Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke

Identifieur interne : 001976 ( Istex/Corpus ); précédent : 001975; suivant : 001977

Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke

Auteurs : Edward J. Smith ; R. Paul Stroemer ; Natalia Gorenkova ; Mitsuko Nakajima ; William R. Crum ; Ellen Tang ; Lara Stevanato ; John D. Sinden ; Michel Modo

Source :

RBID : ISTEX:01782887DB1C4CEFD9FAC169051154867FB76974

English descriptors

Abstract

Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796

Url:
DOI: 10.1002/stem.1024

Links to Exploration step

ISTEX:01782887DB1C4CEFD9FAC169051154867FB76974

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
<author>
<name sortKey="Smith, Edward J" sort="Smith, Edward J" uniqKey="Smith E" first="Edward J." last="Smith">Edward J. Smith</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stroemer, R Paul" sort="Stroemer, R Paul" uniqKey="Stroemer R" first="R. Paul" last="Stroemer">R. Paul Stroemer</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorenkova, Natalia" sort="Gorenkova, Natalia" uniqKey="Gorenkova N" first="Natalia" last="Gorenkova">Natalia Gorenkova</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nakajima, Mitsuko" sort="Nakajima, Mitsuko" uniqKey="Nakajima M" first="Mitsuko" last="Nakajima">Mitsuko Nakajima</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crum, William R" sort="Crum, William R" uniqKey="Crum W" first="William R." last="Crum">William R. Crum</name>
<affiliation>
<mods:affiliation>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ellen" sort="Tang, Ellen" uniqKey="Tang E" first="Ellen" last="Tang">Ellen Tang</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stevanato, Lara" sort="Stevanato, Lara" uniqKey="Stevanato L" first="Lara" last="Stevanato">Lara Stevanato</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sinden, John D" sort="Sinden, John D" uniqKey="Sinden J" first="John D." last="Sinden">John D. Sinden</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modo, Michel" sort="Modo, Michel" uniqKey="Modo M" first="Michel" last="Modo">Michel Modo</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:01782887DB1C4CEFD9FAC169051154867FB76974</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/stem.1024</idno>
<idno type="url">https://api.istex.fr/document/01782887DB1C4CEFD9FAC169051154867FB76974/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001976</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001976</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
<author>
<name sortKey="Smith, Edward J" sort="Smith, Edward J" uniqKey="Smith E" first="Edward J." last="Smith">Edward J. Smith</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stroemer, R Paul" sort="Stroemer, R Paul" uniqKey="Stroemer R" first="R. Paul" last="Stroemer">R. Paul Stroemer</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorenkova, Natalia" sort="Gorenkova, Natalia" uniqKey="Gorenkova N" first="Natalia" last="Gorenkova">Natalia Gorenkova</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nakajima, Mitsuko" sort="Nakajima, Mitsuko" uniqKey="Nakajima M" first="Mitsuko" last="Nakajima">Mitsuko Nakajima</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crum, William R" sort="Crum, William R" uniqKey="Crum W" first="William R." last="Crum">William R. Crum</name>
<affiliation>
<mods:affiliation>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ellen" sort="Tang, Ellen" uniqKey="Tang E" first="Ellen" last="Tang">Ellen Tang</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stevanato, Lara" sort="Stevanato, Lara" uniqKey="Stevanato L" first="Lara" last="Stevanato">Lara Stevanato</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sinden, John D" sort="Sinden, John D" uniqKey="Sinden J" first="John D." last="Sinden">John D. Sinden</name>
<affiliation>
<mods:affiliation>ReNeuron Ltd., Guildford, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Modo, Michel" sort="Modo, Michel" uniqKey="Modo M" first="Michel" last="Modo">Michel Modo</name>
<affiliation>
<mods:affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">STEM CELLS</title>
<title level="j" type="abbrev">STEM CELLS</title>
<idno type="ISSN">1066-5099</idno>
<idno type="eISSN">1549-4918</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-04">2012-04</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="785">785</biblScope>
<biblScope unit="page" to="796">796</biblScope>
</imprint>
<idno type="ISSN">1066-5099</idno>
</series>
<idno type="istex">01782887DB1C4CEFD9FAC169051154867FB76974</idno>
<idno type="DOI">10.1002/stem.1024</idno>
<idno type="ArticleID">STEM1024</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1066-5099</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Nervous system</term>
<term>Neural stem cell</term>
<term>Stem cell transplantation</term>
<term>Stroke</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Edward J. Smith</name>
