Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microfabric effects in frozen clays in relation to geotechnical parameters

Identifieur interne : 000D53 ( PascalFrancis/Corpus ); précédent : 000D52; suivant : 000D54

Microfabric effects in frozen clays in relation to geotechnical parameters

Auteurs : Maria Hohmann-Porebska

Source :

RBID : Pascal:02-0235886

Descripteurs français

English descriptors

Abstract

The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0169-1317
A02 01      @0 ACLSER
A03   1    @0 Appl. clay sci.
A05       @2 21
A06       @2 1-2
A08 01  1  ENG  @1 Microfabric effects in frozen clays in relation to geotechnical parameters
A09 01  1  ENG  @1 Clay barriers and waste management
A11 01  1    @1 HOHMANN-POREBSKA (Maria)
A12 01  1    @1 CZURDA (Kurt A.) @9 ed.
A12 02  1    @1 WAGNER (Jean-Frank) @9 ed.
A14 01      @1 Department of Applied Geology, Karlsruhe University @2 7500 Karlsruhe @3 DEU @Z 1 aut.
A15 01      @1 Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12 @2 76128 Karlsruhe @3 DEU @Z 1 aut.
A15 02      @1 Geology Department, Faculty VI, University of Trier, Behringstrasse @2 54286 Trier @3 DEU @Z 2 aut.
A20       @1 77-87 @7 3
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 20859 @5 354000100846800080
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 02-0235886
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied clay science
A66 01      @0 NLD
C01 01    ENG  @0 The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.
C02 01  2    @0 226B01
C02 02  X    @0 001E01O01
C03 01  2  FRE  @0 Argile @2 NV @5 01
C03 01  2  ENG  @0 clay @2 NV @5 01
C03 01  2  SPA  @0 Arcilla @2 NV @5 01
C03 02  2  FRE  @0 Sol gelé @2 NT @5 02
C03 02  2  ENG  @0 frozen ground @2 NT @5 02
C03 02  2  SPA  @0 Suelo helado @2 NT @5 02
C03 03  2  FRE  @0 Thermodynamique @5 08
C03 03  2  ENG  @0 thermodynamics @5 08
C03 03  2  SPA  @0 Termodinámica @5 08
C03 04  2  FRE  @0 Température @5 10
C03 04  2  ENG  @0 temperature @5 10
C03 04  2  SPA  @0 Temperatura @5 10
C03 05  2  FRE  @0 Glace @5 13
C03 05  2  ENG  @0 ice @5 13
C03 05  2  SPA  @0 Hielo @5 13
C03 06  2  FRE  @0 Déplacement @5 14
C03 06  2  ENG  @0 displacements @5 14
C03 07  2  FRE  @0 Fabrique @5 17
C03 07  2  ENG  @0 fabric @5 17
C03 07  2  SPA  @0 Fábrica @5 17
C03 08  2  FRE  @0 Transformation @5 18
C03 08  2  ENG  @0 transformations @5 18
C03 08  2  SPA  @0 Transformación @5 18
C03 09  2  FRE  @0 Congélation @5 19
C03 09  2  ENG  @0 freezing @5 19
C03 09  2  SPA  @0 Congelación @5 19
C03 10  2  FRE  @0 Mécanisme @5 20
C03 10  2  ENG  @0 mechanism @5 20
C03 11  2  FRE  @0 Microscopie électronique @5 21
C03 11  2  ENG  @0 electron microscopy @5 21
