Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions

Identifieur interne : 000A15 ( Istex/Corpus ); précédent : 000A14; suivant : 000A16

Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions

Auteurs : Akrama Mahmoud ; Laurence Muhr ; Georges Grévillot ; François Lapicque

Source :

RBID : ISTEX:A5F0BFA21FBB87B746D31156075EEED836F85253

English descriptors

Abstract

The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.

Url:
DOI: 10.1002/cjce.5450850205

Links to Exploration step

ISTEX:A5F0BFA21FBB87B746D31156075EEED836F85253

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<author>
<name sortKey="Mahmoud, Akrama" sort="Mahmoud, Akrama" uniqKey="Mahmoud A" first="Akrama" last="Mahmoud">Akrama Mahmoud</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muhr, Laurence" sort="Muhr, Laurence" uniqKey="Muhr L" first="Laurence" last="Muhr">Laurence Muhr</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grevillot, Georges" sort="Grevillot, Georges" uniqKey="Grevillot G" first="Georges" last="Grévillot">Georges Grévillot</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lapicque, Francois" sort="Lapicque, Francois" uniqKey="Lapicque F" first="François" last="Lapicque">François Lapicque</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francois.lapicque@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A5F0BFA21FBB87B746D31156075EEED836F85253</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/cjce.5450850205</idno>
<idno type="url">https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A15</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<author>
<name sortKey="Mahmoud, Akrama" sort="Mahmoud, Akrama" uniqKey="Mahmoud A" first="Akrama" last="Mahmoud">Akrama Mahmoud</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muhr, Laurence" sort="Muhr, Laurence" uniqKey="Muhr L" first="Laurence" last="Muhr">Laurence Muhr</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grevillot, Georges" sort="Grevillot, Georges" uniqKey="Grevillot G" first="Georges" last="Grévillot">Georges Grévillot</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lapicque, Francois" sort="Lapicque, Francois" uniqKey="Lapicque F" first="François" last="Lapicque">François Lapicque</name>
<affiliation>
<mods:affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francois.lapicque@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Canadian Journal of Chemical Engineering</title>
<title level="j" type="alt">CANADIAN JOURNAL OF CHEMICAL ENGINEERING</title>
<idno type="ISSN">0008-4034</idno>
<idno type="eISSN">1939-019X</idno>
<imprint>
<biblScope unit="vol">85</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="171">171</biblScope>
<biblScope unit="page" to="179">179</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2007-04">2007-04</date>
</imprint>
<idno type="ISSN">0008-4034</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0008-4034</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode chamber</term>
<term>Anode compartment</term>
<term>April</term>
<term>Best results</term>
<term>Canadian journal</term>
<term>Cathode</term>
<term>Cathode chamber</term>
<term>Cathode compartment</term>
<term>Cathode side</term>
<term>Cell voltage</term>
<term>Central compartment</term>
<term>Chemical engineering</term>
<term>Compartment</term>
<term>Complete removal</term>
<term>Continuous electrodeionization</term>
<term>Copper</term>
<term>Copper capacity</term>
<term>Copper concentration</term>
<term>Copper ions</term>
<term>Copper solution</term>
<term>Copper solutions</term>
<term>Copper species</term>
<term>Copper sulphate</term>
<term>Copper sulphate solution</term>
<term>Copper sulphate solutions</term>
<term>Current densities</term>
<term>Current density</term>
<term>Current distributions</term>
<term>Different resins</term>
<term>Dowex</term>
<term>Dowex resins</term>
<term>Electrical conductivity</term>
<term>Electrode compartments</term>
<term>Electrodeionization</term>
<term>Electrodeionization cell</term>
<term>Electrodeionization process</term>
<term>Elementary cell</term>
<term>Experimental data</term>
<term>External compartments</term>
<term>High capacity</term>
<term>Individual cell</term>
<term>Inlet concentration</term>
<term>Ion</term>
<term>Ixed</term>
<term>Ixed cell</term>
<term>Ixed process</term>
<term>Ixed processes</term>
<term>Leakage</term>
<term>Leakage factor</term>
<term>Linear variations</term>
<term>Loading period</term>
<term>Local concentration</term>
<term>Long resin</term>
<term>Mahmoud</term>
<term>Mass balance</term>
<term>Metal deposition</term>
<term>Metal ions</term>
<term>Migration</term>
<term>Migration factor</term>
<term>Mole amount</term>
<term>Monzie</term>
<term>Nickel solution</term>
<term>Overall mass transfer</term>
<term>Potential gradient</term>
<term>Present work</term>
<term>Resin</term>
<term>Resin grade</term>
<term>Resin material</term>
<term>Resin nature</term>
<term>Resin particles</term>
<term>Resin stiffness</term>
