Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system

Identifieur interne : 001975 ( Istex/Corpus ); précédent : 001974; suivant : 001976

Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system

Auteurs : Andreas Krein ; Holger Klinck ; Michael Eiden ; Wolfhard Symader ; Reinhard Bierl ; Lucien Hoffmann ; Laurent Pfister

Source :

RBID : ISTEX:CA80C8ED308E3B0EB9EC0968342837B85CA6475B

English descriptors

Abstract

This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/esp.1576

Links to Exploration step

ISTEX:CA80C8ED308E3B0EB9EC0968342837B85CA6475B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
<author>
<name sortKey="Krein, Andreas" sort="Krein, Andreas" uniqKey="Krein A" first="Andreas" last="Krein">Andreas Krein</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klinck, Holger" sort="Klinck, Holger" uniqKey="Klinck H" first="Holger" last="Klinck">Holger Klinck</name>
<affiliation>
<mods:affiliation>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eiden, Michael" sort="Eiden, Michael" uniqKey="Eiden M" first="Michael" last="Eiden">Michael Eiden</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Symader, Wolfhard" sort="Symader, Wolfhard" uniqKey="Symader W" first="Wolfhard" last="Symader">Wolfhard Symader</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bierl, Reinhard" sort="Bierl, Reinhard" uniqKey="Bierl R" first="Reinhard" last="Bierl">Reinhard Bierl</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Lucien" sort="Hoffmann, Lucien" uniqKey="Hoffmann L" first="Lucien" last="Hoffmann">Lucien Hoffmann</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfister, Laurent" sort="Pfister, Laurent" uniqKey="Pfister L" first="Laurent" last="Pfister">Laurent Pfister</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CA80C8ED308E3B0EB9EC0968342837B85CA6475B</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/esp.1576</idno>
<idno type="url">https://api.istex.fr/document/CA80C8ED308E3B0EB9EC0968342837B85CA6475B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001975</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001975</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
<author>
<name sortKey="Krein, Andreas" sort="Krein, Andreas" uniqKey="Krein A" first="Andreas" last="Krein">Andreas Krein</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klinck, Holger" sort="Klinck, Holger" uniqKey="Klinck H" first="Holger" last="Klinck">Holger Klinck</name>
<affiliation>
<mods:affiliation>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eiden, Michael" sort="Eiden, Michael" uniqKey="Eiden M" first="Michael" last="Eiden">Michael Eiden</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Symader, Wolfhard" sort="Symader, Wolfhard" uniqKey="Symader W" first="Wolfhard" last="Symader">Wolfhard Symader</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bierl, Reinhard" sort="Bierl, Reinhard" uniqKey="Bierl R" first="Reinhard" last="Bierl">Reinhard Bierl</name>
<affiliation>
<mods:affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Lucien" sort="Hoffmann, Lucien" uniqKey="Hoffmann L" first="Lucien" last="Hoffmann">Lucien Hoffmann</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pfister, Laurent" sort="Pfister, Laurent" uniqKey="Pfister L" first="Laurent" last="Pfister">Laurent Pfister</name>
<affiliation>
<mods:affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Earth Surface Processes and Landforms</title>
<title level="j" type="sub">The Journal of the British Geomorphological Research Group</title>
<title level="j" type="abbrev">Earth Surf. Process. Landforms</title>
<idno type="ISSN">0197-9337</idno>
<idno type="eISSN">1096-9837</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2008-01">2008-01</date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="152">152</biblScope>
<biblScope unit="page" to="163">163</biblScope>
</imprint>
<idno type="ISSN">0197-9337</idno>
</series>
<idno type="istex">CA80C8ED308E3B0EB9EC0968342837B85CA6475B</idno>
<idno type="DOI">10.1002/esp.1576</idno>
<idno type="ArticleID">ESP1576</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0197-9337</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>bedload</term>
<term>flood events</term>
<term>hydrophones</term>
<term>hydro‐acoustics</term>
<term>sediment transport</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Andreas Krein</name>
<affiliations>
<json:string>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</json:string>
<json:string>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Holger Klinck</name>
<affiliations>
<json:string>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael Eiden</name>
<affiliations>
<json:string>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wolfhard Symader</name>
<affiliations>
<json:string>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Reinhard Bierl</name>
<affiliations>
<json:string>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lucien Hoffmann</name>
<affiliations>
<json:string>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>Laurent Pfister</name>
<affiliations>
<json:string>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydrophones</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydro‐acoustics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sediment transport</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bedload</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flood events</value>
</json:item>
</subject>
<articleId>
<json:string>ESP1576</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>miscellaneous</json:string>
</originalGenre>
<abstract>This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>567 x 737 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1898</abstractCharCount>
