Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatio-temporal modelling-based drift-aware wireless sensor networks

Identifieur interne : 000873 ( PascalFrancis/Curation ); précédent : 000872; suivant : 000874

Spatio-temporal modelling-based drift-aware wireless sensor networks

Auteurs : M. Takruri [Australie] ; S. Rajasegarar [Australie] ; S. Challa [Australie] ; C. Leckie [Australie] ; M. Palaniswami [Australie]

Source :

RBID : Pascal:11-0386595

Descripteurs français

English descriptors

Abstract

Wireless sensor networks are deployed for the purpose of monitoring an area of interest. Even when the sensors are properly calibrated at the time of deployment, they develop drift in their readings leading to erroneous network inferences. Based on the assumption that neighbouring sensors have correlated measurements and that the instantiations of drifts in sensors are uncorrelated, the authors present a novel algorithm for detecting and correcting sensor measurement errors. The authors use statistical modelling rather than physical relations to model the spatio-temporal cross-correlations among sensors. This in principle makes the framework presented applicable to most sensing problems. Each sensor in the network trains a support vector regression algorithm on its neighbours' corrected readings to obtain a predicted value for its future measurements. This phase is referred to here as the training phase. In the running phase, the predicted measurements are used by each node, in a recursive decentralised fashion, to self-assess its measurement and to detect and correct its drift and random error using an unscented Kalman filter. No assumptions regarding the linearity of drift or the density (closeness) of sensor deployment are made. The authors also demonstrate using real data obtained from the Intel Berkeley Research Laboratory that the proposed algorithm successfully suppresses drifts developed in sensors and thereby prolongs the effective lifetime of the network.
pA  
A01 01  1    @0 2043-6386
A03   1    @0 IET wirel. sens. syst. : (Print)
A05       @2 1
A06       @2 2
A08 01  1  ENG  @1 Spatio-temporal modelling-based drift-aware wireless sensor networks
A11 01  1    @1 TAKRURI (M.)
A11 02  1    @1 RAJASEGARAR (S.)
A11 03  1    @1 CHALLA (S.)
A11 04  1    @1 LECKIE (C.)
A11 05  1    @1 PALANISWAMI (M.)
A14 01      @1 Centre for Real-Time Information Networks (CRIN), University of Technology @2 Sydney @3 AUS @Z 1 aut.
A14 02      @1 Department of Electrical and Electronic Engineering, The University of Melbourne @2 Melbourne @3 AUS @Z 2 aut. @Z 5 aut.
A14 03      @1 NICTA Victoria Research Laboratory, The University of Melbourne @2 Melbourne @3 AUS @Z 3 aut.
A14 04      @1 NICTA Victoria Research Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne @2 Melbourne @3 AUS @Z 4 aut.
A20       @1 110-122
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 7573U @5 354000191149750070
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 53 ref.
A47 01  1    @0 11-0386595
A60       @1 P
A61       @0 A
A64 01  1    @0 IET wireless sensor systems : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Wireless sensor networks are deployed for the purpose of monitoring an area of interest. Even when the sensors are properly calibrated at the time of deployment, they develop drift in their readings leading to erroneous network inferences. Based on the assumption that neighbouring sensors have correlated measurements and that the instantiations of drifts in sensors are uncorrelated, the authors present a novel algorithm for detecting and correcting sensor measurement errors. The authors use statistical modelling rather than physical relations to model the spatio-temporal cross-correlations among