Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal design for flow uniformity in microchannel reactors

Identifieur interne : 000A14 ( Istex/Corpus ); précédent : 000A13; suivant : 000A15

Optimal design for flow uniformity in microchannel reactors

Auteurs : J. M. Commenge ; L. Falk ; J. P. Corriou ; M. Matlosz

Source :

RBID : ISTEX:3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D

English descriptors

Abstract

Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.

Url:
DOI: 10.1002/aic.690480218

Links to Exploration step

ISTEX:3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal design for flow uniformity in microchannel reactors</title>
<author>
<name sortKey="Commenge, J M" sort="Commenge, J M" uniqKey="Commenge J" first="J. M." last="Commenge">J. M. Commenge</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falk, L" sort="Falk, L" uniqKey="Falk L" first="L." last="Falk">L. Falk</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matlosz, M" sort="Matlosz, M" uniqKey="Matlosz M" first="M." last="Matlosz">M. Matlosz</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1002/aic.690480218</idno>
<idno type="url">https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A14</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Optimal design for flow uniformity in microchannel reactors</title>
<author>
<name sortKey="Commenge, J M" sort="Commenge, J M" uniqKey="Commenge J" first="J. M." last="Commenge">J. M. Commenge</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Falk, L" sort="Falk, L" uniqKey="Falk L" first="L." last="Falk">L. Falk</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matlosz, M" sort="Matlosz, M" uniqKey="Matlosz M" first="M." last="Matlosz">M. Matlosz</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">48</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="345">345</biblScope>
<biblScope unit="page" to="358">358</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2002-02">2002-02</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjacent channels</term>
<term>Aiche</term>
<term>Aiche journal</term>
<term>Approximate</term>
<term>Approximate model</term>
<term>Approximate pressure drop model</term>
<term>Biological microreactors</term>
<term>Certain number</term>
<term>Chamber geometries</term>
<term>Chamber geometry</term>
<term>Chamber zone length</term>
<term>Chamber zones</term>
<term>Channel length</term>
<term>Channel number</term>
<term>Channel thickness</term>
<term>Channel width</term>
<term>Channels</term>
<term>Chem</term>
<term>Chemical reaction</term>
<term>Conf</term>
<term>Correction factor</term>
<term>Corresponding outlet zone</term>
<term>Different geometries</term>
<term>Dimensionless</term>
<term>Dimensionless channel length</term>
<term>Dimensionless channel width</term>
<term>Dimensionless velocity distribution</term>
<term>Dimensionless widths</term>
<term>Direct relation</term>
<term>Duct</term>
<term>Engineering practice</term>
<term>Entire reactor</term>
<term>Entrance effects</term>
<term>Entrance length</term>
<term>Equal pressure</term>
<term>Equal velocities</term>
<term>Equality condition</term>
<term>Exothermic reactions</term>
<term>February</term>
<term>Fine chemicals</term>
<term>Finitevolume method</term>
<term>Flow distribution</term>
<term>Flow rate</term>
<term>Fluid distribution</term>
<term>Fluid flow</term>
<term>Fluid velocity</term>
<term>Free path</term>
<term>Genie chimique</term>
<term>Geometric parameters</term>
<term>Geometry</term>
<term>Good agreement</term>
<term>Heat exchange</term>
<term>Hydraulic diameter</term>
<term>Individual plate</term>
<term>Industrial production</term>
<term>Inlet</term>
<term>Inlet chamber</term>
<term>Inlet stream</term>
<term>Inlet tube</term>
<term>Inlet velocity</term>
<term>Inlet zone</term>
<term>Inlet zones</term>
<term>Laminar</term>
<term>Laminar flow</term>
<term>Large number</term>
<term>Last zones</term>
<term>Lefthand side</term>
<term>Linear chamber geometries</term>
<term>Linear chambers</term>
<term>Mass balances</term>
<term>Maximum velocity difference</term>
<term>Mesh grids</term>
<term>Microchannel</term>
<term>Microchannel reactors</term>
<term>Microchannel structures</term>
<term>Microreaction</term>
<term>Microreaction technol</term>
<term>Microreactor</term>
<term>Microreactor geometry</term>
<term>Microreactors</term>
<term>Microstructured</term>
<term>Microstructured plate</term>
<term>Microstructured plates</term>
<term>Middle channel</term>
<term>Monolith geometry</term>
<term>Multiplate</term>
<term>Multiplate reactor geometry</term>
<term>Narrow channels</term>
<term>Noncircularity coefficient</term>
<term>Numerical modeling</term>
<term>Optimization</term>
<term>Optimization criterion</term>
<term>Optimization process</term>
<term>Optimized</term>
<term>Optimized chamber</term>
<term>Optimized chamber geometry</term>
<term>Outlet chamber</term>
<term>Outlet chambers</term>
<term>Outlet tube</term>
