PubMed: 25100609

Links to Exploration step

pubmed:25100609

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.</title>
<author>
<name sortKey="Makowiecki, Kalina" sort="Makowiecki, Kalina" uniqKey="Makowiecki K" first="Kalina" last="Makowiecki">Kalina Makowiecki</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Alan R" sort="Harvey, Alan R" uniqKey="Harvey A" first="Alan R" last="Harvey">Alan R. Harvey</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M" last="Sherrard">Rachel M. Sherrard</name>
<affiliation>
<nlm:affiliation>Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodger, Jennifer" sort="Rodger, Jennifer" uniqKey="Rodger J" first="Jennifer" last="Rodger">Jennifer Rodger</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and jennifer.rodger@uwa.edu.au.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25100609</idno>
<idno type="pmid">25100609</idno>
<idno type="doi">10.1523/JNEUROSCI.0723-14.2014</idno>
<idno type="wicri:Area/PubMed/Corpus">003567</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003567</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.</title>
<author>
<name sortKey="Makowiecki, Kalina" sort="Makowiecki, Kalina" uniqKey="Makowiecki K" first="Kalina" last="Makowiecki">Kalina Makowiecki</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harvey, Alan R" sort="Harvey, Alan R" uniqKey="Harvey A" first="Alan R" last="Harvey">Alan R. Harvey</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sherrard, Rachel M" sort="Sherrard, Rachel M" uniqKey="Sherrard R" first="Rachel M" last="Sherrard">Rachel M. Sherrard</name>
<affiliation>
<nlm:affiliation>Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodger, Jennifer" sort="Rodger, Jennifer" uniqKey="Rodger J" first="Jennifer" last="Rodger">Jennifer Rodger</name>
<affiliation>
<nlm:affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and jennifer.rodger@uwa.edu.au.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Biophysics</term>
<term>Brain Diseases (genetics)</term>
<term>Brain Diseases (pathology)</term>
<term>Brain Diseases (therapy)</term>
<term>Brain Mapping</term>
<term>Brain-Derived Neurotrophic Factor (genetics)</term>
<term>Brain-Derived Neurotrophic Factor (metabolism)</term>
<term>Ephrin-A2 (deficiency)</term>
<term>Ephrin-A2 (genetics)</term>
<term>Ephrin-A5 (deficiency)</term>
<term>Ephrin-A5 (genetics)</term>
<term>Geniculate Bodies (abnormalities)</term>
<term>Geniculate Bodies (pathology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Neural Pathways (abnormalities)</term>
<term>Neural Pathways (pathology)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Transcranial Magnetic Stimulation</term>
<term>Up-Regulation (genetics)</term>
<term>Up-Regulation (physiology)</term>
<term>Visual Cortex (abnormalities)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Ephrin-A2</term>
<term>Ephrin-A5</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Brain-Derived Neurotrophic Factor</term>
<term>Ephrin-A2</term>
<term>Ephrin-A5</term>
</keywords>
<keywords scheme="MESH" qualifier="abnormalities" xml:lang="en">
<term>Geniculate Bodies</term>
<term>Neural Pathways</term>
<term>Visual Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Brain Diseases</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Brain-Derived Neurotrophic Factor</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain Diseases</term>
<term>Geniculate Bodies</term>
<term>Neural Pathways</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Brain Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Biophysics</term>
<term>Brain Mapping</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Transcranial Magnetic Stimulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25100609</PMID>
<DateCreated>
<Year>2014</Year>
<Month>08</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>10780-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.0723-14.2014</ELocationID>
<Abstract>
<AbstractText>Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.</AbstractText>
<CopyrightInformation>Copyright © 2014 the authors 0270-6474/14/3410780-13$15.00/0.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Makowiecki</LastName>
<ForeName>Kalina</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harvey</LastName>
<ForeName>Alan R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sherrard</LastName>
<ForeName>Rachel M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Sorbonne Universités, Pierre and Marie Curie University of Paris 06 and Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR8256 Biological Adaptation and Ageing, F-75005 Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodger</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental and Regenerative Neuroscience, School of Animal Biology, and jennifer.rodger@uwa.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019208">Brain-Derived Neurotrophic Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036383">Ephrin-A2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036386">Ephrin-A5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Electroencephalogr Clin Neurophysiol. 1992 Jun;85(3):215-9</RefSource>
<PMID Version="1">1376680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 May;163(1):1-12</RefSource>
<PMID Version="1">15688174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Assoc Res Otolaryngol. 2010 Jun;11(2):235-44</RefSource>
<PMID Version="1">20094753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioelectromagnetics. 2004 Sep;25(6):426-30</RefSource>
<PMID Version="1">15300728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2005;28:327-55</RefSource>
<PMID Version="1">16022599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 May 18;31(20):7521-6</RefSource>
<PMID Version="1">21593336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1514-23</RefSource>
<PMID Version="1">23542382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 1995 Aug;121(8):2327-35</RefSource>
<PMID Version="1">7671799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2009;6:4</RefSource>
<PMID Version="1">19222843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Feb 15;24(4):955-60</RefSource>
<PMID Version="1">15670672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 Feb;27(3):765-74</RefSource>