C03 11  2  SPA  @0 Microscopía electrónica @5 21
C03 12  2  FRE  @0 Donnée MEB @5 22
C03 12  2  ENG  @0 SEM data @5 22
C03 12  2  SPA  @0 Dato MEB @5 22
C03 13  2  FRE  @0 Perméabilité @5 23
C03 13  2  ENG  @0 permeability @5 23
C03 13  2  SPA  @0 Permeabilidad @5 23
C03 14  2  FRE  @0 Microstructure @5 25
C03 14  2  ENG  @0 microstructures @5 25
C03 14  2  SPA  @0 Microestructura @5 25
C03 15  2  FRE  @0 Microfabrique @4 INC @5 52
C03 16  2  FRE  @0 Résistance cisaillement @5 62
C03 16  2  ENG  @0 shear strength @5 62
C03 16  2  SPA  @0 Resistencia cizallamiento @5 62
C03 17  2  FRE  @0 Dynamique @5 64
C03 17  2  ENG  @0 dynamics @5 64
C03 17  2  SPA  @0 Dinámica @5 64
C03 18  2  FRE  @0 Altération @5 65
C03 18  2  ENG  @0 alteration @5 65
C03 18  2  SPA  @0 Alteración @5 65
C06       @0 ILS @0 TAS
C07 01  2  FRE  @0 Roche clastique @2 NV
C07 01  2  ENG  @0 clastic rocks @2 NV
C07 01  2  SPA  @0 Roca clástica @2 NV
C07 02  2  FRE  @0 Roche sédimentaire
C07 02  2  ENG  @0 sedimentary rocks
C07 02  2  SPA  @0 Roca sedimentaria
C07 03  2  FRE  @0 Sol
C07 03  2  ENG  @0 soils
C07 03  2  SPA  @0 Suelo
N21       @1 140
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0235886 INIST
ET : Microfabric effects in frozen clays in relation to geotechnical parameters
AU : HOHMANN-POREBSKA (Maria); CZURDA (Kurt A.); WAGNER (Jean-Frank)
AF : Department of Applied Geology, Karlsruhe University/7500 Karlsruhe/Allemagne (1 aut.); Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12/76128 Karlsruhe/Allemagne (1 aut.); Geology Department, Faculty VI, University of Trier, Behringstrasse/54286 Trier/Allemagne (2 aut.)
DT : Publication en série; Niveau analytique
SO : Applied clay science; ISSN 0169-1317; Coden ACLSER; Pays-Bas; Da. 2002; Vol. 21; No. 1-2; Pp. 77-87; Bibl. 19 ref.
LA : Anglais
EA : The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.
CC : 226B01; 001E01O01
FD : Argile; Sol gelé; Thermodynamique; Température; Glace; Déplacement; Fabrique; Transformation; Congélation; Mécanisme; Microscopie électronique; Donnée MEB; Perméabilité; Microstructure; Microfabrique; Résistance cisaillement; Dynamique; Altération
FG : Roche clastique; Roche sédimentaire; Sol
ED : clay; frozen ground; thermodynamics; temperature; ice; displacements; fabric; transformations; freezing; mechanism; electron microscopy; SEM data; permeability; microstructures; shear strength; dynamics; alteration
EG : clastic rocks; sedimentary rocks; soils
SD : Arcilla; Suelo helado; Termodinámica; Temperatura; Hielo; Fábrica; Transformación; Congelación; Microscopía electrónica; Dato MEB; Permeabilidad; Microestructura; Resistencia cizallamiento; Dinámica; Alteración
LO : INIST-20859.354000100846800080
ID : 02-0235886

