Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees

Identifieur interne : 000A16 ( Istex/Corpus ); précédent : 000A15; suivant : 000A17

Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees

Auteurs : Laurent Perrin ; Quang Trong Nguyen ; Robert Clement ; Jean Neel

Source :

RBID : ISTEX:55E59F75B49896C4F94384D3A786432ACCB8F430

English descriptors

Abstract

Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.

Url:
DOI: 10.1002/(SICI)1097-0126(199603)39:3<251::AID-PI496>3.0.CO;2-W

Links to Exploration step

ISTEX:55E59F75B49896C4F94384D3A786432ACCB8F430

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
<author>
<name sortKey="Perrin, Laurent" sort="Perrin, Laurent" uniqKey="Perrin L" first="Laurent" last="Perrin">Laurent Perrin</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Quang Trong" sort="Nguyen, Quang Trong" uniqKey="Nguyen Q" first="Quang Trong" last="Nguyen">Quang Trong Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clement, Robert" sort="Clement, Robert" uniqKey="Clement R" first="Robert" last="Clement">Robert Clement</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neel, Jean" sort="Neel, Jean" uniqKey="Neel J" first="Jean" last="Neel">Jean Neel</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:55E59F75B49896C4F94384D3A786432ACCB8F430</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1002/(SICI)1097-0126(199603)39:3<251::AID-PI496>3.0.CO;2-W</idno>
<idno type="url">https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A16</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
<author>
<name sortKey="Perrin, Laurent" sort="Perrin, Laurent" uniqKey="Perrin L" first="Laurent" last="Perrin">Laurent Perrin</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Quang Trong" sort="Nguyen, Quang Trong" uniqKey="Nguyen Q" first="Quang Trong" last="Nguyen">Quang Trong Nguyen</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Clement, Robert" sort="Clement, Robert" uniqKey="Clement R" first="Robert" last="Clement">Robert Clement</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neel, Jean" sort="Neel, Jean" uniqKey="Neel J" first="Jean" last="Neel">Jean Neel</name>
<affiliation>
<mods:affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Polymer International</title>
<title level="j" type="alt">POLYMER INTERNATIONAL</title>
<idno type="ISSN">0959-8103</idno>
<idno type="eISSN">1097-0126</idno>
<imprint>
<biblScope unit="vol">39</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="251">251</biblScope>
<biblScope unit="page" to="260">260</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="1996-03">1996-03</date>
</imprint>
<idno type="ISSN">0959-8103</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0959-8103</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous phase</term>
<term>Average diffusion coefficient</term>
<term>Clear explanation</term>
<term>Coefficient</term>
<term>Concentration range</term>
<term>Constant diffusion coefficient</term>
<term>Crystalline domains</term>
<term>Crystalline regions</term>
<term>Crystallinity</term>
<term>Crystallinity degree</term>
<term>Crystallinity degrees</term>
<term>Crystallinity sample</term>
<term>Density gradient column</term>
<term>Different crystallinity degrees</term>
<term>Different water activities</term>
<term>Diffusion characteristics</term>
<term>Diffusion coefficient</term>
<term>Diffusion coefficient increases</term>
<term>Diffusion coefficients</term>
<term>Diffusion properties</term>
<term>Diffusivity</term>
<term>Equilibrium state</term>
<term>Ethanol</term>
<term>Ethanol vapours</term>
<term>Experimental data</term>
<term>Experimental kinetics</term>
<term>Experimental ones</term>
<term>Experimental points</term>
<term>Experimental sorption kinetics</term>
<term>Exponential relationship</term>
<term>Film thickness</term>
<term>First term</term>
<term>Flory</term>
<term>Flory equation</term>
<term>Flory model</term>
<term>Interaction parameter</term>
<term>Isotherm</term>
<term>John wiley</term>
<term>Kinetics</term>
<term>Large range</term>
<term>Limit diffusion coefficient</term>
<term>Limit diffusivity</term>
<term>Local concentration</term>
<term>Local penetrant concentration</term>
<term>Mass gain</term>
<term>Membrane</term>
<term>Membrane processes</term>
<term>Other hand</term>
<term>Penetrant</term>
<term>Penetrant diffusion</term>
<term>Plane surfaces</term>
<term>Plasticization</term>
<term>Plasticization coefficient</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer film</term>
<term>Polymer materials</term>
<term>Polymer properties</term>