<term>Outlet zone</term>
<term>Outlet zones</term>
<term>Parallel process structures</term>
<term>Parameter</term>
<term>Pchannel</term>
<term>Pinlet zone</term>
<term>Plate geometries</term>
<term>Plate geometry</term>
<term>Pressure drop</term>
<term>Pressure drop parameter</term>
<term>Pressure drop relation</term>
<term>Pressure field</term>
<term>Proc</term>
<term>Process control</term>
<term>Process development</term>
<term>Rapid calculation</term>
<term>Reactor</term>
<term>Reactor design</term>
<term>Rectangular duct</term>
<term>Rectangular ducts</term>
<term>Reference value</term>
<term>Resistive network</term>
<term>Reynolds number</term>
<term>Reynolds numbers</term>
<term>Second term</term>
<term>Similar approach</term>
<term>Simple zones</term>
<term>Simplified geometry</term>
<term>Solid line</term>
<term>Special case</term>
<term>Technol</term>
<term>Total number</term>
<term>Uniform velocity distribution</term>
<term>Uniform velocity distributions</term>
<term>Velocity difference</term>
<term>Velocity differences</term>
<term>Velocity distribution</term>
<term>Velocity distributions</term>
<term>Wide channels</term>
<term>Width wiq1</term>
<term>Width wncq1yi</term>
<term>Wiessmeier</term>
<term>Wiq1</term>
<term>Wncq1yi</term>
<term>Zone</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Adjacent channels</term>
<term>Aiche</term>
<term>Aiche journal</term>
<term>Approximate</term>
<term>Approximate model</term>
<term>Approximate pressure drop model</term>
<term>Biological microreactors</term>
<term>Certain number</term>
<term>Chamber geometries</term>
<term>Chamber geometry</term>
<term>Chamber zone length</term>
<term>Chamber zones</term>
<term>Channel length</term>
<term>Channel number</term>
<term>Channel thickness</term>
<term>Channel width</term>
<term>Channels</term>
<term>Chem</term>
<term>Chemical reaction</term>
<term>Conf</term>
<term>Correction factor</term>
<term>Corresponding outlet zone</term>
<term>Different geometries</term>
<term>Dimensionless</term>
<term>Dimensionless channel length</term>
<term>Dimensionless channel width</term>
<term>Dimensionless velocity distribution</term>
<term>Dimensionless widths</term>
<term>Direct relation</term>
<term>Duct</term>
<term>Engineering practice</term>
<term>Entire reactor</term>
<term>Entrance effects</term>
<term>Entrance length</term>
<term>Equal pressure</term>
<term>Equal velocities</term>
<term>Equality condition</term>
<term>Exothermic reactions</term>
<term>February</term>
<term>Fine chemicals</term>
<term>Finitevolume method</term>
<term>Flow distribution</term>
<term>Flow rate</term>
<term>Fluid distribution</term>
<term>Fluid flow</term>
<term>Fluid velocity</term>
<term>Free path</term>
<term>Genie chimique</term>
<term>Geometric parameters</term>
<term>Geometry</term>
<term>Good agreement</term>
<term>Heat exchange</term>
<term>Hydraulic diameter</term>
<term>Individual plate</term>
<term>Industrial production</term>
<term>Inlet</term>
<term>Inlet chamber</term>
<term>Inlet stream</term>
<term>Inlet tube</term>
<term>Inlet velocity</term>
<term>Inlet zone</term>
<term>Inlet zones</term>
<term>Laminar</term>
<term>Laminar flow</term>
<term>Large number</term>
<term>Last zones</term>
<term>Lefthand side</term>
<term>Linear chamber geometries</term>
<term>Linear chambers</term>
<term>Mass balances</term>
<term>Maximum velocity difference</term>
<term>Mesh grids</term>
<term>Microchannel</term>
<term>Microchannel reactors</term>
<term>Microchannel structures</term>
<term>Microreaction</term>
<term>Microreaction technol</term>
<term>Microreactor</term>
<term>Microreactor geometry</term>
<term>Microreactors</term>
<term>Microstructured</term>
<term>Microstructured plate</term>
<term>Microstructured plates</term>
<term>Middle channel</term>
<term>Monolith geometry</term>
<term>Multiplate</term>
<term>Multiplate reactor geometry</term>
<term>Narrow channels</term>
<term>Noncircularity coefficient</term>
<term>Numerical modeling</term>
<term>Optimization</term>
<term>Optimization criterion</term>
<term>Optimization process</term>
<term>Optimized</term>
<term>Optimized chamber</term>
<term>Optimized chamber geometry</term>
<term>Outlet chamber</term>
<term>Outlet chambers</term>
<term>Outlet tube</term>
<term>Outlet zone</term>
<term>Outlet zones</term>
<term>Parallel process structures</term>
<term>Parameter</term>
<term>Pchannel</term>
<term>Pinlet zone</term>
<term>Plate geometries</term>
<term>Plate geometry</term>
<term>Pressure drop</term>
<term>Pressure drop parameter</term>
<term>Pressure drop relation</term>
<term>Pressure field</term>
<term>Proc</term>
<term>Process control</term>
<term>Process development</term>
<term>Rapid calculation</term>
<term>Reactor</term>
<term>Reactor design</term>
<term>Rectangular duct</term>
<term>Rectangular ducts</term>
<term>Reference value</term>
<term>Resistive network</term>
<term>Reynolds number</term>
<term>Reynolds numbers</term>
<term>Second term</term>