sensors. This in principle makes the framework presented applicable to most sensing problems. Each sensor in the network trains a support vector regression algorithm on its neighbours' corrected readings to obtain a predicted value for its future measurements. This phase is referred to here as the training phase. In the running phase, the predicted measurements are used by each node, in a recursive decentralised fashion, to self-assess its measurement and to detect and correct its drift and random error using an unscented Kalman filter. No assumptions regarding the linearity of drift or the density (closeness) of sensor deployment are made. The authors also demonstrate using real data obtained from the Intel Berkeley Research Laboratory that the proposed algorithm successfully suppresses drifts developed in sensors and thereby prolongs the effective lifetime of the network.
C02 01  X    @0 001D04B02H4
C02 02  X    @0 001D04A04A2
C02 03  X    @0 001D04A04A1
C03 01  X  FRE  @0 Modélisation @5 01
C03 01  X  ENG  @0 Modeling @5 01
C03 01  X  SPA  @0 Modelización @5 01
C03 02  X  FRE  @0 Télédétection @5 02
C03 02  X  ENG  @0 Remote sensing @5 02
C03 02  X  SPA  @0 Teledetección @5 02
C03 03  X  FRE  @0 Réseau capteur @5 03
C03 03  X  ENG  @0 Sensor array @5 03
C03 03  X  SPA  @0 Red sensores @5 03
C03 04  X  FRE  @0 Réseau sans fil @5 04
C03 04  X  ENG  @0 Wireless network @5 04
C03 04  X  SPA  @0 Red sin hilo @5 04
C03 05  X  FRE  @0 Monitorage @5 05
C03 05  X  ENG  @0 Monitoring @5 05
C03 05  X  SPA  @0 Monitoreo @5 05
C03 06  X  FRE  @0 Algorithme @5 06
C03 06  X  ENG  @0 Algorithm @5 06
C03 06  X  SPA  @0 Algoritmo @5 06
C03 07  X  FRE  @0 Erreur mesure @5 07
C03 07  X  ENG  @0 Measurement error @5 07
C03 07  X  SPA  @0 Error medida @5 07
C03 08  X  FRE  @0 Corrélation temporelle @5 08
C03 08  X  ENG  @0 Time correlation @5 08
C03 08  X  SPA  @0 Correlación temporal @5 08
C03 09  X  FRE  @0 Corrélation croisée @5 09
C03 09  X  ENG  @0 Cross correlation @5 09
C03 09  X  SPA  @0 Correlación cruzada @5 09
C03 10  X  FRE  @0 Machine vecteur support @5 10
C03 10  X  ENG  @0 Support vector machine @5 10
C03 10  X  SPA  @0 Máquina vector soporte @5 10
C03 11  X  FRE  @0 Analyse régression @5 11
C03 11  X  ENG  @0 Regression analysis @5 11
C03 11  X  SPA  @0 Análisis regresión @5 11
C03 12  X  FRE  @0 Apprentissage @5 12
C03 12  X  ENG  @0 Learning @5 12
C03 12  X  SPA  @0 Aprendizaje @5 12
C03 13  X  FRE  @0 Mesure phase @5 13
C03 13  X  ENG  @0 Phase measurement @5 13
C03 13  X  SPA  @0 Medida fase @5 13
C03 14  X  FRE  @0 Méthode récursive @5 14
C03 14  X  ENG  @0 Recursive method @5 14
C03 14  X  SPA  @0 Método recursivo @5 14
C03 15  X  FRE  @0 Système décentralisé @5 15
C03 15  X  ENG  @0 Decentralized system @5 15
C03 15  X  SPA  @0 Sistema descentralizado @5 15
C03 16  X  FRE  @0 Erreur aléatoire @5 16
C03 16  X  ENG  @0 Random error @5 16
C03 16  X  SPA  @0 Error aleatorio @5 16
C03 17  X  FRE  @0 filtre kalman UKF @5 17
C03 17  X  ENG  @0 Unscented Kalman filter @5 17
C03 17  X  SPA  @0 Filtro UKF @5 17
C03 18  X  FRE  @0 Linéarité @5 18
C03 18  X  ENG  @0 Linearity @5 18
C03 18  X  SPA  @0 Linearidad @5 18
C03 19  X  FRE  @0 Détection signal @5 46
C03 19  X  ENG  @0 Signal detection @5 46
C03 19  X  SPA  @0 Detección señal @5 46
C03 20  X  FRE  @0 Télécommunication sans fil @5 47
C03 20  X  ENG  @0 Wireless telecommunication @5 47
C03 20  X  SPA  @0 Telecomunicación sin hilo @5 47
C03 21  3  FRE  @0 Classification signal @5 48
C03 21  3  ENG  @0 Signal classification @5 48
C03 22  X  FRE  @0 Classification automatique @5 49
C03 22  X  ENG  @0 Automatic classification @5 49
C03 22  X  SPA  @0 Clasificación automática @5 49
N21       @1 262
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0386595