<term>Polymer segments</term>
<term>Residual errors</term>
<term>Same temperature</term>
<term>Second fick equation</term>
<term>Semicrystalline polymer</term>
<term>Solubility</term>
<term>Solubility parameter space</term>
<term>Solvent</term>
<term>Solvent content</term>
<term>Solvent sorption</term>
<term>Solvent vapour activity</term>
<term>Solvent vapour pressure</term>
<term>Solvent vapours</term>
<term>Solvent volume fraction</term>
<term>Sorption</term>
<term>Sorption behaviour</term>
<term>Sorption chamber</term>
<term>Sorption data</term>
<term>Sorption equilibrium</term>
<term>Sorption experiments</term>
<term>Sorption extent</term>
<term>Sorption isotherm</term>
<term>Sorption isotherms</term>
<term>Sorption kinetics</term>
<term>Sorption kinetics data</term>
<term>Sorption microbalance</term>
<term>Sorption process</term>
<term>Sorption time</term>
<term>Vapour</term>
<term>Vapours</term>
<term>Volume fraction</term>
<term>Water activities</term>
<term>Water activity</term>
<term>Water vapour</term>
<term>Weight gain</term>
<term>Weight gains</term>
<term>Whole sorption kinetics</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amorphous phase</term>
<term>Average diffusion coefficient</term>
<term>Clear explanation</term>
<term>Coefficient</term>
<term>Concentration range</term>
<term>Constant diffusion coefficient</term>
<term>Crystalline domains</term>
<term>Crystalline regions</term>
<term>Crystallinity</term>
<term>Crystallinity degree</term>
<term>Crystallinity degrees</term>
<term>Crystallinity sample</term>
<term>Density gradient column</term>
<term>Different crystallinity degrees</term>
<term>Different water activities</term>
<term>Diffusion characteristics</term>
<term>Diffusion coefficient</term>
<term>Diffusion coefficient increases</term>
<term>Diffusion coefficients</term>
<term>Diffusion properties</term>
<term>Diffusivity</term>
<term>Equilibrium state</term>
<term>Ethanol</term>
<term>Ethanol vapours</term>
<term>Experimental data</term>
<term>Experimental kinetics</term>
<term>Experimental ones</term>
<term>Experimental points</term>
<term>Experimental sorption kinetics</term>
<term>Exponential relationship</term>
<term>Film thickness</term>
<term>First term</term>
<term>Flory</term>
<term>Flory equation</term>
<term>Flory model</term>
<term>Interaction parameter</term>
<term>Isotherm</term>
<term>John wiley</term>
<term>Kinetics</term>
<term>Large range</term>
<term>Limit diffusion coefficient</term>
<term>Limit diffusivity</term>
<term>Local concentration</term>
<term>Local penetrant concentration</term>
<term>Mass gain</term>
<term>Membrane</term>
<term>Membrane processes</term>
<term>Other hand</term>
<term>Penetrant</term>
<term>Penetrant diffusion</term>
<term>Plane surfaces</term>
<term>Plasticization</term>
<term>Plasticization coefficient</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer film</term>
<term>Polymer materials</term>
<term>Polymer properties</term>
<term>Polymer segments</term>
<term>Residual errors</term>
<term>Same temperature</term>
<term>Second fick equation</term>
<term>Semicrystalline polymer</term>
<term>Solubility</term>
<term>Solubility parameter space</term>
<term>Solvent</term>
<term>Solvent content</term>
<term>Solvent sorption</term>
<term>Solvent vapour activity</term>
<term>Solvent vapour pressure</term>
<term>Solvent vapours</term>
<term>Solvent volume fraction</term>
<term>Sorption</term>
<term>Sorption behaviour</term>
<term>Sorption chamber</term>
<term>Sorption data</term>
<term>Sorption equilibrium</term>
<term>Sorption experiments</term>
<term>Sorption extent</term>
<term>Sorption isotherm</term>
<term>Sorption isotherms</term>
<term>Sorption kinetics</term>
<term>Sorption kinetics data</term>
<term>Sorption microbalance</term>
<term>Sorption process</term>
<term>Sorption time</term>
<term>Vapour</term>
<term>Vapours</term>
<term>Volume fraction</term>
<term>Water activities</term>
<term>Water activity</term>
<term>Water vapour</term>
<term>Weight gain</term>
<term>Weight gains</term>
<term>Whole sorption kinetics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>crystallinity</json:string>
<json:string>sorption</json:string>
<json:string>polymer</json:string>
<json:string>diffusion coefficient</json:string>
<json:string>kinetics</json:string>
<json:string>vapour</json:string>
<json:string>penetrant</json:string>
<json:string>vapours</json:string>
<json:string>coefficient</json:string>
<json:string>polym</json:string>
<json:string>solubility</json:string>
<json:string>plasticization</json:string>