<term>Similar approach</term>
<term>Simple zones</term>
<term>Simplified geometry</term>
<term>Solid line</term>
<term>Special case</term>
<term>Technol</term>
<term>Total number</term>
<term>Uniform velocity distribution</term>
<term>Uniform velocity distributions</term>
<term>Velocity difference</term>
<term>Velocity differences</term>
<term>Velocity distribution</term>
<term>Velocity distributions</term>
<term>Wide channels</term>
<term>Width wiq1</term>
<term>Width wncq1yi</term>
<term>Wiessmeier</term>
<term>Wiq1</term>
<term>Wncq1yi</term>
<term>Zone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>approximate model</json:string>
<json:string>dimensionless</json:string>
<json:string>wncq1yi</json:string>
<json:string>microstructured</json:string>
<json:string>pressure drop</json:string>
<json:string>february</json:string>
<json:string>velocity distribution</json:string>
<json:string>wiq1</json:string>
<json:string>technol</json:string>
<json:string>microreactor</json:string>
<json:string>optimized</json:string>
<json:string>microchannel</json:string>
<json:string>microreaction</json:string>
<json:string>microreaction technol</json:string>
<json:string>wiessmeier</json:string>
<json:string>proc</json:string>
<json:string>chem</json:string>
<json:string>maximum velocity difference</json:string>
<json:string>aiche journal</json:string>
<json:string>outlet chambers</json:string>
<json:string>duct</json:string>
<json:string>optimization</json:string>
<json:string>conf</json:string>
<json:string>channel length</json:string>
<json:string>linear chambers</json:string>
<json:string>geometric parameters</json:string>
<json:string>microreactors</json:string>
<json:string>inlet zone</json:string>
<json:string>multiplate</json:string>
<json:string>fluid distribution</json:string>
<json:string>chamber geometry</json:string>
<json:string>laminar</json:string>
<json:string>channel width</json:string>
<json:string>pchannel</json:string>
<json:string>aiche</json:string>
<json:string>uniform velocity distributions</json:string>
<json:string>microstructured plates</json:string>
<json:string>uniform velocity distribution</json:string>
<json:string>velocity distributions</json:string>
<json:string>mass balances</json:string>
<json:string>microchannel reactors</json:string>
<json:string>plate geometries</json:string>
<json:string>equal velocities</json:string>
<json:string>outlet zone</json:string>
<json:string>chamber zones</json:string>
<json:string>inlet</json:string>
<json:string>reynolds number</json:string>
<json:string>inlet chamber</json:string>
<json:string>microstructured plate</json:string>
<json:string>free path</json:string>
<json:string>fluid flow</json:string>
<json:string>pressure drop parameter</json:string>
<json:string>large number</json:string>
<json:string>geometry</json:string>
<json:string>resistive network</json:string>
<json:string>hydraulic diameter</json:string>
<json:string>correction factor</json:string>
<json:string>entrance effects</json:string>
<json:string>adjacent channels</json:string>
<json:string>outlet tube</json:string>
<json:string>pressure drop relation</json:string>
<json:string>monolith geometry</json:string>
<json:string>microchannel structures</json:string>
<json:string>reynolds numbers</json:string>
<json:string>approximate pressure drop model</json:string>
<json:string>pressure field</json:string>
<json:string>flow rate</json:string>
<json:string>channel thickness</json:string>
<json:string>dimensionless widths</json:string>
<json:string>optimized chamber geometry</json:string>
<json:string>second term</json:string>
<json:string>optimization process</json:string>
<json:string>solid line</json:string>
<json:string>inlet tube</json:string>
<json:string>plate geometry</json:string>
<json:string>inlet velocity</json:string>
<json:string>chamber zone length</json:string>
<json:string>reactor</json:string>
<json:string>zone</json:string>
<json:string>numerical modeling</json:string>
<json:string>dimensionless velocity distribution</json:string>
<json:string>industrial production</json:string>
<json:string>outlet chamber</json:string>
<json:string>process control</json:string>
<json:string>finitevolume method</json:string>
<json:string>chamber geometries</json:string>
<json:string>inlet zones</json:string>
<json:string>reactor design</json:string>
<json:string>microreactor geometry</json:string>
<json:string>certain number</json:string>
<json:string>fluid velocity</json:string>
<json:string>middle channel</json:string>
<json:string>entire reactor</json:string>
<json:string>chemical reaction</json:string>
<json:string>velocity difference</json:string>
<json:string>laminar flow</json:string>
<json:string>good agreement</json:string>
<json:string>total number</json:string>
<json:string>channel number</json:string>
<json:string>reference value</json:string>
<json:string>heat exchange</json:string>
<json:string>fine chemicals</json:string>
<json:string>dimensionless channel length</json:string>