<term>Short resin</term>
<term>Solid phase</term>
<term>Steady behaviour</term>
<term>Stiffest resin</term>
<term>Sulphate</term>
<term>Transport processes</term>
<term>Tting parameter</term>
<term>Ultrapure water</term>
<term>Visual observation</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anode chamber</term>
<term>Anode compartment</term>
<term>April</term>
<term>Best results</term>
<term>Canadian journal</term>
<term>Cathode</term>
<term>Cathode chamber</term>
<term>Cathode compartment</term>
<term>Cathode side</term>
<term>Cell voltage</term>
<term>Central compartment</term>
<term>Chemical engineering</term>
<term>Compartment</term>
<term>Complete removal</term>
<term>Continuous electrodeionization</term>
<term>Copper</term>
<term>Copper capacity</term>
<term>Copper concentration</term>
<term>Copper ions</term>
<term>Copper solution</term>
<term>Copper solutions</term>
<term>Copper species</term>
<term>Copper sulphate</term>
<term>Copper sulphate solution</term>
<term>Copper sulphate solutions</term>
<term>Current densities</term>
<term>Current density</term>
<term>Current distributions</term>
<term>Different resins</term>
<term>Dowex</term>
<term>Dowex resins</term>
<term>Electrical conductivity</term>
<term>Electrode compartments</term>
<term>Electrodeionization</term>
<term>Electrodeionization cell</term>
<term>Electrodeionization process</term>
<term>Elementary cell</term>
<term>Experimental data</term>
<term>External compartments</term>
<term>High capacity</term>
<term>Individual cell</term>
<term>Inlet concentration</term>
<term>Ion</term>
<term>Ixed</term>
<term>Ixed cell</term>
<term>Ixed process</term>
<term>Ixed processes</term>
<term>Leakage</term>
<term>Leakage factor</term>
<term>Linear variations</term>
<term>Loading period</term>
<term>Local concentration</term>
<term>Long resin</term>
<term>Mahmoud</term>
<term>Mass balance</term>
<term>Metal deposition</term>
<term>Metal ions</term>
<term>Migration</term>
<term>Migration factor</term>
<term>Mole amount</term>
<term>Monzie</term>
<term>Nickel solution</term>
<term>Overall mass transfer</term>
<term>Potential gradient</term>
<term>Present work</term>
<term>Resin</term>
<term>Resin grade</term>
<term>Resin material</term>
<term>Resin nature</term>
<term>Resin particles</term>
<term>Resin stiffness</term>
<term>Short resin</term>
<term>Solid phase</term>
<term>Steady behaviour</term>
<term>Stiffest resin</term>
<term>Sulphate</term>
<term>Transport processes</term>
<term>Tting parameter</term>
<term>Ultrapure water</term>
<term>Visual observation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>current density</json:string>
<json:string>cathode chamber</json:string>
<json:string>electrodeionization</json:string>
<json:string>copper ions</json:string>
<json:string>sulphate</json:string>
<json:string>ixed</json:string>
<json:string>cathode compartment</json:string>
<json:string>external compartments</json:string>
<json:string>canadian journal</json:string>
<json:string>april</json:string>
<json:string>anode compartment</json:string>
<json:string>mass balance</json:string>
<json:string>solid phase</json:string>
<json:string>dowex</json:string>
<json:string>copper concentration</json:string>
<json:string>electrical conductivity</json:string>
<json:string>monzie</json:string>
<json:string>metal ions</json:string>
<json:string>short resin</json:string>
<json:string>chemical engineering</json:string>
<json:string>resin</json:string>
<json:string>copper sulphate</json:string>
<json:string>leakage factor</json:string>
<json:string>copper sulphate solution</json:string>
<json:string>ixed cell</json:string>
<json:string>electrode compartments</json:string>
<json:string>ultrapure water</json:string>
<json:string>experimental data</json:string>
<json:string>mole amount</json:string>
<json:string>dowex resins</json:string>
<json:string>central compartment</json:string>
<json:string>leakage</json:string>
<json:string>mahmoud</json:string>
<json:string>copper sulphate solutions</json:string>
<json:string>overall mass transfer</json:string>
<json:string>metal deposition</json:string>
<json:string>elementary cell</json:string>
<json:string>ixed process</json:string>
<json:string>current densities</json:string>
<json:string>transport processes</json:string>
<json:string>copper solution</json:string>
<json:string>copper</json:string>
<json:string>ion</json:string>
<json:string>migration</json:string>
<json:string>cathode</json:string>
<json:string>present work</json:string>
<json:string>nickel solution</json:string>
<json:string>anode chamber</json:string>
<json:string>resin nature</json:string>
<json:string>complete removal</json:string>
<json:string>different resins</json:string>
<json:string>copper species</json:string>
<json:string>high capacity</json:string>
<json:string>loading period</json:string>
<json:string>current distributions</json:string>
<json:string>visual observation</json:string>
<json:string>cathode side</json:string>