<json:string>weight gain</json:string>
<json:string>ethanol</json:string>
<json:string>limit diffusion coefficient</json:string>
<json:string>different crystallinity degrees</json:string>
<json:string>crystallinity degree</json:string>
<json:string>sorption kinetics</json:string>
<json:string>isotherm</json:string>
<json:string>diffusivity</json:string>
<json:string>plasticization coefficient</json:string>
<json:string>water activity</json:string>
<json:string>sorption extent</json:string>
<json:string>solvent vapours</json:string>
<json:string>experimental points</json:string>
<json:string>flory model</json:string>
<json:string>volume fraction</json:string>
<json:string>membrane processes</json:string>
<json:string>constant diffusion coefficient</json:string>
<json:string>polymer materials</json:string>
<json:string>experimental data</json:string>
<json:string>water vapour</json:string>
<json:string>crystallinity degrees</json:string>
<json:string>interaction parameter</json:string>
<json:string>solvent</json:string>
<json:string>sorption chamber</json:string>
<json:string>exponential relationship</json:string>
<json:string>diffusion coefficients</json:string>
<json:string>polymer segments</json:string>
<json:string>experimental sorption kinetics</json:string>
<json:string>second fick equation</json:string>
<json:string>experimental kinetics</json:string>
<json:string>residual errors</json:string>
<json:string>whole sorption kinetics</json:string>
<json:string>sorption time</json:string>
<json:string>flory equation</json:string>
<json:string>solvent sorption</json:string>
<json:string>ethanol vapours</json:string>
<json:string>equilibrium state</json:string>
<json:string>crystalline domains</json:string>
<json:string>amorphous phase</json:string>
<json:string>solvent content</json:string>
<json:string>polymer film</json:string>
<json:string>membrane</json:string>
<json:string>flory</json:string>
<json:string>local concentration</json:string>
<json:string>diffusion characteristics</json:string>
<json:string>local penetrant concentration</json:string>
<json:string>semicrystalline polymer</json:string>
<json:string>diffusion coefficient increases</json:string>
<json:string>crystalline regions</json:string>
<json:string>diffusion properties</json:string>
<json:string>first term</json:string>
<json:string>experimental ones</json:string>
<json:string>sorption microbalance</json:string>
<json:string>sorption data</json:string>
<json:string>sorption isotherms</json:string>
<json:string>density gradient column</json:string>
<json:string>crystallinity sample</json:string>
<json:string>sorption experiments</json:string>
<json:string>sorption isotherm</json:string>
<json:string>water activities</json:string>
<json:string>weight gains</json:string>
<json:string>solvent vapour activity</json:string>
<json:string>solvent vapour pressure</json:string>
<json:string>same temperature</json:string>
<json:string>large range</json:string>
<json:string>solvent volume fraction</json:string>
<json:string>sorption behaviour</json:string>
<json:string>sorption equilibrium</json:string>
<json:string>sorption process</json:string>
<json:string>solubility parameter space</json:string>
<json:string>film thickness</json:string>
<json:string>other hand</json:string>
<json:string>different water activities</json:string>
<json:string>concentration range</json:string>
<json:string>mass gain</json:string>
<json:string>polymer properties</json:string>
<json:string>sorption kinetics data</json:string>
<json:string>penetrant diffusion</json:string>
<json:string>clear explanation</json:string>
<json:string>average diffusion coefficient</json:string>
<json:string>limit diffusivity</json:string>
<json:string>john wiley</json:string>
<json:string>plane surfaces</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Laurent Perrin</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</json:string>
<json:string>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Quang Trong Nguyen</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Clement</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean Neel</name>
<affiliations>
<json:string>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>water</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ethanol</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>crystallinity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>concentration‐dependence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>diffusion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>poly(vinylalcohol) membranes</value>
