Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners

Identifieur interne : 000D54 ( PascalFrancis/Corpus ); précédent : 000D53; suivant : 000D55

Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners

Auteurs : Ray E. Ferrell ; Per Aagaard ; Johan Forsman ; Lea Greenwood ; ZUOPING ZHENG

Source :

RBID : Pascal:02-0235795

Descripteurs français

English descriptors

Abstract

PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10-10 m2 s-1 and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10-10 m2 s- Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0169-1317
A02 01      @0 ACLSER
A03   1    @0 Appl. clay sci.
A05       @2 21
A06       @2 1-2
A08 01  1  ENG  @1 Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners
A09 01  1  ENG  @1 Clay barriers and waste management
A11 01  1    @1 FERRELL (Ray E.)
A11 02  1    @1 AAGAARD (Per)
A11 03  1    @1 FORSMAN (Johan)
A11 04  1    @1 GREENWOOD (Lea)
A11 05  1    @1 ZUOPING ZHENG
A12 01  1    @1 CZURDA (Kurt A.) @9 ed.
A12 02  1    @1 WAGNER (Jean-Frank) @9 ed.
A14 01      @1 Department of Geology and Geophysics, Louisiana State University @2 Baton Rouge, LA 70803 @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Department of Geology, University of Oslo @2 Oslo @3 NOR @Z 2 aut. @Z 5 aut.
A15 01      @1 Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12 @2 76128 Karlsruhe @3 DEU @Z 1 aut.
A15 02      @1 Geology Department, Faculty VI, University of Trier, Behringstrasse @2 54286 Trier @3 DEU @Z 2 aut.
A20       @1 59-66 @7 2
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 20859 @5 354000100846800060
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 10 ref.
A47 01  1    @0 02-0235795
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied clay science
A66 01      @0 NLD
C01 01    ENG  @0 PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10-10 m2 s-1 and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10-10 m2 s- Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.
C02 01  2    @0 226B04
C02 02  2    @0 226B01
C02 03  X    @0 001E01O04
C02 04  X    @0 001E01O01
C03 01  2  FRE  @0 Modèle @5 01
C03 01  2  ENG  @0 models @5 01
C03 01  2  SPA  @0 Modelo @5 01
C03 02  2  FRE  @0 Transport @5 02
C03 02  2  ENG  @0 transport @5 02
C03 02  2  SPA  @0 Transporte @5 02
C03 03  2  FRE  @0 Prévision @5 03
C03 03  2  ENG  @0 prediction @5 03
C03 03  2  SPA  @0 Previsión @5 03
C03 04  2  FRE  @0 Polluant @5 06
C03 04  2  ENG  @0 pollutants @5 06
C03 04  2  SPA  @0 Contaminante @5 06
C03 05  2  FRE  @0 Pollution @5 07
C03 05  2  ENG  @0 pollution @5 07
C03 05  2  SPA  @0 Polución @5 07
C03 06  2  FRE  @0 Rétention @5 08
C03 06  2  ENG  @0 retention @5 08
C03 07  2  FRE  @0 Métal lourd @5 09
C03 07  2  ENG  @0 heavy metals @5 09
C03 07  2  SPA  @0 Metal pesado @5 09
C03 08  2  FRE  @0 Plomb @5 10
C03 08  2  ENG  @0 lead @5 10
C03 08  2  SPA  @0 Plomo @5 10
C03 09  2  FRE  @0 Argile @2 NV @5 11
C03 09  2  ENG  @0 clay @2 NV @5 11
C03 09  2  SPA  @0 Arcilla @2 NV @5 11
C03 10  2  FRE  @0 Simulation @5 12
C03 10  2  ENG  @0 simulation @5 12
C03 10  2  SPA  @0 Simulación @5 12
C03 11  2  FRE  @0 Diffusivité @5 13
C03 11  2  ENG  @0 diffusivity @5 13