Links to Exploration step

Pascal:02-0235886

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Microfabric effects in frozen clays in relation to geotechnical parameters</title>
<author>
<name sortKey="Hohmann Porebska, Maria" sort="Hohmann Porebska, Maria" uniqKey="Hohmann Porebska M" first="Maria" last="Hohmann-Porebska">Maria Hohmann-Porebska</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Applied Geology, Karlsruhe University</s1>
<s2>7500 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0235886</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0235886 INIST</idno>
<idno type="RBID">Pascal:02-0235886</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Microfabric effects in frozen clays in relation to geotechnical parameters</title>
<author>
<name sortKey="Hohmann Porebska, Maria" sort="Hohmann Porebska, Maria" uniqKey="Hohmann Porebska M" first="Maria" last="Hohmann-Porebska">Maria Hohmann-Porebska</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Applied Geology, Karlsruhe University</s1>
<s2>7500 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>SEM data</term>
<term>alteration</term>
<term>clay</term>
<term>displacements</term>
<term>dynamics</term>
<term>electron microscopy</term>
<term>fabric</term>
<term>freezing</term>
<term>frozen ground</term>
<term>ice</term>
<term>mechanism</term>
<term>microstructures</term>
<term>permeability</term>
<term>shear strength</term>
<term>temperature</term>
<term>thermodynamics</term>
<term>transformations</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Argile</term>
<term>Sol gelé</term>
<term>Thermodynamique</term>
<term>Température</term>
<term>Glace</term>
<term>Déplacement</term>
<term>Fabrique</term>
<term>Transformation</term>
<term>Congélation</term>
<term>Mécanisme</term>
<term>Microscopie électronique</term>
<term>Donnée MEB</term>
<term>Perméabilité</term>
<term>Microstructure</term>
<term>Microfabrique</term>
<term>Résistance cisaillement</term>
<term>Dynamique</term>
<term>Altération</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-1317</s0>
</fA01>
<fA02 i1="01">
<s0>ACLSER</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. clay sci.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Microfabric effects in frozen clays in relation to geotechnical parameters</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Clay barriers and waste management</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HOHMANN-POREBSKA (Maria)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CZURDA (Kurt A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WAGNER (Jean-Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Applied Geology, Karlsruhe University</s1>
<s2>7500 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12</s1>
<s2>76128 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Geology Department, Faculty VI, University of Trier, Behringstrasse</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>77-87</s1>
<s7>3</s7>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20859</s2>
<s5>354000100846800080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0235886</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied clay science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01O01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Argile</s0>
<s2>NV</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>clay</s0>
<s2>NV</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Arcilla</s0>
<s2>NV</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Sol gelé</s0>
<s2>NT</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>frozen ground</s0>
<s2>NT</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Suelo helado</s0>
<s2>NT</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Thermodynamique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>thermodynamics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Termodinámica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>temperature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Glace</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>ice</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Hielo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Déplacement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>displacements</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Fabrique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>fabric</s0>
<s5>17</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Fábrica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Transformation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>transformations</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Transformación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Congélation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>freezing</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Congelación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Mécanisme</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>mechanism</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Microscopie électronique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>electron microscopy</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Microscopía electrónica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Donnée MEB</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>SEM data</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Dato MEB</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Perméabilité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>permeability</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Permeabilidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Microstructure</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>microstructures</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Microestructura</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Microfabrique</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Résistance cisaillement</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>shear strength</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Resistencia cizallamiento</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>64</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>64</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>64</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Altération</s0>
<s5>65</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>alteration</s0>
<s5>65</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Alteración</s0>
<s5>65</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Roche clastique</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>clastic rocks</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Roca clástica</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Roche sédimentaire</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>sedimentary rocks</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Roca sedimentaria</s0>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Sol</s0>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>soils</s0>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Suelo</s0>
</fC07>
<fN21>
<s1>140</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0235886 INIST</NO>
<ET>Microfabric effects in frozen clays in relation to geotechnical parameters</ET>
<AU>HOHMANN-POREBSKA (Maria); CZURDA (Kurt A.); WAGNER (Jean-Frank)</AU>
<AF>Department of Applied Geology, Karlsruhe University/7500 Karlsruhe/Allemagne (1 aut.); Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12/76128 Karlsruhe/Allemagne (1 aut.); Geology Department, Faculty VI, University of Trier, Behringstrasse/54286 Trier/Allemagne (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Applied clay science; ISSN 0169-1317; Coden ACLSER; Pays-Bas; Da. 2002; Vol. 21; No. 1-2; Pp. 77-87; Bibl. 19 ref.</SO>
<LA>Anglais</LA>
<EA>The thermodynamic conditions within frozen ground at temperatures just below 0 °C cause continuing translocation of water, ice and the displacement of mineral skeleton. The consideration of a wide range of micro-fabric transformations after freezing provides useful clues to the understanding the mechanism of void channel formation, which leads to increased permeability and changes in the shear resistance of soils. Microstructure observations, frost heave, water intake, permeability and shear strength measurements revealed the dynamic nature of cryogenic alterations. This paper deals with the effects of freeze-thaw on microstructure of clayey soils and soil-bentonite mixtures in relation to changes of the permeability and the shear strength. The SEM analysis was employed to study directly cryogenic alterations within clayey soils particularly close to the shearing plane and after permeability tests. The results show that the modifications of fabric are progressive and occur before their transition to the frozen stage and in the negative temperature range. Aggregates of fabric created by ice lensing are generally stable. A very significant increase of the permeability was observed after freezing and thawing. In this study, the magnitude of changes measured was in the range between two and three orders the original value. The shear strength parameters of unfrozen samples and frozen close to the freezing front do not vary significantly. The temperature effects on the shear strength are mainly reflected in cohesion.</EA>
<CC>226B01; 001E01O01</CC>
<FD>Argile; Sol gelé; Thermodynamique; Température; Glace; Déplacement; Fabrique; Transformation; Congélation; Mécanisme; Microscopie électronique; Donnée MEB; Perméabilité; Microstructure; Microfabrique; Résistance cisaillement; Dynamique; Altération</FD>
<FG>Roche clastique; Roche sédimentaire; Sol</FG>
<ED>clay; frozen ground; thermodynamics; temperature; ice; displacements; fabric; transformations; freezing; mechanism; electron microscopy; SEM data; permeability; microstructures; shear strength; dynamics; alteration</ED>
<EG>clastic rocks; sedimentary rocks; soils</EG>
<SD>Arcilla; Suelo helado; Termodinámica; Temperatura; Hielo; Fábrica; Transformación; Congelación; Microscopía electrónica; Dato MEB; Permeabilidad; Microestructura; Resistencia cizallamiento; Dinámica; Alteración</SD>
<LO>INIST-20859.354000100846800080</LO>
<ID>02-0235886</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000D53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0235886
   |texte=   Microfabric effects in frozen clays in relation to geotechnical parameters
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024