<affiliations>
<json:string>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</json:string>
<json:string>ReNeuron Ltd., Guildford, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Paul Stroemer</name>
<affiliations>
<json:string>ReNeuron Ltd., Guildford, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Natalia Gorenkova</name>
<affiliations>
<json:string>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Mitsuko Nakajima</name>
<affiliations>
<json:string>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>William R. Crum</name>
<affiliations>
<json:string>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ellen Tang</name>
<affiliations>
<json:string>ReNeuron Ltd., Guildford, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lara Stevanato</name>
<affiliations>
<json:string>ReNeuron Ltd., Guildford, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>John D. Sinden</name>
<affiliations>
<json:string>ReNeuron Ltd., Guildford, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michel Modo</name>
<affiliations>
<json:string>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</json:string>
<json:string>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</json:string>
<json:string>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Stem cell transplantation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Neural stem cell</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Stroke</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Nervous system</value>
</json:item>
</subject>
<articleId>
<json:string>STEM1024</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but >2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1812</abstractCharCount>
<pdfWordCount>7201</pdfWordCount>
<pdfCharCount>44262</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>D Lloyd‐Jones</name>
</json:item>
<json:item>
<name>RJ Adams</name>
</json:item>
<json:item>
<name>TM Brown</name>
</json:item>
</author>
<host>
<volume>121</volume>
<pages>
<last>215</last>
<first>46</first>
</pages>
<author></author>
<title>Circulation</title>
</host>
<title>Heart disease and stroke statistics—2010 update: A report from the American Heart Association</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CV Borlongan</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>148</last>
<first>146</first>
</pages>
<issue>3 suppl</issue>
<author></author>
<title>Stroke</title>
</host>
<title>Cell therapy for stroke: Remaining issues to address before embarking on clinical trials</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Chopp</name>
</json:item>
<json:item>
<name>GK Steinberg</name>
</json:item>
<json:item>
<name>D Kondziolka</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>693</last>
<first>691</first>
</pages>
<author></author>
<title>Cell Transplant</title>
</host>
<title>Who's in favor of translational cell therapy for stroke: STEPS forward please?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Hodges</name>
</json:item>
<json:item>
<name>K Pollock</name>
</json:item>
<json:item>
<name>P Stroemer</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>115</last>
<first>101</first>
</pages>
<author></author>
<title>Cell Transplant</title>
</host>
<title>Making stem cell lines suitable for transplantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Kelly</name>
</json:item>
<json:item>
<name>TM Bliss</name>
</json:item>
<json:item>
<name>AK Shah</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>11844</last>
<first>11839</first>
</pages>
<author></author>
<title>Proc Natl Acad Sci USA</title>
</host>
<title>Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Modo</name>
</json:item>
<json:item>
<name>RP Stroemer</name>
</json:item>
<json:item>
<name>E Tang</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>2278</last>
<first>2270</first>
</pages>
<author></author>
<title>Stroke</title>
</host>
<title>Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Pollock</name>
</json:item>
<json:item>
<name>P Stroemer</name>
</json:item>
<json:item>
<name>S Patel</name>
</json:item>
</author>
<host>
<volume>199</volume>
<pages>
<last>155</last>
<first>143</first>
</pages>
<author></author>
<title>Exp Neurol</title>
</host>
<title>A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Stroemer</name>
</json:item>
<json:item>
<name>S Patel</name>
</json:item>
<json:item>
<name>A Hope</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>909</last>
<first>895</first>
</pages>
<author></author>
<title>Neurorehabil Neural Repair</title>
</host>
<title>The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose‐dependent fashion</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RJ Thomas</name>
</json:item>
<json:item>
<name>AD Hope</name>
</json:item>
<json:item>
<name>P Hourd</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>1172</last>
<first>1167</first>
</pages>
<author></author>
<title>Biotechnol Lett</title>
</host>