C03 12  2  FRE  @0 Epaisseur @5 14
C03 12  2  ENG  @0 thickness @5 14
C03 12  2  SPA  @0 Espesor @5 14
C03 13  2  FRE  @0 Migration élément @5 15
C03 13  2  ENG  @0 migration of elements @5 15
C03 13  2  SPA  @0 Migración elementos @5 15
C03 14  2  FRE  @0 Diffusion @5 16
C03 14  2  ENG  @0 diffusion @5 16
C03 14  2  SPA  @0 Difusión @5 16
C03 15  2  FRE  @0 Adsorption @5 19
C03 15  2  ENG  @0 adsorption @5 19
C03 15  2  SPA  @0 Adsorción @5 19
C03 16  2  FRE  @0 Echange ion @5 20
C03 16  2  ENG  @0 ion exchange @5 20
C03 16  2  SPA  @0 Cambio iónico @5 20
C03 17  2  FRE  @0 Capacité échange cation @5 21
C03 17  2  ENG  @0 cation exchange capacity @5 21
C03 17  2  SPA  @0 Capacidad intercambio catión @5 21
C03 18  2  FRE  @0 Porosité @5 23
C03 18  2  ENG  @0 porosity @5 23
C03 18  2  SPA  @0 Porosidad @5 23
C03 19  2  FRE  @0 Compacité @5 24
C03 19  2  ENG  @0 compactness @5 24
C03 19  2  SPA  @0 Compacidad @5 24
C03 20  2  FRE  @0 Densité @5 25
C03 20  2  ENG  @0 density @5 25
C03 20  2  SPA  @0 Densidad @5 25
C06       @0 ILS @0 TAS
C07 01  2  FRE  @0 Roche clastique @2 NV
C07 01  2  ENG  @0 clastic rocks @2 NV
C07 01  2  SPA  @0 Roca clástica @2 NV
C07 02  2  FRE  @0 Roche sédimentaire
C07 02  2  ENG  @0 sedimentary rocks
C07 02  2  SPA  @0 Roca sedimentaria
N21       @1 140
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0235795 INIST
ET : Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners
AU : FERRELL (Ray E.); AAGAARD (Per); FORSMAN (Johan); GREENWOOD (Lea); ZUOPING ZHENG; CZURDA (Kurt A.); WAGNER (Jean-Frank)
AF : Department of Geology and Geophysics, Louisiana State University/Baton Rouge, LA 70803/Etats-Unis (1 aut., 3 aut., 4 aut.); Department of Geology, University of Oslo/Oslo/Norvège (2 aut., 5 aut.); Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12/76128 Karlsruhe/Allemagne (1 aut.); Geology Department, Faculty VI, University of Trier, Behringstrasse/54286 Trier/Allemagne (2 aut.)
DT : Publication en série; Niveau analytique
SO : Applied clay science; ISSN 0169-1317; Coden ACLSER; Pays-Bas; Da. 2002; Vol. 21; No. 1-2; Pp. 59-66; Bibl. 10 ref.
LA : Anglais
EA : PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10-10 m2 s-1 and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10-10 m2 s- Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.
CC : 226B04; 226B01; 001E01O04; 001E01O01
FD : Modèle; Transport; Prévision; Polluant; Pollution; Rétention; Métal lourd; Plomb; Argile; Simulation; Diffusivité; Epaisseur; Migration élément; Diffusion; Adsorption; Echange ion; Capacité échange cation; Porosité; Compacité; Densité
FG : Roche clastique; Roche sédimentaire
ED : models; transport; prediction; pollutants; pollution; retention; heavy metals; lead; clay; simulation; diffusivity; thickness; migration of elements; diffusion; adsorption; ion exchange; cation exchange capacity; porosity; compactness; density
EG : clastic rocks; sedimentary rocks
SD : Modelo; Transporte; Previsión; Contaminante; Polución; Metal pesado; Plomo; Arcilla; Simulación; Espesor; Migración elementos; Difusión; Adsorción; Cambio iónico; Capacidad intercambio catión; Porosidad; Compacidad; Densidad
LO : INIST-20859.354000100846800060
ID : 02-0235795

