Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening

Identifieur interne : 000872 ( PascalFrancis/Curation ); précédent : 000871; suivant : 000873

Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening

Auteurs : Violeta I. Perez-Nueno [France] ; David W. Ritchie [France]

Source :

RBID : Pascal:11-0332166

Descripteurs français

English descriptors

Abstract

Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.
pA  
A01 01  1    @0 1549-9596
A03   1    @0 J. chem. inf. model.
A05       @2 51
A06       @2 6
A08 01  1  ENG  @1 Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening
A11 01  1    @1 PEREZ-NUENO (Violeta I.)
A11 02  1    @1 RITCHIE (David W.)
A14 01      @1 INRIA Nancy, LORIA, 615 rue du Jardin Botanique @2 54600 Villers-lès-Nancy @3 FRA @Z 1 aut. @Z 2 aut.
A20       @1 1233-1248
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 2652 @5 354000190503440040
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 51 ref.
A47 01  1    @0 11-0332166
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of chemical information and modeling
A66 01      @0 USA
C01 01    ENG  @0 Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.
C02 01  X    @0 001D02B07B
C02 02  X    @0 001C01A01
C02 03  X    @0 002B02A03
C02 04  X    @0 001D02C03
C03 01  X  FRE  @0 Analyse donnée @5 06
C03 01  X  ENG  @0 Data analysis @5 06
C03 01  X  SPA  @0 Análisis datos @5 06
C03 02  X  FRE  @0 Chimie informatique @5 07
C03 02  X  ENG  @0 Computational chemistry @5 07
C03 02  X  SPA  @0 Química informática @5 07
C03 03  X  FRE  @0 Concordance forme @5 08
C03 03  X  ENG  @0 Pattern matching @5 08
C03 04  X  FRE  @0 Traitement image @5 09
C03 04  X  ENG  @0 Image processing @5 09
C03 04  X  SPA  @0 Procesamiento imagen @5 09
C03 05  X  FRE  @0 Système réparti @5 10
C03 05  X  ENG  @0 Distributed system @5 10
C03 05  X  SPA  @0 Sistema repartido @5 10
C03 06  X  FRE  @0 Consolidation @5 18
C03 06  X  ENG  @0 Consolidation @5 18
C03 06  X  SPA  @0 Consolidación @5 18
C03 07  X  FRE  @0 Ligand @5 19
C03 07  X  ENG  @0 Ligand @5 19
C03 07  X  SPA  @0 Ligando @5 19
C03 08  X  FRE  @0 Protéine @5 20
C03 08  X  ENG  @0 Protein @5 20
C03 08  X  SPA  @0 Proteína @5 20
C03 09  X  FRE  @0 Industrie pharmaceutique @5 21
C03 09  X  ENG  @0 Pharmaceutical industry @5 21
C03 09  X  SPA  @0 Industria farmacéutica @5 21
C03 10  X  FRE  @0 Cible multiple @5 22
C03 10  X  ENG  @0 Multiple target @5 22
C03 10  X  SPA  @0 Blanco múltiple @5 22
C03 11  X  FRE  @0 Analyse amas @5 23
C03 11  X  ENG  @0 Cluster analysis @5 23
C03 11  X  SPA  @0 Analisis cluster @5 23
C03 12  X  FRE  @0 Médicament @5 24
C03 12  X  ENG  @0 Drug @5 24
C03 12  X  SPA  @0 Medicamento @5 24
C03 13  X  FRE  @0 Effet bord @5 25
C03 13  X  ENG  @0 Edge effect @5 25
C03 13  X  SPA  @0 Efecto borde @5 25
C03 14  X  FRE  @0 Harmonique sphérique @5 26
C03 14  X  ENG  @0 Spherical harmonic @5 26
C03 14  X  SPA  @0 Armónica esférica @5 26
C03 15  X  FRE  @0 Criblage virtuel @5 27
C03 15  X  ENG  @0 Virtual screening @5 27
C03 15  X  SPA  @0 Cribado virtual @5 27
C03 16  X  FRE  @0 Conformation @5 28
C03 16  X  ENG  @0 Conformation @5 28
C03 16  X  SPA  @0 Conformación @5 28
C03 17  X  FRE  @0 Analyse statistique @5 29
C03 17  X  ENG  @0 Statistical analysis @5 29
C03 17  X  SPA  @0 Análisis estadístico @5 29
C03 18  X  FRE  @0 Approche probabiliste @5 30
C03 18  X  ENG  @0 Probabilistic approach @5 30
C03 18  X  SPA  @0 Enfoque probabilista @5 30
C03 19  X  FRE  @0 Forme sphérique @5 41
C03 19  X  ENG  @0 Spherical shape @5 41
C03 19  X  SPA  @0 Forma esférica @5 41
C03 20  X  FRE  @0 . @4 INC @5 82
C03 21  X  FRE  @0 Contrôle déformation mécanique @4 CD @5 96
C03 21  X  ENG  @0 Strain control @4 CD @5 96
C03 21  X  SPA  @0 Control de deformación mecánica @4 CD @5 96
C03 22  X  FRE  @0 Reconnaissance objet @4 CD @5 97
C03 22  X  ENG  @0 Object recognition @4 CD @5 97
C03 22  X  SPA  @0 Reconocimiento de objetos @4 CD @5 97
N21       @1 227
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0332166