<title>Automated, serum‐free production of CTX0E03: A therapeutic clinical grade human neural stem cell line</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Campbell</name>
</json:item>
<json:item>
<name>M Olsson</name>
</json:item>
<json:item>
<name>A Bjorklund</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>1273</last>
<first>1259</first>
</pages>
<author></author>
<title>Neuron</title>
</host>
<title>Regional incorporation and site‐specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BR Parkinson</name>
</json:item>
<json:item>
<name>A Raymer</name>
</json:item>
<json:item>
<name>YL Chang</name>
</json:item>
</author>
<host>
<volume>110</volume>
<pages>
<last>70</last>
<first>61</first>
</pages>
<author></author>
<title>Brain Lang</title>
</host>
<title>Lesion characteristics related to treatment improvement in object and action naming for patients with chronic aphasia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Feys</name>
</json:item>
<json:item>
<name>J Hetebrij</name>
</json:item>
<json:item>
<name>G Wilms</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>377</last>
<first>371</first>
</pages>
<author></author>
<title>Acta Neurol Scand</title>
</host>
<title>Predicting arm recovery following stroke: Value of site of lesion</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Cheng</name>
</json:item>
<json:item>
<name>A Golsari</name>
</json:item>
<json:item>
<name>J Fiehler</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>40</last>
<first>36</first>
</pages>
<author></author>
<title>J Cereb Blood Flow Metabol</title>
</host>
<title>Dynamics of regional distribution of ischemic lesions in middle cerebral artery trunk occlusion relates to collateral circulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Kondziolka</name>
</json:item>
<json:item>
<name>GK Steinberg</name>
</json:item>
<json:item>
<name>SB Cullen</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>754</last>
<first>749</first>
</pages>
<author></author>
<title>Cell Transplant</title>
</host>
<title>Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Modo</name>
</json:item>
<json:item>
<name>RP Stroemer</name>
</json:item>
<json:item>
<name>E Tang</name>
</json:item>
</author>
<host>
<volume>104</volume>
<pages>
<last>109</last>
<first>99</first>
</pages>
<author></author>
<title>J Neurosci Methods</title>
</host>
<title>Neurological sequelae and long‐term behavioural assessment of rats with transient middle cerebral artery occlusion</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Modo</name>
</json:item>
<json:item>
<name>JS Beech</name>
</json:item>
<json:item>
<name>TJ Meade</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>142</last>
<first>133</first>
</pages>
<issue>suppl 2</issue>
<author></author>
<title>Neuroimage</title>
</host>
<title>A chronic 1 year assessment of MRI contrast agent‐labelled neural stem cell transplants in stroke</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Ashioti</name>
</json:item>
<json:item>
<name>JS Beech</name>
</json:item>
<json:item>
<name>AS Lowe</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<first>82</first>
</pages>
<author></author>
<title>BMC Neurosci</title>
</host>
<title>Neither in vivo MRI nor behavioural assessment indicate therapeutic efficacy for a novel 5HT(1A) agonist in rat models of ischaemic stroke</title>
</json:item>
<json:item>
<author>
<json:item>
<name>AC Vernon</name>
</json:item>
<json:item>
<name>WR Crum</name>
</json:item>
<json:item>
<name>SM Johansson</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<first>17269</first>
</pages>
<author></author>
<title>PLoS One</title>
</host>
<title>Evolution of extra‐nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson's disease</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TD Hernandez</name>
</json:item>
<json:item>
<name>T Schallert</name>
</json:item>
</author>
<host>
<volume>102</volume>
<pages>
<last>324</last>
<first>318</first>
</pages>
<author></author>
<title>Exp Neurol</title>
</host>
<title>Seizures and recovery from experimental brain damage</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RG Morris</name>
</json:item>
<json:item>
<name>P Garrud</name>
</json:item>
<json:item>
<name>JN Rawlins</name>
</json:item>
</author>
<host>
<volume>297</volume>
<pages>
<last>683</last>
<first>681</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Place navigation impaired in rats with hippocampal lesions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MJ West</name>
</json:item>
<json:item>
<name>L Slomianka</name>
</json:item>
<json:item>
<name>HJ Gundersen</name>
</json:item>
</author>
<host>
<volume>231</volume>
<pages>
<last>497</last>
<first>482</first>
</pages>
<author></author>
<title>Anat Rec</title>
</host>
<title>Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GF Hamann</name>
</json:item>
<json:item>
<name>H Schrock</name>
</json:item>
<json:item>
