Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier

Identifieur interne : 001989 ( Istex/Corpus ); précédent : 001988; suivant : 001990

Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier

Auteurs : Ulrich B Ssler

Source :

RBID : ISTEX:5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F

Abstract

Abstract: In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.

Url:
DOI: 10.1007/BF00288981

Links to Exploration step

ISTEX:5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="de">Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Kaiserslautern, BRD</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F</idno>
<date when="1974" year="1974">1974</date>
<idno type="doi">10.1007/BF00288981</idno>
<idno type="url">https://api.istex.fr/document/5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001989</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001989</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="de">Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Kaiserslautern, BRD</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="ISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1974-12-01">1974-12-01</date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="213">213</biblScope>
<biblScope unit="page" to="226">226</biblScope>
</imprint>
<idno type="ISSN">0023-5946</idno>
</series>
<idno type="istex">5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F</idno>
<idno type="DOI">10.1007/BF00288981</idno>
<idno type="ArticleID">BF00288981</idno>
<idno type="ArticleID">Art4</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0023-5946</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="de">de</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<author>
<json:item>
<name>Ulrich Bässler</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität Trier-Kaiserslautern, Kaiserslautern, BRD</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00288981</json:string>
<json:string>Art4</json:string>
</articleId>
<language>
<json:string>ger</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 810 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>3648</abstractCharCount>
<pdfWordCount>8096</pdfWordCount>
<pdfCharCount>52647</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>576</abstractWordCount>
</qualityIndicators>
<title>Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>W,J Barnes</name>
</json:item>
<json:item>
<name>C,P Spirito</name>
</json:item>
<json:item>
<name>W,H Evoy</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>31</last>
<first>16</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in Walking</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>Bs Ssler</name>
</json:item>
<json:item>
<name>U </name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>193</last>
<first>168</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1965</publicationDate>
</host>
<title>Proprioreceptoren am Subcoxal-und Femur-Tibia- Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung</title>
<publicationDate>1965</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>26</last>
<first>18</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1967</publicationDate>
</host>
<title>Zur Regelung der Stellung des Femur-Tibia-Gelenkes bei der Stabheuschrecke Carausius morosus in der Ruhe und im Lauf</title>
<publicationDate>1967</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>114</last>
<first>110</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Zur Beeinflussung der Bewegungsweise eines Beines yon Carausius morosus durch Amputation anderer Beine</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>B / Issler</name>
</json:item>
<json:item>
<name>U </name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>50</last>
<first>32</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Der ,Kniesehnenreflex" bei Carausius morosus: l~lbergangsfunktion und Frequenzgang</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U Bassler</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>20</last>
<first>8</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
</host>
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius morosus: Reaktionen auf passive Bewegungen der Tibia</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>53</last>
<first>38</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1973</publicationDate>
</host>
<title>Zur Steuerung aktiver Bewegungen des Femur-Tibia- Gelenkes der Stabheuschrecke Carausius morosus</title>
<publicationDate>1973</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>~u B~issler</name>
</json:item>
<json:item>
<name>H Cruse</name>
</json:item>
<json:item>
<name>H,J Pfltiger</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>125</last>
<first>117</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1974</publicationDate>
</host>
<title>Der Regelkreis des Kniesehnenreflexes bei der Stabheuschrecke Carausius rnorosus: Untersuchungen zur Stabilit~it des Systems im inaktiven Tier</title>
<publicationDate>1974</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K Pearson</name>
</json:item>
</author>
<host>
<volume>56</volume>
<pages>
<last>193</last>
<first>173</first>
</pages>
<author></author>
<title>J. exp. Biol</title>
<publicationDate>1972</publicationDate>