</json:item>
</subject>
<articleId>
<json:string>PI496</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.</abstract>
<qualityIndicators>
<score>7.652</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 827.759 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1502</abstractCharCount>
<pdfWordCount>5969</pdfWordCount>
<pdfCharCount>35714</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>221</abstractWordCount>
</qualityIndicators>
<title>Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Polymer International</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-0126</json:string>
</doi>
<issn>
<json:string>0959-8103</json:string>
</issn>
<eissn>
<json:string>1097-0126</json:string>
</eissn>
<publisherId>
<json:string>PI</json:string>
</publisherId>
<volume>39</volume>
<issue>3</issue>
<pages>
<first>251</first>
<last>260</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>polymer science</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>polymers</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1002/(SICI)1097-0126(199603)39:3>251::AID-PI496>3.0.CO;2-W</json:string>
</doi>
<id>55E59F75B49896C4F94384D3A786432ACCB8F430</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 1996 SCI</licence>
</availability>
<date type="published" when="1996-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
<title level="a" type="short" xml:lang="en">Sorption and diffusion of solvent vapours in PVA membranes</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Laurent</forename>
<surname>Perrin</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Quang Trong</forename>
<surname>Nguyen</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Robert</forename>
<surname>Clement</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Jean</forename>
<surname>Neel</surname>
</persName>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">55E59F75B49896C4F94384D3A786432ACCB8F430</idno>
<idno type="ark">ark:/67375/WNG-LNLC2T93-7</idno>
<idno type="DOI">10.1002/(SICI)1097-0126(199603)39:3<251::AID-PI496>3.0.CO;2-W</idno>
<idno type="unit">PI496</idno>
<idno type="toTypesetVersion">file:PI.PI496.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Polymer International</title>
<title level="j" type="alt">POLYMER INTERNATIONAL</title>
<idno type="pISSN">0959-8103</idno>
<idno type="eISSN">1097-0126</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-0126</idno>
<idno type="book-part-DOI">10.1002/(SICI)1097-0126(199603)39:3<>1.0.CO;2-B</idno>
<idno type="product">PI</idno>
<imprint>
<biblScope unit="vol">39</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="251">251</biblScope>
<biblScope unit="page" to="260">260</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="1996-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">water</term>
<term xml:id="kwd2">ethanol</term>
<term xml:id="kwd3">crystallinity</term>
<term xml:id="kwd4">concentration‐dependence</term>
<term xml:id="kwd5">diffusion</term>
<term xml:id="kwd6">poly(vinylalcohol) membranes</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0126</doi>
<issn type="print">0959-8103</issn>
<issn type="electronic">1097-0126</issn>
<idGroup>
<id type="product" value="PI"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="POLYMER INTERNATIONAL">Polymer International</title>
<title type="short">Polym. Int.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/(SICI)1097-0126(199603)39:3<>1.0.CO;2-B</doi>
<numberingGroup>
<numbering type="journalVolume" number="39">39</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="1996-03">March 1996</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="12" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/(SICI)1097-0126(199603)39:3<251::AID-PI496>3.0.CO;2-W</doi>
<idGroup>
<id type="unit" value="PI496"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 1996 SCI</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1995-06-12"></event>
<event type="manuscriptRevised" date="1995-10-09"></event>
<event type="manuscriptAccepted" date="1995-10-21"></event>
<event type="firstOnline" date="1999-03-26"></event>
<event type="publishedOnlineFinalForm" date="1999-03-26"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-02"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">251</numbering>
<numbering type="pageLast">260</numbering>
</numberingGroup>
<correspondenceTo>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PI.PI496.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="29"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