<name>D Burggraf</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>1297</last>
<first>1293</first>
</pages>
<author></author>
<title>J Cereb Blood Flow Metabol</title>
</host>
<title>Microvascular basal lamina damage after embolic stroke in the rat: Relationship to cerebral blood flow</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Franciosi</name>
</json:item>
<json:item>
<name>R De Gasperi</name>
</json:item>
<json:item>
<name>DL Dickstein</name>
</json:item>
</author>
<host>
<volume>163</volume>
<pages>
<last>82</last>
<first>76</first>
</pages>
<author></author>
<title>J Neurosci Methods</title>
</host>
<title>Pepsin pretreatment allows collagen IV immunostaining of blood vessels in adult mouse brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GL Ming</name>
</json:item>
<json:item>
<name>H Song</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>250</last>
<first>223</first>
</pages>
<author></author>
<title>Annu Rev Neurosci</title>
</host>
<title>Adult neurogenesis in the mammalian central nervous system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E Irle</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>213</last>
<first>181</first>
</pages>
<author></author>
<title>Brain Res: Brain Res Rev</title>
</host>
<title>An analysis of the correlation of lesion size, localization and behavioral effects in 283 published studies of cortical and subcortical lesions in old‐world monkeys</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CG Markgraf</name>
</json:item>
<json:item>
<name>EJ Green</name>
</json:item>
<json:item>
<name>B Watson</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>159</last>
<first>153</first>
</pages>
<author></author>
<title>Stroke</title>
</host>
<title>Recovery of sensorimotor function after distal middle cerebral artery photothrombotic occlusion in rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RH Andres</name>
</json:item>
<json:item>
<name>N Horie</name>
</json:item>
<json:item>
<name>W Slikker</name>
</json:item>
</author>
<host>
<volume>134</volume>
<pages>
<last>1789</last>
<first>1777</first>
</pages>
<issue>Pt 6</issue>
<author></author>
<title>Brain: J Neurol</title>
</host>
<title>Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Kalladka</name>
</json:item>
<json:item>
<name>KW Muir</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>370</last>
<first>367</first>
</pages>
<author></author>
<title>Neurochem Int</title>
</host>
<title>Stem cell therapy in stroke: Designing clinical trials</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MF Ritz</name>
</json:item>
<json:item>
<name>F Fluri</name>
</json:item>
<json:item>
<name>ST Engelter</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>287</last>
<first>279</first>
</pages>
<author></author>
<title>Curr Neurovas Res</title>
</host>
<title>Cortical and putamen age‐related changes in the microvessel density and astrocyte deficiency in spontaneously hypertensive and stroke‐prone spontaneously hypertensive rats</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Milner</name>
</json:item>
<json:item>
<name>S Hung</name>
</json:item>
<json:item>
<name>X Wang</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>197</last>
<first>191</first>
</pages>
<author></author>
<title>Stroke</title>
</host>
<title>Responses of endothelial cell and astrocyte matrix‐integrin receptors to ischemia mimic those observed in the neurovascular unit</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Q Jiang</name>
</json:item>
<json:item>
<name>ZG Zhang</name>
</json:item>
<json:item>
<name>GL Ding</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>707</last>
<first>698</first>
</pages>
<author></author>
<title>Neuroimage</title>
</host>
<title>Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Zhang</name>
</json:item>
<json:item>
<name>J Li</name>
</json:item>
<json:item>
<name>Y Liu</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>391</last>
<first>384</first>
</pages>
<author></author>
<title>Neuropathology</title>
</host>
<title>Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri‐infarct angiogenesis after focal cerebral ischemia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N Horie</name>
</json:item>
<json:item>
<name>MP Pereira</name>
</json:item>
<json:item>
<name>K Niizuma</name>
</json:item>
</author>
<host>
<volume>29</volume>
<pages>
<last>285</last>
<first>274</first>
</pages>
<author></author>
<title>Stem Cells</title>
</host>
<title>Transplanted stem cell‐secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Zhao</name>
</json:item>
<json:item>
<name>DA Rempe</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>451</last>
<first>439</first>
</pages>
<author></author>
<title>Neurotherapeutics</title>
</host>
<title>Targeting astrocytes for stroke therapy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SI Savitz</name>
</json:item>
<json:item>
<name>M Chopp</name>
</json:item>