</host>
<title>Central programming and reflex control of walking in the cockroach</title>
<publicationDate>1972</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>K,G Pearson</name>
</json:item>
<json:item>
<name>J,F Lles</name>
</json:item>
</author>
<host>
<volume>58</volume>
<pages>
<last>744</last>
<first>725</first>
</pages>
<author></author>
<title>J. exp. Biol. Prof. Dr</title>
<publicationDate>1973</publicationDate>
</host>
<title>Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach</title>
<publicationDate>1973</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>16</volume>
<pages>
<last>226</last>
<first>213</first>
</pages>
<issn>
<json:string>0023-5946</json:string>
</issn>
<issue>4</issue>
<subject>
<json:item>
<value>Neurosciences</value>
</json:item>
<json:item>
<value>Zoology</value>
</json:item>
</subject>
<journalId>
<json:string>422</json:string>
</journalId>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1432-0770</json:string>
</eissn>
<title>Kybernetik</title>
<publicationDate>1974</publicationDate>
<copyrightDate>1974</copyrightDate>
</host>
<publicationDate>1974</publicationDate>
<copyrightDate>1974</copyrightDate>
<doi>
<json:string>10.1007/BF00288981</json:string>
</doi>
<id>5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F</id>
<score>0.5513947</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="de">Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<p>Springer-Verlag, 1974</p>
</availability>
<date>1974-03-02</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="de">Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ulrich</forename>
<surname>Bässler</surname>
</persName>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Kaiserslautern, BRD</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="journal-ID">422</idno>
<idno type="pISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<idno type="issue-article-count">6</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1974-12-01"></date>
<biblScope unit="volume">16</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="213">213</biblScope>
<biblScope unit="page" to="226">226</biblScope>
</imprint>
</monogr>
<idno type="istex">5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F</idno>
<idno type="DOI">10.1007/BF00288981</idno>
<idno type="ArticleID">BF00288981</idno>
<idno type="ArticleID">Art4</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1974-03-02</date>
</creation>
<langUsage>
<language ident="de">de</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Biomedicine</head>
<item>
<term>Neurosciences</term>
</item>
<item>
<term>Zoology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1974-03-02">Created</change>
<change when="1974-12-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-23">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-21">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>422</JournalID>
<JournalPrintISSN>0023-5946</JournalPrintISSN>
<JournalElectronicISSN>1432-0770</JournalElectronicISSN>
<JournalTitle>Kybernetik</JournalTitle>
<JournalAbbreviatedTitle>Kybernetik</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Biomedicine</JournalSubject>
<JournalSubject Type="Secondary">Neurosciences</JournalSubject>
<JournalSubject Type="Secondary">Zoology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>16</VolumeIDStart>
<VolumeIDEnd>16</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
<IssueArticleCount>6</IssueArticleCount>
<IssueHistory>
<CoverDate>
<DateString>1. XI. 1974</DateString>
<Year>1974</Year>
<Month>12</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1974</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art4">
<ArticleInfo Language="De" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00288981</ArticleID>
<ArticleDOI>10.1007/BF00288981</ArticleDOI>
<ArticleSequenceNumber>4</ArticleSequenceNumber>
<ArticleTitle Language="De">Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke
<Emphasis Type="Italic">Carausius morosus</Emphasis>
: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</ArticleTitle>
<ArticleFirstPage>213</ArticleFirstPage>
<ArticleLastPage>226</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>8</Month>
<Day>16</Day>
</RegistrationDate>
<Received>
<Year>1974</Year>
<Month>3</Month>
<Day>2</Day>
</Received>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1974</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>422</JournalID>
<VolumeIDStart>16</VolumeIDStart>
<VolumeIDEnd>16</VolumeIDEnd>
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Ulrich</GivenName>
<FamilyName>Bässler</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>Fachbereich Biologie der Universität Trier-Kaiserslautern</OrgName>
<OrgAddress>
<City>Kaiserslautern</City>
<Country>BRD</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="de">
<title>Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="de">
<title>Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ulrich</namePart>
<namePart type="family">Bässler</namePart>
<affiliation>Fachbereich Biologie der Universität Trier-Kaiserslautern, Kaiserslautern, BRD</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper"></genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1974-03-02</dateCreated>