<PMID Version="1">18279329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Stimul. 2013 Jul;6(4):469-76</RefSource>
<PMID Version="1">23428499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>F1000Res. 2013 Sep 09;2:180</RefSource>
<PMID Version="2">24627788</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2009 Oct 2;139(1):175-85</RefSource>
<PMID Version="1">19804762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2009;2009:674-7</RefSource>
<PMID Version="1">19964482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1999 Feb 1;18(3):616-22</RefSource>
<PMID Version="1">9927421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Sep 1;30(35):11858-69</RefSource>
<PMID Version="1">20810905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 May 1;22(9):3580-93</RefSource>
<PMID Version="1">11978834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2005 Apr;116(4):775-9</RefSource>
<PMID Version="1">15792886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Jun;188(2):249-61</RefSource>
<PMID Version="1">18385988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Sep 20;26(38):9629-38</RefSource>
<PMID Version="1">16988033</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Okajimas Folia Anat Jpn. 1992 Mar;68(6):319-31</RefSource>
<PMID Version="1">1603524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2006;157:15-24</RefSource>
<PMID Version="1">17167900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioelectromagnetics. 2001 Oct;22(7):503-10</RefSource>
<PMID Version="1">11568936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2009 Oct;45(9):1025-34</RefSource>
<PMID Version="1">19027896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2011 Jan;93(1):59-98</RefSource>
<PMID Version="1">21056619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 1999;15(2-3):125-36</RefSource>
<PMID Version="1">12671228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2010 Nov;226(1):100-9</RefSource>
<PMID Version="1">20713044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Mar;25(3):563-74</RefSource>
<PMID Version="1">10774725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Stimul. 2013 Jul;6(4):598-606</RefSource>
<PMID Version="1">23433874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Neurobiol. 2009 Sep 1;69(10):647-62</RefSource>
<PMID Version="1">19551874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2002 Aug;19(4):376-81</RefSource>
<PMID Version="1">12436092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Jul;180(4):583-93</RefSource>
<PMID Version="1">17562028</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1995 Dec 15;704(1):121-4</RefSource>
<PMID Version="1">8750972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Mar 31;24(13):3379-85</RefSource>
<PMID Version="1">15056717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2010 Jul 15;68(2):163-9</RefSource>
<PMID Version="1">20385376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2000;23:649-711</RefSource>
<PMID Version="1">10845078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurophysiol Clin. 2009 Feb;39(1):1-14</RefSource>
<PMID Version="1">19268842</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Stimul. 2013 Jan;6(1):1-13</RefSource>
<PMID Version="1">22483681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Jun 15;23(12):5308-18</RefSource>
<PMID Version="1">12832556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2008 Oct 3;374(4):625-30</RefSource>
<PMID Version="1">18674513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Jul 16;28(29):7376-86</RefSource>
<PMID Version="1">18632942</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2005 Dec 6;15(23):2119-24</RefSource>
<PMID Version="1">16332537</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2011 Jul;94(2):149-65</RefSource>
<PMID Version="1">21527312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Nov 26;23(34):10867-72</RefSource>
<PMID Version="1">14645480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 1997 Sep;48(2):401-6</RefSource>
<PMID Version="1">9332737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2010 Feb;31(4):613-22</RefSource>
<PMID Version="1">20384808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Neurobiol. 2010 Apr;70(5):332-8</RefSource>
<PMID Version="1">20186712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Nov 26;28(48):12700-12</RefSource>
<PMID Version="1">19036963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Res. 2004 Oct 1;78(1):16-28</RefSource>
<PMID Version="1">15372495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2007 Jun 5;17(11):911-21</RefSource>
<PMID Version="1">17493809</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioelectromagnetics. 2004 Apr;25(3):196-203</RefSource>
<PMID Version="1">15042628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Acad Child Adolesc Psychiatry. 2012 Apr;51(4):356-67</RefSource>
<PMID Version="1">22449642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Rev. 2012 Apr;64(2):238-58</RefSource>
<PMID Version="1">22407616</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1999 Sep 17;98(6):739-55</RefSource>
<PMID Version="1">10499792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Electroencephalogr Clin Neurophysiol. 1990 Apr;75(4):350-7</RefSource>
<PMID Version="1">1691084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Apr 18;320(5874):385-8</RefSource>
<PMID Version="1">18420937</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Biophys Bioeng. 1981;10:245-76</RefSource>
<PMID Version="1">7020576</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 Apr 1;17(7):2295-313</RefSource>
<PMID Version="1">9065491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2004 Dec 30;140(1-2):81-92</RefSource>
<PMID Version="1">15589338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2008 Jun;11(6):649-58</RefSource>
<PMID Version="1">18382462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2008 Aug 15;586(16):3927-47</RefSource>
<PMID Version="1">18599542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Jun;10(6):679-81</RefSource>
<PMID Version="1">17468749</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J R Soc Interface. 2010 Mar 6;7(44):467-73</RefSource>