<json:string>tting parameter</json:string>
<json:string>resin stiffness</json:string>
<json:string>long resin</json:string>
<json:string>continuous electrodeionization</json:string>
<json:string>electrodeionization process</json:string>
<json:string>best results</json:string>
<json:string>copper capacity</json:string>
<json:string>resin grade</json:string>
<json:string>electrodeionization cell</json:string>
<json:string>steady behaviour</json:string>
<json:string>linear variations</json:string>
<json:string>ixed processes</json:string>
<json:string>local concentration</json:string>
<json:string>stiffest resin</json:string>
<json:string>copper solutions</json:string>
<json:string>resin material</json:string>
<json:string>inlet concentration</json:string>
<json:string>resin particles</json:string>
<json:string>individual cell</json:string>
<json:string>migration factor</json:string>
<json:string>potential gradient</json:string>
<json:string>cell voltage</json:string>
<json:string>compartment</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Akrama Mahmoud</name>
<affiliations>
<json:string>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Laurence Muhr</name>
<affiliations>
<json:string>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Georges Grévillot</name>
<affiliations>
<json:string>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>François Lapicque</name>
<affiliations>
<json:string>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</json:string>
<json:string>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ion‐exchange</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>electrodeionization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>copper sulphate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>diffusion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>migration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>microcolumn</value>
</json:item>
</subject>
<articleId>
<json:string>CJCE5450850205</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.</abstract>
<qualityIndicators>
<score>6.956</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>603 x 783 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1105</abstractCharCount>
<pdfWordCount>6289</pdfWordCount>
<pdfCharCount>36480</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>163</abstractWordCount>
</qualityIndicators>
<title>Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>The Canadian Journal of Chemical Engineering</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1939-019X</json:string>
</doi>
<issn>
<json:string>0008-4034</json:string>
</issn>
<eissn>
<json:string>1939-019X</json:string>
</eissn>
<publisherId>
<json:string>CJCE</json:string>
</publisherId>
<volume>85</volume>
<issue>2</issue>
<pages>
<first>171</first>
<last>179</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1002/cjce.5450850205</json:string>
</doi>
<id>A5F0BFA21FBB87B746D31156075EEED836F85253</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2007 Canadian Society for Chemical Engineering</licence>
</availability>
<date type="published" when="2007-04"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<title level="a" type="short" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Akrama</forename>
<surname>Mahmoud</surname>
</persName>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Laurence</forename>
<surname>Muhr</surname>
</persName>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Georges</forename>
<surname>Grévillot</surname>
</persName>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">François</forename>
<surname>Lapicque</surname>
</persName>
<email>francois.lapicque@ensic.inpl‐nancy.fr</email>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
</author>
<idno type="istex">A5F0BFA21FBB87B746D31156075EEED836F85253</idno>
<idno type="ark">ark:/67375/WNG-XX732XPG-X</idno>
<idno type="DOI">10.1002/cjce.5450850205</idno>
<idno type="unit">CJCE5450850205</idno>
<idno type="toTypesetVersion">file:CJCE.CJCE5450850205.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">The Canadian Journal of Chemical Engineering</title>
<title level="j" type="alt">CANADIAN JOURNAL OF CHEMICAL ENGINEERING</title>
<idno type="pISSN">0008-4034</idno>
<idno type="eISSN">1939-019X</idno>
<idno type="book-DOI">10.1002/(ISSN)1939-019X</idno>
<idno type="book-part-DOI">10.1002/cjce.v85:2</idno>
<idno type="product">CJCE</idno>
<imprint>
<biblScope unit="vol">85</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="171">171</biblScope>
<biblScope unit="page" to="179">179</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2007-04"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.</p>
</abstract>
<abstract xml:lang="fr" style="main">