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spatio-temporal modelling-based drift-aware wireless sensor networks</title>
<author>
<name sortKey="Takruri, M" sort="Takruri, M" uniqKey="Takruri M" first="M." last="Takruri">M. Takruri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Real-Time Information Networks (CRIN), University of Technology</s1>
<s2>Sydney</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Rajasegarar, S" sort="Rajasegarar, S" uniqKey="Rajasegarar S" first="S." last="Rajasegarar">S. Rajasegarar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Electronic Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Challa, S" sort="Challa, S" uniqKey="Challa S" first="S." last="Challa">S. Challa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NICTA Victoria Research Laboratory, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Leckie, C" sort="Leckie, C" uniqKey="Leckie C" first="C." last="Leckie">C. Leckie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>NICTA Victoria Research Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Palaniswami, M" sort="Palaniswami, M" uniqKey="Palaniswami M" first="M." last="Palaniswami">M. Palaniswami</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Electronic Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0386595</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0386595 INIST</idno>
<idno type="RBID">Pascal:11-0386595</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000140</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000873</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spatio-temporal modelling-based drift-aware wireless sensor networks</title>
<author>
<name sortKey="Takruri, M" sort="Takruri, M" uniqKey="Takruri M" first="M." last="Takruri">M. Takruri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Real-Time Information Networks (CRIN), University of Technology</s1>
<s2>Sydney</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Rajasegarar, S" sort="Rajasegarar, S" uniqKey="Rajasegarar S" first="S." last="Rajasegarar">S. Rajasegarar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Electronic Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Challa, S" sort="Challa, S" uniqKey="Challa S" first="S." last="Challa">S. Challa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NICTA Victoria Research Laboratory, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Leckie, C" sort="Leckie, C" uniqKey="Leckie C" first="C." last="Leckie">C. Leckie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>NICTA Victoria Research Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Palaniswami, M" sort="Palaniswami, M" uniqKey="Palaniswami M" first="M." last="Palaniswami">M. Palaniswami</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical and Electronic Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IET wireless sensor systems : (Print)</title>
<title level="j" type="abbreviated">IET wirel. sens. syst. : (Print)</title>
<idno type="ISSN">2043-6386</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IET wireless sensor systems : (Print)</title>
<title level="j" type="abbreviated">IET wirel. sens. syst. : (Print)</title>
<idno type="ISSN">2043-6386</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm</term>
<term>Automatic classification</term>
<term>Cross correlation</term>
<term>Decentralized system</term>
<term>Learning</term>
<term>Linearity</term>
<term>Measurement error</term>
<term>Modeling</term>
<term>Monitoring</term>
<term>Phase measurement</term>
<term>Random error</term>
<term>Recursive method</term>
<term>Regression analysis</term>
<term>Remote sensing</term>
<term>Sensor array</term>
<term>Signal classification</term>
<term>Signal detection</term>
<term>Support vector machine</term>
<term>Time correlation</term>
<term>Unscented Kalman filter</term>
<term>Wireless network</term>
<term>Wireless telecommunication</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Télédétection</term>
<term>Réseau capteur</term>
<term>Réseau sans fil</term>
<term>Monitorage</term>
<term>Algorithme</term>
<term>Erreur mesure</term>
<term>Corrélation temporelle</term>
<term>Corrélation croisée</term>
<term>Machine vecteur support</term>
<term>Analyse régression</term>
<term>Apprentissage</term>
<term>Mesure phase</term>
<term>Méthode récursive</term>
<term>Système décentralisé</term>
<term>Erreur aléatoire</term>
<term>filtre kalman UKF</term>
<term>Linéarité</term>
<term>Détection signal</term>
<term>Télécommunication sans fil</term>
<term>Classification signal</term>
<term>Classification automatique</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Télédétection</term>
<term>Télécommunication sans fil</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wireless sensor networks are deployed for the purpose of monitoring an area of interest. Even when the sensors are properly calibrated at the time of deployment, they develop drift in their readings leading to erroneous network inferences. Based on the assumption that neighbouring sensors have correlated measurements and that the instantiations of drifts in sensors are uncorrelated, the authors present a novel algorithm for detecting and correcting sensor measurement errors. The authors use statistical modelling rather than physical relations to model the spatio-temporal cross-correlations among sensors. This in principle makes the framework presented applicable to most sensing problems. Each sensor in the network trains a support vector regression algorithm on its neighbours' corrected readings to obtain a predicted value for its future measurements. This phase is referred to here as the training phase. In the running phase, the predicted measurements are used by each node, in a recursive decentralised fashion, to self-assess its measurement and to detect and correct its drift and random error using an unscented Kalman filter. No assumptions regarding the linearity of drift or the density (closeness) of sensor deployment are made. The authors also demonstrate using real data obtained from the Intel Berkeley Research Laboratory that the proposed algorithm successfully suppresses drifts developed in sensors and thereby prolongs the effective lifetime of the network.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>2043-6386</s0>
</fA01>
<fA03 i2="1">
<s0>IET wirel. sens. syst. : (Print)</s0>
</fA03>
<fA05>
<s2>1</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spatio-temporal modelling-based drift-aware wireless sensor networks</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TAKRURI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAJASEGARAR (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHALLA (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LECKIE (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PALANISWAMI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Real-Time Information Networks (CRIN), University of Technology</s1>