<PMID Version="1">19656823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Audiol Neurootol. 2014;19(2):115-26</RefSource>
<PMID Version="1">24457350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Toxicology. 2012 Nov 15;301(1-3):1-12</RefSource>
<PMID Version="1">22750629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 1999 May-Jun;6(3):284-91</RefSource>
<PMID Version="1">10492010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2006;157:315-329</RefSource>
<PMID Version="1">17167918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Dev. 2010;5:30</RefSource>
<PMID Version="1">21044296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 May 1;35(4):1409-23</RefSource>
<PMID Version="1">17369055</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Ther. 2012 Jan;133(1):98-107</RefSource>
<PMID Version="1">21924290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2006 Oct;117(10):2292-301</RefSource>
<PMID Version="1">16920022</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Jan 26;31(4):1193-203</RefSource>
<PMID Version="1">21273404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2002 Apr;19(4):485-500</RefSource>
<PMID Version="1">11988017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2001 Aug 6;436(4):391-8</RefSource>
<PMID Version="1">11447584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vis Neurosci. 1995 Mar-Apr;12(2):215-22</RefSource>
<PMID Version="1">7786843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3460-6</RefSource>
<PMID Version="1">11006239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Mar 24;45(6):837-45</RefSource>
<PMID Version="1">15797546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Tissue Res. 1998 Feb;291(2):217-30</RefSource>
<PMID Version="1">9426309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2003 Dec;26(12):655-61</RefSource>
<PMID Version="1">14624849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2009 Apr;32(4):233-9</RefSource>
<PMID Version="1">19268375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2012 Apr;26(4):1593-606</RefSource>
<PMID Version="1">22223750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Feb;176(4):603-15</RefSource>
<PMID Version="1">16972076</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm (Vienna). 2009 Mar;116(3):257-65</RefSource>
<PMID Version="1">19189041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Dev Neurosci. 1999 Jun;17(3):153-61</RefSource>
<PMID Version="1">10452359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2006 Mar 3;311(5765):1290-3</RefSource>
<PMID Version="1">16513983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2008 Nov 1;586(Pt 21):5119-28</RefSource>
<PMID Version="1">18772203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12486-91</RefSource>
<PMID Version="1">14514885</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Feb 3;45(3):345-51</RefSource>
<PMID Version="1">15694321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2010 Oct;45(2):108-20</RefSource>
<PMID Version="1">20584617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 1993 Jul-Aug;14(4):275-85</RefSource>
<PMID Version="1">8367009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2013 Feb;37(3):441-54</RefSource>
<PMID Version="1">23167832</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>EMBO J. 1990 Nov;9(11):3545-50</RefSource>
<PMID Version="1">2170117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Stimul. 2008 Jul;1(3):164-82</RefSource>
<PMID Version="1">20633383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Dec 18;40(6):1147-60</RefSource>
<PMID Version="1">14687549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2000 May;111(5):800-5</RefSource>
<PMID Version="1">10802449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2008 Feb 28;57(4):511-23</RefSource>
<PMID Version="1">18304481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Apr 1;591(Pt 7):1987-2000</RefSource>
<PMID Version="1">23339180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2006 Jun 8;441(7094):761-5</RefSource>
<PMID Version="1">16625207</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Rev. 2009 May;60(2):287-305</RefSource>
<PMID Version="1">19162072</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001703" MajorTopicYN="N">Biophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001927" MajorTopicYN="Y">Brain Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001931" MajorTopicYN="N">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019208" MajorTopicYN="N">Brain-Derived Neurotrophic Factor</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036383" MajorTopicYN="N">Ephrin-A2</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036386" MajorTopicYN="N">Ephrin-A5</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005829" MajorTopicYN="N">Geniculate Bodies</DescriptorName>
<QualifierName UI="Q000002" MajorTopicYN="N">abnormalities</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009434" MajorTopicYN="N">Neural Pathways</DescriptorName>
<QualifierName UI="Q000002" MajorTopicYN="N">abnormalities</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050781" MajorTopicYN="Y">Transcranial Magnetic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014793" MajorTopicYN="N">Visual Cortex</DescriptorName>
<QualifierName UI="Q000002" MajorTopicYN="Y">abnormalities</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4122806</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">LI-rTMS</Keyword>
<Keyword MajorTopicYN="N">corticotectal projection</Keyword>
<Keyword MajorTopicYN="N">critical period</Keyword>
<Keyword MajorTopicYN="N">ephrin-A2A5−/− mice</Keyword>
<Keyword MajorTopicYN="N">geniculocortical</Keyword>
<Keyword MajorTopicYN="N">plasticity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25100609</ArticleId>
<ArticleId IdType="pii">34/32/10780</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.0723-14.2014</ArticleId>
<ArticleId IdType="pmc">PMC4122806</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003567 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 003567 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25100609
   |texte=   Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25100609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024