<json:string>entrance length</json:string>
<json:string>mesh grids</json:string>
<json:string>dimensionless channel width</json:string>
<json:string>narrow channels</json:string>
<json:string>wide channels</json:string>
<json:string>exothermic reactions</json:string>
<json:string>parallel process structures</json:string>
<json:string>equal pressure</json:string>
<json:string>different geometries</json:string>
<json:string>engineering practice</json:string>
<json:string>equality condition</json:string>
<json:string>rapid calculation</json:string>
<json:string>inlet stream</json:string>
<json:string>direct relation</json:string>
<json:string>width wiq1</json:string>
<json:string>width wncq1yi</json:string>
<json:string>flow distribution</json:string>
<json:string>optimization criterion</json:string>
<json:string>multiplate reactor geometry</json:string>
<json:string>corresponding outlet zone</json:string>
<json:string>similar approach</json:string>
<json:string>pinlet zone</json:string>
<json:string>velocity differences</json:string>
<json:string>last zones</json:string>
<json:string>individual plate</json:string>
<json:string>optimized chamber</json:string>
<json:string>special case</json:string>
<json:string>lefthand side</json:string>
<json:string>simplified geometry</json:string>
<json:string>linear chamber geometries</json:string>
<json:string>outlet zones</json:string>
<json:string>process development</json:string>
<json:string>genie chimique</json:string>
<json:string>biological microreactors</json:string>
<json:string>rectangular ducts</json:string>
<json:string>rectangular duct</json:string>
<json:string>noncircularity coefficient</json:string>
<json:string>simple zones</json:string>
<json:string>parameter</json:string>
<json:string>channels</json:string>
<json:string>approximate</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. M. Commenge</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. Falk</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. P. Corriou</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Matlosz</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</json:string>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>AIC690480218</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.</abstract>
<qualityIndicators>
<score>5.948</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>567</abstractCharCount>
<pdfWordCount>7351</pdfWordCount>
<pdfCharCount>43377</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>79</abstractWordCount>
</qualityIndicators>
<title>Optimal design for flow uniformity in microchannel reactors</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>AIChE Journal</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1547-5905</json:string>
</doi>
<issn>
<json:string>0001-1541</json:string>
</issn>
<eissn>
<json:string>1547-5905</json:string>
</eissn>
<publisherId>
<json:string>AIC</json:string>
</publisherId>
<volume>48</volume>
<issue>2</issue>
<pages>
<first>345</first>
<last>358</last>
<total>14</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Reactors, Kinetics, and Catalysis</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1002/aic.690480218</json:string>
</doi>
<id>3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Optimal design for flow uniformity in microchannel reactors</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2002 American Institute of Chemical Engineers (AIChE)</licence>
</availability>
<date type="published" when="2002-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Optimal design for flow uniformity in microchannel reactors</title>
<title level="a" type="short" xml:lang="en">Optimal Design for Flow Uniformity in Microchannel Reactors</title>
<author xml:id="author-0000">
<persName>
<forename type="first">J. M.</forename>
<surname>Commenge</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">L.</forename>
<surname>Falk</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J. P.</forename>
<surname>Corriou</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">M.</forename>
<surname>Matlosz</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
</author>
<idno type="istex">3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D</idno>
<idno type="ark">ark:/67375/WNG-FQG5XJR8-8</idno>
<idno type="DOI">10.1002/aic.690480218</idno>
<idno type="unit">AIC690480218</idno>
<idno type="toTypesetVersion">file:AIC.AIC690480218.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="pISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<idno type="book-DOI">10.1002/(ISSN)1547-5905</idno>
<idno type="book-part-DOI">10.1002/aic.v48:2</idno>
<idno type="product">AIC</idno>
<imprint>
<biblScope unit="vol">48</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="345">345</biblScope>
<biblScope unit="page" to="358">358</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2002-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Reactors, Kinetics, and Catalysis</term>