<p>On présente dans cet article les résultats d'une étude théorique et expérimentale sur un procédé d'électrodésionisation pour l'élimination des cations métalliques de solutions diluées. On a étudié la capacité de cette technique à traiter des solutions de cuivre de 100 ppm à l'aide des membranes cationiques et des résines échangeuses d'ions entre les membranes. Des taux de réduction acceptables ont été obtenus dans un lit de résines d'une hauteur de 100 mm dans des essais de longue durée, et des solutions d'une concentration ionique appréciable ont pu être produites dans la chambre cathodique. La capacité du procédé est limitée par le dépôt significatif de cuivre au niveau de la cathode, une distribution inégale de la densité de courant et une diffusion secondaire vers la chambre anodique. Des tests supplémentaires ont été menés avec un lit de résines de 15 mm. Des distributions de courant plus égales ont permis d'observer en profondeur l'effet de la rigidité des résines et de la densité de courant sur le rendement de l'élimination. On a modélisé le fonctionnement en régime permanent du lit de résines au moyen d'expressions généralisées des divers taux de transfert. Les résultats du modèle montrent clairement l'importance des interactions solides‐liquide sur les procédés de transfert.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">ion‐exchange</term>
<term xml:id="kwd2">electrodeionization</term>
<term xml:id="kwd3">copper sulphate</term>
<term xml:id="kwd4">diffusion</term>
<term xml:id="kwd5">migration</term>
<term xml:id="kwd6">microcolumn</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1939-019X</doi>
<issn type="print">0008-4034</issn>
<issn type="electronic">1939-019X</issn>
<idGroup>
<id type="product" value="CJCE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="CANADIAN JOURNAL OF CHEMICAL ENGINEERING">The Canadian Journal of Chemical Engineering</title>
<title type="short">Can. J. Chem. Eng.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="no">10.1002/cjce.v85:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="85">85</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2007-04">April 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley" registered="no">10.1002/cjce.5450850205</doi>
<idGroup>
<id type="unit" value="CJCE5450850205"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2007 Canadian Society for Chemical Engineering</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2005-06-07"></event>
<event type="manuscriptRevised" date="2005-09-20"></event>
<event type="manuscriptAccepted" date="2006-01-09"></event>
<event type="firstOnline" date="2008-05-19"></event>
<event type="publishedOnlineFinalForm" date="2008-05-19"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.3 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-19"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">171</numbering>
<numbering type="pageLast">179</numbering>
</numberingGroup>
<correspondenceTo>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CJCE.CJCE5450850205.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
<title type="short" xml:lang="en">Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Akrama</givenNames>
<familyName>Mahmoud</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Laurence</givenNames>
<familyName>Muhr</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Georges</givenNames>
<familyName>Grévillot</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>François</givenNames>
<familyName>Lapicque</familyName>
</personName>
<contactDetails>
<email normalForm="francois.lapicque@ensic.inpl-nancy.fr">francois.lapicque@ensic.inpl‐nancy.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">ion‐exchange</keyword>
<keyword xml:id="kwd2">electrodeionization</keyword>
<keyword xml:id="kwd3">copper sulphate</keyword>
<keyword xml:id="kwd4">diffusion</keyword>
<keyword xml:id="kwd5">migration</keyword>
<keyword xml:id="kwd6">microcolumn</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.</p>
</abstract>
<abstract type="main" xml:lang="fr">
<p>On présente dans cet article les résultats d'une étude théorique et expérimentale sur un procédé d'électrodésionisation pour l'élimination des cations métalliques de solutions diluées. On a étudié la capacité de cette technique à traiter des solutions de cuivre de 100 ppm à l'aide des membranes cationiques et des résines échangeuses d'ions entre les membranes. Des taux de réduction acceptables ont été obtenus dans un lit de résines d'une hauteur de 100 mm dans des essais de longue durée, et des solutions d'une concentration ionique appréciable ont pu être produites dans la chambre cathodique. La capacité du procédé est limitée par le dépôt significatif de cuivre au niveau de la cathode, une distribution inégale de la densité de courant et une diffusion secondaire vers la chambre anodique. Des tests supplémentaires ont été menés avec un lit de résines de 15 mm. Des distributions de courant plus égales ont permis d'observer en profondeur l'effet de la rigidité des résines et de la densité de courant sur le rendement de l'élimination. On a modélisé le fonctionnement en régime permanent du lit de résines au moyen d'expressions généralisées des divers taux de transfert. Les résultats du modèle montrent clairement l'importance des interactions solides‐liquide sur les procédés de transfert.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akrama</namePart>