<json:item>
<name>R Deans</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>829</last>
<first>825</first>
</pages>
<author></author>
<title>Stroke</title>
</host>
<title>Stem cell therapy as an emerging paradigm for stroke (STEPS) II</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<publisherId>
<json:string>STEM</json:string>
</publisherId>
<pages>
<total>12</total>
<last>796</last>
<first>785</first>
</pages>
<issn>
<json:string>1066-5099</json:string>
</issn>
<issue>4</issue>
<subject>
<json:item>
<value>Translational and Clinical Research</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1549-4918</json:string>
</eissn>
<title>STEM CELLS</title>
<doi>
<json:string>10.1002/(ISSN)1549-4918</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>oncology</json:string>
<json:string>hematology</json:string>
<json:string>cell biology</json:string>
<json:string>cell & tissue engineering</json:string>
<json:string>biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>immunology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/stem.1024</json:string>
</doi>
<id>01782887DB1C4CEFD9FAC169051154867FB76974</id>
<score>0.019739822</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/01782887DB1C4CEFD9FAC169051154867FB76974/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/01782887DB1C4CEFD9FAC169051154867FB76974/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/01782887DB1C4CEFD9FAC169051154867FB76974/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2011 AlphaMed Press</p>
</availability>
<date>2012</date>
</publicationStmt>
<notesStmt>
<note type="content">*Authors contributions: E.J.S.: collection and/or assembly of data, data analysis and interpretation, manuscript writing, and administrative support; R.P.S.: conception and design, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; N.G., M.N., W.R.C., E.T., and L.S.: collection and/or assembly of data, data analysis and interpretation, and manuscript writing; J.D.S.: conception and design, financial support, data analysis and interpretation, and manuscript writing; and M.M.: conception and design, financial support, data analysis and interpretation, manuscript writing, and final approval of manuscript.</note>
<note type="content">*Disclosure of potential conflicts of interest is found at the end of this article.</note>
<note type="content">*First published online in STEM CELLS EXPRESS December 29, 2011.</note>
<note>NIBIB Quantum - No. 1 P20 EB007076‐01;</note>
<note>MRC Translational Stem Cell Initiative - No. G0800846;</note>
<note>ReNeuron Ltd</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
<author xml:id="author-1">
<persName>
<forename type="first">Edward J.</forename>
<surname>Smith</surname>
</persName>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">R. Paul</forename>
<surname>Stroemer</surname>
</persName>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Natalia</forename>
<surname>Gorenkova</surname>
</persName>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Mitsuko</forename>
<surname>Nakajima</surname>
</persName>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">William R.</forename>
<surname>Crum</surname>
</persName>
<affiliation>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Ellen</forename>
<surname>Tang</surname>
</persName>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Lara</forename>
<surname>Stevanato</surname>
</persName>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">John D.</forename>
<surname>Sinden</surname>
</persName>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">Michel</forename>
<surname>Modo</surname>
</persName>
<note type="biography">Telephone: 412‐383‐7200; Fax: (412) 647‐0878</note>
<affiliation>Telephone: 412‐383‐7200; Fax: (412) 647‐0878</affiliation>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<affiliation>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</affiliation>
<affiliation>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">STEM CELLS</title>
<title level="j" type="abbrev">STEM CELLS</title>
<idno type="pISSN">1066-5099</idno>
<idno type="eISSN">1549-4918</idno>
<idno type="DOI">10.1002/(ISSN)1549-4918</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-04"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="785">785</biblScope>
<biblScope unit="page" to="796">796</biblScope>
</imprint>
</monogr>
<idno type="istex">01782887DB1C4CEFD9FAC169051154867FB76974</idno>
<idno type="DOI">10.1002/stem.1024</idno>
<idno type="ArticleID">STEM1024</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Stem cell transplantation</term>
</item>
<item>
<term>Neural stem cell</term>
</item>
<item>
<term>Stroke</term>
</item>
<item>
<term>Nervous system</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Translational and Clinical Research</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-11-10">Received</change>
<change when="2011-12-12">Registration</change>
