Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus

Identifieur interne : 001990 ( Istex/Corpus ); précédent : 001989; suivant : 001991

Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus

Auteurs : Ulrich B Ssler

Source :

RBID : ISTEX:7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56

Abstract

Abstract: The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.

Url:
DOI: 10.1007/BF00289109

Links to Exploration step

ISTEX:7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="de">Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität, Trier-Kaiserslautern, BRD</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56</idno>
<date when="1973" year="1973">1973</date>
<idno type="doi">10.1007/BF00289109</idno>
<idno type="url">https://api.istex.fr/document/7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001990</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001990</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="de">Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität, Trier-Kaiserslautern, BRD</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="ISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1973-07-01">1973-07-01</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="38">38</biblScope>
<biblScope unit="page" to="53">53</biblScope>
</imprint>
<idno type="ISSN">0023-5946</idno>
</series>
<idno type="istex">7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56</idno>
<idno type="DOI">10.1007/BF00289109</idno>
<idno type="ArticleID">BF00289109</idno>
<idno type="ArticleID">Art5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0023-5946</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="de">de</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<author>
<json:item>
<name>Ulrich Bässler</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität, Trier-Kaiserslautern, BRD</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00289109</json:string>
<json:string>Art5</json:string>
</articleId>
<language>
<json:string>ger</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 810 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2329</abstractCharCount>
<pdfWordCount>9060</pdfWordCount>
<pdfCharCount>57878</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>370</abstractWordCount>
</qualityIndicators>
<title>Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
<refBibs>
<json:item>
<author></author>
<host>
<volume>1</volume>
<author></author>
<title>13. Bd., Heft</title>
<publicationDate>1973</publicationDate>
</host>
<publicationDate>1973</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>W,J Barnes</name>
</json:item>
<json:item>
<name>C,P Spirito</name>
</json:item>
<json:item>
<name>W,H Evoy</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>31</last>
<first>16</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in walking</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U Biissler</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<first>193</first>
</pages>
<issue>168</issue>
<author></author>
<title>Kybernetik</title>
<publicationDate>1965</publicationDate>
</host>
<title>Proprioreceptoren am Subcoxal-und Femur-Tibia- Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung</title>
<publicationDate>1965</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U Biissler</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>26</last>
<first>18</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1967</publicationDate>
</host>
<title>Zur Regelung der Stellung des Femur-Tibia-Gelenkes bei der Stabheuschrecke Carausius morosus in der Ruhe und im Lauf</title>
<publicationDate>1967</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U Biissler</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<first>112</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1968</publicationDate>
</host>
<title>Zur Steuerung des Springens bei der Wanderheuschrecke Sehistocerca gregaria</title>
<publicationDate>1968</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>114</last>
<first>110</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Zur Beeinflussung der Bewegungsweise eines Beines von Carausius morosus durch Amputation anderer Beine</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>50</last>
<first>32</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Der ,Kniesehnenreflex" bei Carausius morosus: l]bergangsfunktion und Frequenzgang</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<first>20</first>
</pages>
<issue>8</issue>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B,M H Bush</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>587</last>
<first>567</first>
</pages>
<author></author>
<title>Comp. Biochem. Physiol</title>
<publicationDate>1965</publicationDate>
</host>
<title>Leg Refexes from Chordotonal Organs in the crab, Carcinus maenas</title>
<publicationDate>1965</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>F Clarac</name>
</json:item>
<json:item>
<name>M Coulmance</name>
</json:item>
</author>
<host>
<volume>73</volume>
<pages>
<last>438</last>
<first>408</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1971</publicationDate>
</host>
<title>La marche lat6rale du crabe (Carcinus) Coordination des mouvements articulaires et r6gulation proprioceptive</title>
<publicationDate>1971</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>F Delcomyn</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>445</last>
<first>427</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1971</publicationDate>
</host>
<title>Computer aided analysis of a locomotor leg reflex in the cockroach Periplaneta americana</title>
<publicationDate>1971</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>W,H Evoy</name>
</json:item>
<json:item>
<name>M,J Cohen</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>169</last>
<first>151</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
<publicationDate>1969</publicationDate>
</host>
<title>Sensory and motor interaction in the locomotor reflexes of crabs</title>
<publicationDate>1969</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,S Galloway</name>
</json:item>
<json:item>
<name>H,J Runion</name>
</json:item>
<json:item>
<name>P,N R Usherwood</name>
</json:item>
</author>
<host>
<volume>187</volume>
<pages>
<last>10</last>
<first>9</first>
</pages>
<author></author>
<title>J. Physiol</title>
<publicationDate>1966</publicationDate>
</host>
<title>An electrophysiological approach to the study of insect behaviour</title>
<publicationDate>1966</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>D,H Godden</name>
</json:item>
</author>
<host>
<volume>80</volume>
<pages>