<namePart type="family">Mahmoud</namePart>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurence</namePart>
<namePart type="family">Muhr</namePart>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georges</namePart>
<namePart type="family">Grévillot</namePart>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Lapicque</namePart>
<affiliation>Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
<affiliation>E-mail: francois.lapicque@ensic.inpl‐nancy.fr</affiliation>
<affiliation>Correspondence address: Laboratoire des sciences du génie chimique, CNRS‐ENSIC, Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-04</dateIssued>
<dateCaptured encoding="w3cdtf">2005-06-07</dateCaptured>
<dateValid encoding="w3cdtf">2006-01-09</dateValid>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">4</extent>
<extent unit="references">19</extent>
</physicalDescription>
<abstract lang="en">The paper presents the results of experimental and theoretical investigations of an electrodeionization process for the removal of metal cations from dilute solutions. The ability of this technique to treat 100 ppm copper solutions using cationic membranes and ion‐exchange resins between the membranes was studied. Fair abatement yields were obtained in the 100 mm high resin bed in long‐term runs, and solutions of an appreciable copper ion concentration could be produced in the cathode chamber. The process capacity was limited by significant deposition of copper at the cathode, non‐even distribution of current density, and side‐diffusion to the anode chamber. Additional tests were then carried out using a 15 mm resin bed. The more even current distributions allowed the effect of the resin stiffness and the current density on the removal yield to be thoroughly observed. Steady‐state operation of the resin bed was modelled using generalized expressions of the various transport rates. Results of the model clearly showed the significance of solid‐liquid interactions on the transport processes.</abstract>
<abstract lang="fr">On présente dans cet article les résultats d'une étude théorique et expérimentale sur un procédé d'électrodésionisation pour l'élimination des cations métalliques de solutions diluées. On a étudié la capacité de cette technique à traiter des solutions de cuivre de 100 ppm à l'aide des membranes cationiques et des résines échangeuses d'ions entre les membranes. Des taux de réduction acceptables ont été obtenus dans un lit de résines d'une hauteur de 100 mm dans des essais de longue durée, et des solutions d'une concentration ionique appréciable ont pu être produites dans la chambre cathodique. La capacité du procédé est limitée par le dépôt significatif de cuivre au niveau de la cathode, une distribution inégale de la densité de courant et une diffusion secondaire vers la chambre anodique. Des tests supplémentaires ont été menés avec un lit de résines de 15 mm. Des distributions de courant plus égales ont permis d'observer en profondeur l'effet de la rigidité des résines et de la densité de courant sur le rendement de l'élimination. On a modélisé le fonctionnement en régime permanent du lit de résines au moyen d'expressions généralisées des divers taux de transfert. Les résultats du modèle montrent clairement l'importance des interactions solides‐liquide sur les procédés de transfert.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>ion‐exchange</topic>
<topic>electrodeionization</topic>
<topic>copper sulphate</topic>
<topic>diffusion</topic>
<topic>migration</topic>
<topic>microcolumn</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Canadian Journal of Chemical Engineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Can. J. Chem. Eng.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0008-4034</identifier>
<identifier type="eISSN">1939-019X</identifier>
<identifier type="DOI">10.1002/(ISSN)1939-019X</identifier>
<identifier type="PublisherID">CJCE</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>171</start>
<end>179</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A5F0BFA21FBB87B746D31156075EEED836F85253</identifier>
<identifier type="ark">ark:/67375/WNG-XX732XPG-X</identifier>
<identifier type="DOI">10.1002/cjce.5450850205</identifier>
<identifier type="ArticleID">CJCE5450850205</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2007 Canadian Society for Chemical Engineering</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A5F0BFA21FBB87B746D31156075EEED836F85253/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A5F0BFA21FBB87B746D31156075EEED836F85253
   |texte=   Experimental Tests and Modelling of an Electrodeionization Cell for the Treatment of Dilute Copper Solutions
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024