<title type="short" xml:lang="en">Sorption and diffusion of solvent vapours in PVA membranes</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Laurent</givenNames>
<familyName>Perrin</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Quang Trong</givenNames>
<familyName>Nguyen</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Robert</givenNames>
<familyName>Clement</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Jean</givenNames>
<familyName>Neel</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">water</keyword>
<keyword xml:id="kwd2">ethanol</keyword>
<keyword xml:id="kwd3">crystallinity</keyword>
<keyword xml:id="kwd4">concentration‐dependence</keyword>
<keyword xml:id="kwd5">diffusion</keyword>
<keyword xml:id="kwd6">poly(vinylalcohol) membranes</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Sorption and diffusion of solvent vapours in PVA membranes</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Perrin</namePart>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
<affiliation>Correspondence address: LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quang Trong</namePart>
<namePart type="family">Nguyen</namePart>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Clement</namePart>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Neel</namePart>
<affiliation>LCPM‐URA 494, ENSIC, B.P. 451, 1 rue Grandville, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1996-03</dateIssued>
<dateCaptured encoding="w3cdtf">1995-06-12</dateCaptured>
<dateValid encoding="w3cdtf">1995-10-21</dateValid>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="tables">2</extent>
<extent unit="references">29</extent>
</physicalDescription>
<abstract lang="en">Solvent sorption and diffusion are the key processes that control membrane performances in membrane processes. The sorption characteristic of water and ethanol vapours in poly(vinylalcohol) (PVA) membranes of different crystallinity degrees was measured by microgravimetry and the diffusion characteristic was calculated from the sorption kinetics at different water activities by curve fitting. The sorption isotherms for water vapour in membranes of 28, 37, 44 and 56% crystallinity degrees at 40°C obey the Flory equation based on the polymer lattice model. When the sorption extent was corrected by assuming that only the polymer amorphous phase is accessible to the penetrant, a unique Flory χ interaction parameter, 0.3, was obtained for all samples except for the 28% crystallinity sample. For the latter sample, the lower χ value (0.18) obtained can be explained by a change in the sorption behaviour of the original crystalline domains which may undergo partial destruction. The diffusion coefficient increases with the average water content in the membrane according to an exponential relationship characterized by a limit diffusion coefficient and a plasticization coefficient. The higher the crystallinity of the membrane, the lower the values of the limit diffusion coefficient and the plasticization coefficient. The ethanol sorption was also well described by the Flory–Huggins equation. The limit diffusion coefficient for water was two orders of magnitude larger than that for ethanol.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>water</topic>
<topic>ethanol</topic>
<topic>crystallinity</topic>
<topic>concentration‐dependence</topic>
<topic>diffusion</topic>
<topic>poly(vinylalcohol) membranes</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Polymer International</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Polym. Int.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0959-8103</identifier>
<identifier type="eISSN">1097-0126</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0126</identifier>
<identifier type="PublisherID">PI</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>251</start>
<end>260</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">55E59F75B49896C4F94384D3A786432ACCB8F430</identifier>
<identifier type="ark">ark:/67375/WNG-LNLC2T93-7</identifier>
<identifier type="DOI">10.1002/(SICI)1097-0126(199603)39:3<251::AID-PI496>3.0.CO;2-W</identifier>
<identifier type="ArticleID">PI496</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1996 SCI</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/55E59F75B49896C4F94384D3A786432ACCB8F430/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:55E59F75B49896C4F94384D3A786432ACCB8F430
   |texte=   Sorption and diffusion of solvent vapours in poly(vinylalcohol) membranes of different crystallinity degrees
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024