<last>225</last>
<first>201</first>
</pages>
<author></author>
<title>J. comp. Physiol</title>
<publicationDate>1972</publicationDate>
</host>
<title>The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus Br</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>D,H Godden</name>
</json:item>
<json:item>
<name>T,H Goldsmith</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>145</last>
<first>135</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Photoinhibition of arousal in the stick insect Carausius</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,G Pearson</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>193</last>
<first>173</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Central programming and reflex control of walking in the cockroach</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,G Pearson</name>
</json:item>
<json:item>
<name>J,F Lles</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>165</last>
<first>139</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
<publicationDate>1970</publicationDate>
</host>
<title>Discharge patterns of coxal levator and depressor motoneurous of the cockroach, Periplaneta americana</title>
<publicationDate>1970</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>H,J Runion</name>
</json:item>
<json:item>
<name>P,N R Usherwood</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>436</last>
<first>421</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
<publicationDate>1968</publicationDate>
</host>
<title>Tarsal receptors and leg reflexes in the locust and grasshopper</title>
<publicationDate>1968</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>C,P Spirito</name>
</json:item>
<json:item>
<name>W,H Evoy</name>
</json:item>
<json:item>
<name>W,J Barnes</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>15</last>
<first>1</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Nervous control of walking in the crab, Cardisoma guanhumi. I. Characteristics of resistance reflexes</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>P,N R Usherwood</name>
</json:item>
<json:item>
<name>H,J Runion</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>58</last>
<first>39</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
</host>
<title>Analysis of the mechanical responses of the metathoracic extensor tibiae muscles of freewalking locusts</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P,N R Usherwood</name>
</json:item>
<json:item>
<name>H,J Runion</name>
</json:item>
<json:item>
<name>J,I Campbell</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>323</last>
<first>305</first>
</pages>
<author></author>
<title>J. Exp. Biol</title>
<publicationDate>1968</publicationDate>
</host>
<title>Structure and physiology of a chordotonal organ in the locust leg</title>
<publicationDate>1968</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>G Wendler</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>250</last>
<first>198</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1964</publicationDate>
</host>
<title>Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder yon Regelkreisen</title>
<publicationDate>1964</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Ch Walther</name>
</json:item>
</author>
<host>
<volume>62</volume>
<pages>
<last>460</last>
<first>421</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1969</publicationDate>
</host>
<title>Zum Verhalten des Krallenbeugesystems bei der Stabheuschrecke Carausius morosus Br</title>
<publicationDate>1969</publicationDate>
</json:item>
<json:item>
<host>
<author>
<json:item>
<name> Prof</name>
</json:item>
<json:item>
<name> Dr</name>
</json:item>
</author>
</host>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>13</volume>
<pages>
<last>53</last>
<first>38</first>
</pages>
<issn>
<json:string>0023-5946</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Neurosciences</value>
</json:item>
<json:item>
<value>Zoology</value>
</json:item>
</subject>
<journalId>
<json:string>422</json:string>
</journalId>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1432-0770</json:string>
</eissn>
<title>Kybernetik</title>
<publicationDate>1973</publicationDate>
<copyrightDate>1972</copyrightDate>
</host>
<publicationDate>1973</publicationDate>
<copyrightDate>1973</copyrightDate>
<doi>
<json:string>10.1007/BF00289109</json:string>
</doi>
<id>7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56</id>
<score>0.66679806</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="de">Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
<title level="a" type="alt" xml:lang="en">Control of active movements of the femur-tibia-joint of the stick-insect Carausius morosus</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<p>Springer-Verlag, 1973</p>
</availability>
<date>1973-02-20</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="de">Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
<title level="a" type="alt" xml:lang="en">Control of active movements of the femur-tibia-joint of the stick-insect Carausius morosus</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ulrich</forename>
<surname>Bässler</surname>
</persName>
<affiliation>Fachbereich Biologie der Universität, Trier-Kaiserslautern, BRD</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="journal-ID">422</idno>
<idno type="pISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<idno type="issue-article-count">6</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1973-07-01"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="38">38</biblScope>
<biblScope unit="page" to="53">53</biblScope>
</imprint>
</monogr>
<idno type="istex">7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56</idno>
<idno type="DOI">10.1007/BF00289109</idno>
<idno type="ArticleID">BF00289109</idno>
<idno type="ArticleID">Art5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1973-02-20</date>
</creation>
<langUsage>
<language ident="de">de</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Biomedicine</head>
<item>
<term>Neurosciences</term>
</item>
<item>
<term>Zoology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1973-02-20">Created</change>
<change when="1973-07-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-22">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-20">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>422</JournalID>
<JournalPrintISSN>0023-5946</JournalPrintISSN>
<JournalElectronicISSN>1432-0770</JournalElectronicISSN>
<JournalTitle>Kybernetik</JournalTitle>
<JournalAbbreviatedTitle>Kybernetik</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Biomedicine</JournalSubject>