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</title>
<author>
<name sortKey="Perez Nueno, Violeta I" sort="Perez Nueno, Violeta I" uniqKey="Perez Nueno V" first="Violeta I." last="Perez-Nueno">Violeta I. Perez-Nueno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0332166</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0332166 INIST</idno>
<idno type="RBID">Pascal:11-0332166</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000141</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000872</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</title>
<author>
<name sortKey="Perez Nueno, Violeta I" sort="Perez Nueno, Violeta I" uniqKey="Perez Nueno V" first="Violeta I." last="Perez-Nueno">Violeta I. Perez-Nueno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of chemical information and modeling</title>
<title level="j" type="abbreviated">J. chem. inf. model. </title>
<idno type="ISSN">1549-9596</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of chemical information and modeling</title>
<title level="j" type="abbreviated">J. chem. inf. model. </title>
<idno type="ISSN">1549-9596</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster analysis</term>
<term>Computational chemistry</term>
<term>Conformation</term>
<term>Consolidation</term>
<term>Data analysis</term>
<term>Distributed system</term>
<term>Drug</term>
<term>Edge effect</term>
<term>Image processing</term>
<term>Ligand</term>
<term>Multiple target</term>
<term>Object recognition</term>
<term>Pattern matching</term>
<term>Pharmaceutical industry</term>
<term>Probabilistic approach</term>
<term>Protein</term>
<term>Spherical harmonic</term>
<term>Spherical shape</term>
<term>Statistical analysis</term>
<term>Strain control</term>
<term>Virtual screening</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse donnée</term>
<term>Chimie informatique</term>
<term>Concordance forme</term>
<term>Traitement image</term>
<term>Système réparti</term>
<term>Consolidation</term>
<term>Ligand</term>
<term>Protéine</term>
<term>Industrie pharmaceutique</term>
<term>Cible multiple</term>
<term>Analyse amas</term>
<term>Médicament</term>
<term>Effet bord</term>
<term>Harmonique sphérique</term>
<term>Criblage virtuel</term>
<term>Conformation</term>
<term>Analyse statistique</term>
<term>Approche probabiliste</term>
<term>Forme sphérique</term>
<term>.</term>
<term>Contrôle déformation mécanique</term>
<term>Reconnaissance objet</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Industrie pharmaceutique</term>
<term>Médicament</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1549-9596</s0>
</fA01>
<fA03 i2="1">
<s0>J. chem. inf. model. </s0>
</fA03>
<fA05>
<s2>51</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PEREZ-NUENO (Violeta I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RITCHIE (David W.)</s1>
</fA11>
<fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1233-1248</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2652</s2>
<s5>354000190503440040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0332166</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of chemical information and modeling</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B07B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01A01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B02A03</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Analyse donnée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Data analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Análisis datos</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Chimie informatique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Computational chemistry</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Química informática</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Concordance forme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Pattern matching</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Traitement image</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Image processing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procesamiento imagen</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Système réparti</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Distributed system</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sistema repartido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Consolidation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Consolidation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Consolidación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ligand</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ligand</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ligando</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Protein</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Industrie pharmaceutique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pharmaceutical industry</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Industria farmacéutica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cible multiple</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Multiple target</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Blanco múltiple</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse amas</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cluster analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Analisis cluster</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Médicament</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Drug</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Medicamento</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Effet bord</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Edge effect</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Efecto borde</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Harmonique sphérique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spherical harmonic</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Armónica esférica</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Criblage virtuel</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Virtual screening</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cribado virtual</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Conformation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Conformation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Conformación</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Analyse statistique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Statistical analysis</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Análisis estadístico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Approche probabiliste</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Probabilistic approach</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Enfoque probabilista</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Forme sphérique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Spherical shape</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Forma esférica</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Contrôle déformation mécanique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Strain control</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Control de deformación mecánica</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Reconnaissance objet</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Object recognition</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Reconocimiento de objetos</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>227</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000872 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000872 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0332166
   |texte=   Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022