<change when="2012-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/01782887DB1C4CEFD9FAC169051154867FB76974/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1549-4918</doi>
<issn type="print">1066-5099</issn>
<issn type="electronic">1549-4918</issn>
<idGroup>
<id type="product" value="STEM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="STEM CELLS">STEM CELLS</title>
<title type="short">STEM CELLS</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/stem.v30.4</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2012-04">April 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="210" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/stem.1024</doi>
<idGroup>
<id type="unit" value="STEM1024"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Translational and Clinical Research</title>
<title type="tocHeading1">Translational and Clinical Research</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2011 AlphaMed Press</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-11-10"></event>
<event type="manuscriptAccepted" date="2011-12-12"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.3 standalone mode:FullText" date="2012-04-03"></event>
<event type="publishedOnlineAccepted" date="2011-12-29"></event>
<event type="publishedOnlineFinalForm" date="2012-03-22"></event>
<event type="firstOnline" date="2012-03-22"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.7 mode:FullText" date="2015-03-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">785</numbering>
<numbering type="pageLast">796</numbering>
</numberingGroup>
<correspondenceTo>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:STEM.STEM1024.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="35"></count>
<count type="wordTotal" number="8243"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke
<link href="#fn1"></link>
<link href="#fn3"></link>
<link href="#fn4"></link>
</title>
<title type="short" xml:lang="en">Efficacy of hNSCs in Chronic Stroke</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Edward J.</givenNames>
<familyName>Smith</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>R. Paul</givenNames>
<familyName>Stroemer</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Natalia</givenNames>
<familyName>Gorenkova</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Mitsuko</givenNames>
<familyName>Nakajima</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>William R.</givenNames>
<familyName>Crum</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Ellen</givenNames>
<familyName>Tang</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Lara</givenNames>
<familyName>Stevanato</familyName>
</personName>
</creator>
<creator xml:id="au8" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>John D.</givenNames>
<familyName>Sinden</familyName>
</personName>
</creator>
<creator xml:id="au9" creatorRole="author" affiliationRef="#af1 #af4" corresponding="yes" noteRef="#fn2">
<personName>
<givenNames>Michel</givenNames>
<familyName>Modo</familyName>
</personName>
<contactDetails>
<email>modomm@upmc.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="GB" type="organization">
<unparsedAffiliation>ReNeuron Ltd., Guildford, United Kingdom</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Stem cell transplantation</keyword>
<keyword xml:id="kwd2">Neural stem cell</keyword>
<keyword xml:id="kwd3">Stroke</keyword>
<keyword xml:id="kwd4">Nervous system</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NIBIB Quantum</fundingAgency>
<fundingNumber>1 P20 EB007076‐01</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>MRC Translational Stem Cell Initiative</fundingAgency>
<fundingNumber>G0800846</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>ReNeuron Ltd</fundingAgency>
</fundingInfo>
<supportingInformation>
<p> Additional Supporting Information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppFig1"></mediaResource>
<caption>Supplementary Figure 1. A priori power analysis of experiment. Power calculations (G*Power 3, University of Trier) based on previous data indicated that a group size of 12 animals per group will achieve a power (1‐β) of 95% at the 0.05 significance level (a) with an effect size (f) of 0.25 for repeated measures (4 repetitions) analyses of variances (ANOVA) considering within and between factors, as well as interactions. However, we need to include more animals than indicated by this calculation due to exclusion of animals' post‐hoc and potentially a smaller effect size (f=0.2). We previously determined that between 20‐30% of animals are excluded due to not having a lesion (i.e. a hyperintense T2 signal in striatum/cortex), haemorrhaging, or being outliers. Based on these assumptions, the power analysis indicated that a total sample size of 60 animals (n=15 per group) provides sufficient power to yield significant results in our primary outcome measure, the bilateral asymmetry test.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppFig2"></mediaResource>