</keywords>
<keywords rend="tocHeading1">
<term>Reactors, Kinetics, and Catalysis</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1547-5905</doi>
<issn type="print">0001-1541</issn>
<issn type="electronic">1547-5905</issn>
<idGroup>
<id type="product" value="AIC"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="AICHE JOURNAL">AIChE Journal</title>
<title type="short">AIChE J.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/aic.v48:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="48">48</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2002-02">February 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="18" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/aic.690480218</doi>
<idGroup>
<id type="unit" value="AIC690480218"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Reactors, Kinetics, and Catalysis</title>
<title type="tocHeading1">Reactors, Kinetics, and Catalysis</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2002 American Institute of Chemical Engineers (AIChE)</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-02-05"></event>
<event type="manuscriptRevised" date="2001-07-11"></event>
<event type="firstOnline" date="2004-04-16"></event>
<event type="publishedOnlineFinalForm" date="2004-04-16"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">345</numbering>
<numbering type="pageLast">358</numbering>
</numberingGroup>
<correspondenceTo>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:AIC.AIC690480218.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="30"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Optimal design for flow uniformity in microchannel reactors</title>
<title type="short" xml:lang="en">Optimal Design for Flow Uniformity in Microchannel Reactors</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>J. M.</givenNames>
<familyName>Commenge</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>L.</givenNames>
<familyName>Falk</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>J. P.</givenNames>
<familyName>Corriou</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>M.</givenNames>
<familyName>Matlosz</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Optimal design for flow uniformity in microchannel reactors</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Optimal Design for Flow Uniformity in Microchannel Reactors</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Optimal design for flow uniformity in microchannel reactors</title>
</titleInfo>
<name type="personal">
<namePart type="given">J. M.</namePart>
<namePart type="family">Commenge</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Falk</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. P.</namePart>
<namePart type="family">Corriou</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Matlosz</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
<affiliation>Correspondence address: Laboratoire des Sciences du Génie Chimique, CNRS–INPL, Groupe ENSIC ‐ Nancy, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-02</dateIssued>
<dateCaptured encoding="w3cdtf">2001-02-05</dateCaptured>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">13</extent>
<extent unit="tables">2</extent>
<extent unit="references">30</extent>
</physicalDescription>
<abstract lang="en">Velocity and residence time distributions play a crucial role in the performance of microreactors for chemical synthesis. The specific features of fluid flow through multiplate microchannel reactors are examined by an approximate pressure drop model whose validity is confirmed through comparison with more detailed finite‐volume calculations. The model results allow for determination of the influence of the geometrical characteristics of the microchannel structures on the flow distributions and are used to optimize the reactor design for maximum flow uniformity.</abstract>
<relatedItem type="host">
<titleInfo>
<title>AIChE Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AIChE J.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Reactors, Kinetics, and Catalysis</topic>
</subject>
<identifier type="ISSN">0001-1541</identifier>
<identifier type="eISSN">1547-5905</identifier>
<identifier type="DOI">10.1002/(ISSN)1547-5905</identifier>
<identifier type="PublisherID">AIC</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>48</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>345</start>
<end>358</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D</identifier>
<identifier type="ark">ark:/67375/WNG-FQG5XJR8-8</identifier>
<identifier type="DOI">10.1002/aic.690480218</identifier>
<identifier type="ArticleID">AIC690480218</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2002 American Institute of Chemical Engineers (AIChE)</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3AAB24BA9D82571939FBDDB2CB2DA376BD3C5D3D
   |texte=   Optimal design for flow uniformity in microchannel reactors
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024