Links to Exploration step

Pascal:02-0235795

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</title>
<author>
<name sortKey="Ferrell, Ray E" sort="Ferrell, Ray E" uniqKey="Ferrell R" first="Ray E." last="Ferrell">Ray E. Ferrell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aagaard, Per" sort="Aagaard, Per" uniqKey="Aagaard P" first="Per" last="Aagaard">Per Aagaard</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Forsman, Johan" sort="Forsman, Johan" uniqKey="Forsman J" first="Johan" last="Forsman">Johan Forsman</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Greenwood, Lea" sort="Greenwood, Lea" uniqKey="Greenwood L" first="Lea" last="Greenwood">Lea Greenwood</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zuoping Zheng" sort="Zuoping Zheng" uniqKey="Zuoping Zheng" last="Zuoping Zheng">ZUOPING ZHENG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0235795</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0235795 INIST</idno>
<idno type="RBID">Pascal:02-0235795</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</title>
<author>
<name sortKey="Ferrell, Ray E" sort="Ferrell, Ray E" uniqKey="Ferrell R" first="Ray E." last="Ferrell">Ray E. Ferrell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aagaard, Per" sort="Aagaard, Per" uniqKey="Aagaard P" first="Per" last="Aagaard">Per Aagaard</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Forsman, Johan" sort="Forsman, Johan" uniqKey="Forsman J" first="Johan" last="Forsman">Johan Forsman</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Greenwood, Lea" sort="Greenwood, Lea" uniqKey="Greenwood L" first="Lea" last="Greenwood">Lea Greenwood</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zuoping Zheng" sort="Zuoping Zheng" uniqKey="Zuoping Zheng" last="Zuoping Zheng">ZUOPING ZHENG</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>adsorption</term>
<term>cation exchange capacity</term>
<term>clay</term>
<term>compactness</term>
<term>density</term>
<term>diffusion</term>
<term>diffusivity</term>
<term>heavy metals</term>
<term>ion exchange</term>
<term>lead</term>
<term>migration of elements</term>
<term>models</term>
<term>pollutants</term>
<term>pollution</term>
<term>porosity</term>
<term>prediction</term>
<term>retention</term>
<term>simulation</term>
<term>thickness</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle</term>
<term>Transport</term>
<term>Prévision</term>
<term>Polluant</term>
<term>Pollution</term>
<term>Rétention</term>
<term>Métal lourd</term>
<term>Plomb</term>
<term>Argile</term>
<term>Simulation</term>
<term>Diffusivité</term>
<term>Epaisseur</term>
<term>Migration élément</term>
<term>Diffusion</term>
<term>Adsorption</term>
<term>Echange ion</term>
<term>Capacité échange cation</term>
<term>Porosité</term>
<term>Compacité</term>
<term>Densité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-</sup>
Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-1317</s0>
</fA01>
<fA02 i1="01">
<s0>ACLSER</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. clay sci.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Clay barriers and waste management</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>FERRELL (Ray E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AAGAARD (Per)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FORSMAN (Johan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GREENWOOD (Lea)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZUOPING ZHENG</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CZURDA (Kurt A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WAGNER (Jean-Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12</s1>
<s2>76128 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Geology Department, Faculty VI, University of Trier, Behringstrasse</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>59-66</s1>
<s7>2</s7>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20859</s2>
<s5>354000100846800060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0235795</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied clay science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-</sup>
Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226B04</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>226B01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001E01O04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001E01O01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>models</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>prediction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Polluant</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>pollutants</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Contaminante</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Polución</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Rétention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>retention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Métal lourd</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>heavy metals</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Metal pesado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Plomb</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>lead</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Plomo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Argile</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>clay</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Arcilla</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Diffusivité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>diffusivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Epaisseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>thickness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Espesor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Migration élément</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>migration of elements</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Migración elementos</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Difusión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Adsorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>adsorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Adsorción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Echange ion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>ion exchange</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Cambio iónico</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Capacité échange cation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>cation exchange capacity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Capacidad intercambio catión</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Porosité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>porosity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Porosidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Compacité</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>compactness</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Compacidad</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Densité</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>density</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Densidad</s0>
<s5>25</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Roche clastique</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>clastic rocks</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Roca clástica</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Roche sédimentaire</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>sedimentary rocks</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Roca sedimentaria</s0>
</fC07>
<fN21>
<s1>140</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0235795 INIST</NO>
<ET>Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</ET>
<AU>FERRELL (Ray E.); AAGAARD (Per); FORSMAN (Johan); GREENWOOD (Lea); ZUOPING ZHENG; CZURDA (Kurt A.); WAGNER (Jean-Frank)</AU>
<AF>Department of Geology and Geophysics, Louisiana State University/Baton Rouge, LA 70803/Etats-Unis (1 aut., 3 aut., 4 aut.); Department of Geology, University of Oslo/Oslo/Norvège (2 aut., 5 aut.); Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12/76128 Karlsruhe/Allemagne (1 aut.); Geology Department, Faculty VI, University of Trier, Behringstrasse/54286 Trier/Allemagne (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Applied clay science; ISSN 0169-1317; Coden ACLSER; Pays-Bas; Da. 2002; Vol. 21; No. 1-2; Pp. 59-66; Bibl. 10 ref.</SO>
<LA>Anglais</LA>
<EA>PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-</sup>
Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.</EA>
<CC>226B04; 226B01; 001E01O04; 001E01O01</CC>
<FD>Modèle; Transport; Prévision; Polluant; Pollution; Rétention; Métal lourd; Plomb; Argile; Simulation; Diffusivité; Epaisseur; Migration élément; Diffusion; Adsorption; Echange ion; Capacité échange cation; Porosité; Compacité; Densité</FD>
<FG>Roche clastique; Roche sédimentaire</FG>
<ED>models; transport; prediction; pollutants; pollution; retention; heavy metals; lead; clay; simulation; diffusivity; thickness; migration of elements; diffusion; adsorption; ion exchange; cation exchange capacity; porosity; compactness; density</ED>
<EG>clastic rocks; sedimentary rocks</EG>
<SD>Modelo; Transporte; Previsión; Contaminante; Polución; Metal pesado; Plomo; Arcilla; Simulación; Espesor; Migración elementos; Difusión; Adsorción; Cambio iónico; Capacidad intercambio catión; Porosidad; Compacidad; Densidad</SD>
<LO>INIST-20859.354000100846800060</LO>
<ID>02-0235795</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000D54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0235795
   |texte=   Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024