<dateIssued encoding="w3cdtf">1974-12-01</dateIssued>
<copyrightDate encoding="w3cdtf">1974</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">de</languageTerm>
<languageTerm type="code" authority="iso639-2b">ger</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Abstract: In the Introduction (A) there is a list of unsolved problems concerning the role of the femoral chordotonal organ. A method to solve these problems by measuring the force at the distal end of the tibia during stimulation of the femoral chordotonal organ is described in (B). The step-response in inactive animals (C) is similar to that of the free-moving tibia. After an active movement caused by touching the abdomen the amplitude of the flexion-force is always higher than before. In (D) a method is described to measure the amplification of the control-system in intact animals. With this method it is verified, that the flexion-force produced by a distinct stimulus is higher after active movements caused by touching the abdomen. But this force is lower after spontaneous active movements caused by darkening the room (Fig. 2). Therefore one must assume, that there are two different types of activity: spontaneous activity and activity after a disturbance. In the frequency-response of the inactive animal (F) (Figs. 4 and 5) the amplitude of the force decreases with increasing frequency at a constant amplitude of stimulus. The phase-shift between reaction and stimulus is much smaller than with the free-moving tibia. Therefore, the large phase-shift as well as the strong decrease of the reaction-amplitude near 1 Hz observed in free-moving tibias (1972b) is mainly due to the mechanical attributes of the system. In Section (F) the receptor-apodeme is sinusoidally moved during active movements of intact and decerebrated animals. As with the free-moving tibia no reaction can be observed during active movements at that phase position for which the response occurs in inactive animals. Instead of this “inactive” response there is another response, called “active” with a phase-shift of about 180°. At the end of an active period the “active” and the “inactive” response can be observed simultaneously (Figs. 7 and 10). The amplitude of the “active” response decreases, and the amplitude of the “inactive” response increases from cycle to cycle. In decerebrated animals there are normally several minutes from the exclusively “active” response to the exclusively “inactive” response without a further increase in amplitude. In intact animals this transition takes only a few seconds. Step-stimuli during active movements (G) show, that in active animals stretching the chordotonal organ causes a flexion of the femor-tibia-joint. Releasing the chordotonal organ does not produce any reaction. Moving the receptor-apodeme in active animals influences the contralateral leg significantly only in middle legs (H). These legs tend to move within the same phase position as the stimulated leg. Moving the receptor-apodeme in a middle leg has no influence on the ipsilateral hind leg, but a weak influence on the ipsilateral front leg, which tends to move within the same phase position as the middle leg. In the discussion (I) a hypothesis is presented according to which the “active” response is a mechanism for adapting the leg movement to a surface which suddenly gives way (I 5). The influence on the contralateral middle leg seems to be a part of this mechanism (I 6). This reaction has nothing to do with the coordination of leg movements in walk (I 7). The feed-back systems which control the distance between the body and the walking surface may be inactive during walking (I 8), but those systems which control the forward movement of the body must be active. Since the feed-back system of the “Kniesehnen-reflex” controls predominantly the body-ground-distance it seems likely that it is normally inactive during walking.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Kybernetik</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Kybernetik</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1974-12-01</dateIssued>
<copyrightDate encoding="w3cdtf">1974</copyrightDate>
</originInfo>
<subject>
<genre>Biomedicine</genre>
<topic>Neurosciences</topic>
<topic>Zoology</topic>
</subject>
<identifier type="ISSN">0023-5946</identifier>
<identifier type="eISSN">1432-0770</identifier>
<identifier type="JournalID">422</identifier>
<identifier type="IssueArticleCount">6</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>1974</date>
<detail type="volume">
<number>16</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>213</start>
<end>226</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1974</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F</identifier>
<identifier type="DOI">10.1007/BF00288981</identifier>
<identifier type="ArticleID">BF00288981</identifier>
<identifier type="ArticleID">Art4</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag, 1974</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Springer-Verlag, 1974</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5776C7EA76E5BFCF9367DC4B016AE17DCCC34E2F
   |texte=   Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus : Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024