<s2>Sydney</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Electronic Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NICTA Victoria Research Laboratory, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>NICTA Victoria Research Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne</s1>
<s2>Melbourne</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>110-122</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7573U</s2>
<s5>354000191149750070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>53 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0386595</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IET wireless sensor systems : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Wireless sensor networks are deployed for the purpose of monitoring an area of interest. Even when the sensors are properly calibrated at the time of deployment, they develop drift in their readings leading to erroneous network inferences. Based on the assumption that neighbouring sensors have correlated measurements and that the instantiations of drifts in sensors are uncorrelated, the authors present a novel algorithm for detecting and correcting sensor measurement errors. The authors use statistical modelling rather than physical relations to model the spatio-temporal cross-correlations among sensors. This in principle makes the framework presented applicable to most sensing problems. Each sensor in the network trains a support vector regression algorithm on its neighbours' corrected readings to obtain a predicted value for its future measurements. This phase is referred to here as the training phase. In the running phase, the predicted measurements are used by each node, in a recursive decentralised fashion, to self-assess its measurement and to detect and correct its drift and random error using an unscented Kalman filter. No assumptions regarding the linearity of drift or the density (closeness) of sensor deployment are made. The authors also demonstrate using real data obtained from the Intel Berkeley Research Laboratory that the proposed algorithm successfully suppresses drifts developed in sensors and thereby prolongs the effective lifetime of the network.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D04B02H4</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A04A2</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04A04A1</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Télédétection</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Remote sensing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Teledetección</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Réseau capteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sensor array</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Red sensores</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Réseau sans fil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Wireless network</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Red sin hilo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Erreur mesure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Measurement error</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Error medida</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Corrélation temporelle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Time correlation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Correlación temporal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Corrélation croisée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Cross correlation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Correlación cruzada</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Machine vecteur support</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Support vector machine</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Máquina vector soporte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse régression</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Regression analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Análisis regresión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Apprentissage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Learning</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Aprendizaje</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mesure phase</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Phase measurement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Medida fase</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode récursive</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Recursive method</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método recursivo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Système décentralisé</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Decentralized system</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Sistema descentralizado</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Erreur aléatoire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Random error</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Error aleatorio</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>filtre kalman UKF</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Unscented Kalman filter</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Filtro UKF</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Linéarité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Linearity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Linearidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Détection signal</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Signal detection</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Detección señal</s0>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Télécommunication sans fil</s0>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Wireless telecommunication</s0>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Telecomunicación sin hilo</s0>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Classification signal</s0>
<s5>48</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Signal classification</s0>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Classification automatique</s0>
<s5>49</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Automatic classification</s0>
<s5>49</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Clasificación automática</s0>
<s5>49</s5>
</fC03>
<fN21>
<s1>262</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000873 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000873 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0386595
   |texte=   Spatio-temporal modelling-based drift-aware wireless sensor networks
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022