<caption>Supplementary Figure 2. Side‐effects of implantation surgery. B. Most animals showed minor damage that was caused by the injection, notably injection tract damage causing a light hypointense signal in the area of injection (top row images). This disappears fairly rapidly after injection and by 4 weeks post‐injection is no longer detectable. However, in a few animals, small blood clots (strong hypointense signal) and edema (hyperintense signal) around the injection tract could also be observed on T2‐weighted images. It is noteworthy that even this “major” injection damage subsides with time. B. Side‐effects, such as edema, tract damage, and small bleeds, can be seen in all groups equally. Less tract damage was evident in ICV implanted animals, as there was less tissue to penetrate.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppFig3"></mediaResource>
<caption>Supplementary Figure 3. Endogenous neurogenesis – sub‐groups. Neither striatal, nor striatal+cortical, lesions significantly affected the length of the sub‐ependymal zone. The width in the rostral part of the subependymal zone was significantly enlarged and this was more evident in the large striatal+cortical lesions. However, the decrease in the caudal part of the sub‐ependymal zone compensated for this effect and resulted in no net increase in overall width of the subependymal zone.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppTab1"></mediaResource>
<caption>Supplementary Table 1</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppTab2"></mediaResource>
<caption>Supplementary Table 2</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppTab3"></mediaResource>
<caption>Supplementary Table 3</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppTab4"></mediaResource>
<caption>Supplementary Table 4</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:10665099:media:stem1024:STEM_1024_sm_SuppTab5"></mediaResource>
<caption>Supplementary Table 5</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. S
<sc>TEM</sc>
C
<sc>ELLS</sc>
<i>2012; 30:785–796</i>
</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>Authors contributions: E.J.S.: collection and/or assembly of data, data analysis and interpretation, manuscript writing, and administrative support; R.P.S.: conception and design, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; N.G., M.N., W.R.C., E.T., and L.S.: collection and/or assembly of data, data analysis and interpretation, and manuscript writing; J.D.S.: conception and design, financial support, data analysis and interpretation, and manuscript writing; and M.M.: conception and design, financial support, data analysis and interpretation, manuscript writing, and final approval of manuscript.</p>
</note>
<note xml:id="fn3">
<p>Disclosure of potential conflicts of interest is found at the end of this article.</p>
</note>
<note xml:id="fn4">
<p>First published online in S
<sc>TEM</sc>
C
<sc>ELLS</sc>
<i>EXPRESS</i>
December 29, 2011.</p>
</note>
<note xml:id="fn2">
<p>Telephone: 412‐383‐7200; Fax: (412) 647‐0878</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Efficacy of hNSCs in Chronic Stroke</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edward J.</namePart>
<namePart type="family">Smith</namePart>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. Paul</namePart>
<namePart type="family">Stroemer</namePart>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Gorenkova</namePart>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitsuko</namePart>
<namePart type="family">Nakajima</namePart>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William R.</namePart>
<namePart type="family">Crum</namePart>
<affiliation>Department of Neuroimaging, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Tang</namePart>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lara</namePart>
<namePart type="family">Stevanato</namePart>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John D.</namePart>
<namePart type="family">Sinden</namePart>
<affiliation>ReNeuron Ltd., Guildford, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Modo</namePart>
<affiliation>Department of Neuroscience, King's College London, Institute of Psychiatry, London, United Kingdom</affiliation>
<affiliation>Department of Radiology, McGowan Centre for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA</affiliation>
<description>Telephone: 412‐383‐7200; Fax: (412) 647‐0878</description>
<affiliation>University of Pittsburgh, McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, Pennsylvania 15203, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-04</dateIssued>
<dateCaptured encoding="w3cdtf">2011-11-10</dateCaptured>
<dateValid encoding="w3cdtf">2011-12-12</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="references">35</extent>
<extent unit="words">8243</extent>