<JournalSubject Type="Secondary">Neurosciences</JournalSubject>
<JournalSubject Type="Secondary">Zoology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>13</VolumeIDStart>
<VolumeIDEnd>13</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>1</IssueIDStart>
<IssueIDEnd>1</IssueIDEnd>
<IssueArticleCount>6</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1973</Year>
<Month>7</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1972</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art5">
<ArticleInfo Language="De" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00289109</ArticleID>
<ArticleDOI>10.1007/BF00289109</ArticleDOI>
<ArticleSequenceNumber>5</ArticleSequenceNumber>
<ArticleTitle Language="De">Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke
<Emphasis Type="Italic">Carausius morosus</Emphasis>
</ArticleTitle>
<ArticleTitle Language="En">Control of active movements of the femur-tibia-joint of the stick-insect
<Emphasis Type="Italic">Carausius morosus</Emphasis>
</ArticleTitle>
<ArticleFirstPage>38</ArticleFirstPage>
<ArticleLastPage>53</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>8</Month>
<Day>16</Day>
</RegistrationDate>
<Received>
<Year>1973</Year>
<Month>2</Month>
<Day>20</Day>
</Received>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1973</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>422</JournalID>
<VolumeIDStart>13</VolumeIDStart>
<VolumeIDEnd>13</VolumeIDEnd>
<IssueIDStart>1</IssueIDStart>
<IssueIDEnd>1</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Ulrich</GivenName>
<FamilyName>Bässler</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>Fachbereich Biologie der Universität</OrgName>
<OrgAddress>
<City>Trier-Kaiserslautern</City>
<Country>BRD</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="de">
<title>Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="de">
<title>Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus</title>
</titleInfo>
<titleInfo lang="en">
<title>Control of active movements of the femur-tibia-joint of the stick-insect Carausius morosus</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Control of active movements of the femur-tibia-joint of the stick-insect Carausius morosus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ulrich</namePart>
<namePart type="family">Bässler</namePart>
<affiliation>Fachbereich Biologie der Universität, Trier-Kaiserslautern, BRD</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper"></genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1973-02-20</dateCreated>
<dateIssued encoding="w3cdtf">1973-07-01</dateIssued>
<copyrightDate encoding="w3cdtf">1973</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">de</languageTerm>
<languageTerm type="code" authority="iso639-2b">ger</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Abstract: The introduction (A) is followed by parts B and C in which active movements of the tibia are recorded from intact legs and legs with cut receptor tendons (tendon of the femoral chordotonal organ). For this purpose the femur is fixed and then either the movement of the freely moving tibia is filmed or the force produced by the fixed tibia is measured directly. Leg movements caused by touching the abdomen (active movements) are faster than movements which are caused by stretching and releasing the femoral chordotonal organ in inactive animals. After an active movement the return to the starting-point is similar to that following a passive displacement: the speed of the backward movement is very low in intact legs, but relatively high in legs with cut receptor tendons. In intact legs the speed of the return to the starting-point shows a correlation between active and passive movements. A preliminary discussion of these movements is given in (D). It is followed in Section E by a description of the movements of the femur-tibia-joint of intact legs and legs with cut receptor tendons in free-walking animals. Cutting the receptor-tendon does not enlarge the amplitude very significantly. In Section F the receptor tendon is sinusoidally moved during active movements. The result of such an experiment upon inactive animals is quite different. No reaction can be observed during active movements at that phase position for which the response occures in inactive animals. But there is an alternative reaction with the same frequency as the stimulus. In active animals the amplitude of the reaction is very irregular, but normally larger than in inactive animals. Sometimes one reaction is omitted or there is more than one reaction per stimulus-cycle. The phase-shift is significantly larger than in inactive animals. In Section D a hypothesis for the control of active movements is discussed. According to this hypothesis the control system of the “Kniesehnenreflex” is switched off during active movements. The set-point of the system (the starting-point) is not altered by an active movement. The beginning of flexion and/or extension of the femur-tibia-joint and the maximum speed of the movements are at least partially influenced by the femoral chordotonal organ. The amount of this influence is variable.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Kybernetik</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Kybernetik</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1973-07-01</dateIssued>
<copyrightDate encoding="w3cdtf">1972</copyrightDate>
</originInfo>
<subject>
<genre>Biomedicine</genre>
<topic>Neurosciences</topic>
<topic>Zoology</topic>
</subject>
<identifier type="ISSN">0023-5946</identifier>
<identifier type="eISSN">1432-0770</identifier>
<identifier type="JournalID">422</identifier>
<identifier type="IssueArticleCount">6</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>1973</date>
<detail type="volume">
<number>13</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>38</start>
<end>53</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1972</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56</identifier>
<identifier type="DOI">10.1007/BF00289109</identifier>
<identifier type="ArticleID">BF00289109</identifier>
<identifier type="ArticleID">Art5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag, 1973</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Springer-Verlag, 1973</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001990 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001990 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7D9C85F7B2C78D85DEFA97D70688BF955AFD5F56
   |texte=   Zur Steuerung aktiver Bewegungen des Femur-Tibia-Gelenkes der Stabheuschrecke Carausius morosus
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024