</physicalDescription>
<abstract lang="en">Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796</abstract>
<note type="content">*Authors contributions: E.J.S.: collection and/or assembly of data, data analysis and interpretation, manuscript writing, and administrative support; R.P.S.: conception and design, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; N.G., M.N., W.R.C., E.T., and L.S.: collection and/or assembly of data, data analysis and interpretation, and manuscript writing; J.D.S.: conception and design, financial support, data analysis and interpretation, and manuscript writing; and M.M.: conception and design, financial support, data analysis and interpretation, manuscript writing, and final approval of manuscript.</note>
<note type="content">*Disclosure of potential conflicts of interest is found at the end of this article.</note>
<note type="content">*First published online in STEM CELLS EXPRESS December 29, 2011.</note>
<note type="funding">NIBIB Quantum - No. 1 P20 EB007076‐01; </note>
<note type="funding">MRC Translational Stem Cell Initiative - No. G0800846; </note>
<note type="funding">ReNeuron Ltd</note>
<subject lang="en">
<genre>keywords</genre>
<topic>Stem cell transplantation</topic>
<topic>Neural stem cell</topic>
<topic>Stroke</topic>
<topic>Nervous system</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>STEM CELLS</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>STEM CELLS</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Additional Supporting Information may be found in the online version of this article.Supporting Info Item: Supplementary Figure 1. A priori power analysis of experiment. Power calculations (G*Power 3, University of Trier) based on previous data indicated that a group size of 12 animals per group will achieve a power (1‐β) of 95% at the 0.05 significance level (a) with an effect size (f) of 0.25 for repeated measures (4 repetitions) analyses of variances (ANOVA) considering within and between factors, as well as interactions. However, we need to include more animals than indicated by this calculation due to exclusion of animals' post‐hoc and potentially a smaller effect size (f=0.2). We previously determined that between 20‐30% of animals are excluded due to not having a lesion (i.e. a hyperintense T2 signal in striatum/cortex), haemorrhaging, or being outliers. Based on these assumptions, the power analysis indicated that a total sample size of 60 animals (n=15 per group) provides sufficient power to yield significant results in our primary outcome measure, the bilateral asymmetry test. - Supplementary Figure 2. Side‐effects of implantation surgery. B. Most animals showed minor damage that was caused by the injection, notably injection tract damage causing a light hypointense signal in the area of injection (top row images). This disappears fairly rapidly after injection and by 4 weeks post‐injection is no longer detectable. However, in a few animals, small blood clots (strong hypointense signal) and edema (hyperintense signal) around the injection tract could also be observed on T2‐weighted images. It is noteworthy that even this “major” injection damage subsides with time. B. Side‐effects, such as edema, tract damage, and small bleeds, can be seen in all groups equally. Less tract damage was evident in ICV implanted animals, as there was less tissue to penetrate. - Supplementary Figure 3. Endogenous neurogenesis – sub‐groups. Neither striatal, nor striatal+cortical, lesions significantly affected the length of the sub‐ependymal zone. The width in the rostral part of the subependymal zone was significantly enlarged and this was more evident in the large striatal+cortical lesions. However, the decrease in the caudal part of the sub‐ependymal zone compensated for this effect and resulted in no net increase in overall width of the subependymal zone. - Supplementary Table 1 - Supplementary Table 2 - Supplementary Table 3 - Supplementary Table 4 - Supplementary Table 5 - </note>
<subject>
<genre>article-category</genre>
<topic>Translational and Clinical Research</topic>
</subject>
<identifier type="ISSN">1066-5099</identifier>
<identifier type="eISSN">1549-4918</identifier>
<identifier type="DOI">10.1002/(ISSN)1549-4918</identifier>
<identifier type="PublisherID">STEM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>785</start>
<end>796</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">01782887DB1C4CEFD9FAC169051154867FB76974</identifier>
<identifier type="DOI">10.1002/stem.1024</identifier>
<identifier type="ArticleID">STEM1024</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 AlphaMed Press</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001976 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001976 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:01782887DB1C4CEFD9FAC169051154867FB76974
   |texte=   Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024