<pdfWordCount>7730</pdfWordCount>
<pdfCharCount>43472</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>295</abstractWordCount>
</qualityIndicators>
<title>Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>N Ajbulatov</name>
</json:item>
<json:item>
<name>V Boldyrev</name>
</json:item>
<json:item>
<name>H Griesseier</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>263</last>
<first>254</first>
</pages>
<author></author>
<title>Petermanns Geographische Mitteilungen</title>
</host>
<title>Das Studium der Sedimentbewegung in Flüssen und Meeren mit Hilfe lumineszierender Farbstoffe und radioaktiver Isotope</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Bänziger</name>
</json:item>
<json:item>
<name>H Burch</name>
</json:item>
</author>
<host>
<pages>
<last>214</last>
<first>207</first>
</pages>
<author></author>
<title>Hydrology in Mountain Regions I. Hydrological Measurements; the Water Cycle</title>
</host>
<title>Acoustic sensors (hydrophones) as indicators for bedload transport in a mountain torrent</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Bedeus</name>
</json:item>
<json:item>
<name>L Ivicsics</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>390</last>
<first>384</first>
</pages>
<author></author>
<title>International Association Hydrological Sciences Publication</title>
</host>
<title>Observation of the noise of bedload</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Bogen</name>
</json:item>
<json:item>
<name>K Moen</name>
</json:item>
</author>
<host>
<pages>
<last>192</last>
<first>181</first>
</pages>
<author></author>
<title>Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances</title>
</host>
<title>Bedload measurements with a new passive acoustic sensor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Bunte</name>
</json:item>
<json:item>
<name>SR Abt</name>
</json:item>
<json:item>
<name>JP Potyondy</name>
</json:item>
<json:item>
<name>SE Ryan</name>
</json:item>
</author>
<host>
<volume>130</volume>
<pages>
<last>893</last>
<first>879</first>
</pages>
<author></author>
<title>Journal of Hydraulic Engineering</title>
</host>
<title>Measurement of coarse gravel and cobble transport using portable bedload traps</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Cailleux</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>252</last>
<first>250</first>
</pages>
<author></author>
<title>Compte Rendu sommaire des séances de la Société Géologique de France</title>
</host>
<title>L'indice d'mousse: définition et première application</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Deutscher Verband für Wasserwirtschaft und Kulturbau. 1992. Geschiebemessungen. Verlag Paul Parey: Hamburg.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J Downing</name>
</json:item>
<json:item>
<name>PJ Farley</name>
</json:item>
<json:item>
<name>K Bunte</name>
</json:item>
<json:item>
<name>K Swingle</name>
</json:item>
<json:item>
<name>SE Ryan</name>
</json:item>
<json:item>
<name>M Dixon</name>
</json:item>
</author>
<host>
<pages>
<last>200</last>
<first>193</first>
</pages>
<author></author>
<title>Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances</title>
</host>
<title>Acoustic gravel‐transport sensor: description and field tests in Little Granite Creek, Wyoming, USA</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P Ergenzinger</name>
</json:item>
</author>
<host>
<pages>
<last>491</last>
<first>483</first>
</pages>
<author></author>
<title>Tracermethoden in der Hydrologie</title>
</host>
<title>Über den Einsatz von Magnettracern zur Messung des Grobgeschiebetransportes</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Ergenzinger P, Schmidt KH. 1993. Dynamics and Geomorphology of Mountain Rivers. Springer‐Verlag: Berlin.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>W Froehlich</name>
</json:item>
</author>
<host>
<pages>
<last>210</last>
<first>201</first>
</pages>
<author></author>
<title>Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances</title>
</host>
<title>Monitoring bedload transport using acoustic and magnetic devices</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RL Gordon</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<last>936</last>
<first>925</first>
</pages>
<author></author>
<title>Journal of Hydraulic Engineering</title>
</host>
<title>Acoustic measurement of river discharge</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Hegg</name>
</json:item>
<json:item>
<name>D Rickenmann</name>
</json:item>
</author>
<host>
<pages>
<last>324</last>
<first>317</first>
</pages>
<author></author>
<title>Modelling Soil Erosion, Sediment Transport and Closely Related Processes.</title>
</host>
<title>Short‐time relations between runoff and bedload transport in a steep mountain torrent</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Mizuyama</name>
</json:item>
<json:item>
<name>M Fujita</name>
</json:item>
<json:item>
<name>M Nonaka</name>
</json:item>
</author>
<host>
<pages>
<last>227</last>
<first>222</first>
</pages>
<author></author>
<title>Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances</title>
</host>
<title>Measurement of bedload with the use of hydrophones in mountain torrents</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KS Richards</name>
</json:item>
<json:item>
<name>M Milne</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>317</last>
<first>307</first>
</pages>
<author></author>
<title>Earth Surface Processes and Landforms</title>
</host>
<title>Problems in the calibration of an acoustic device for the observation of bedload transport</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Richardson</name>
</json:item>
<json:item>
<name>I Benson</name>
</json:item>
<json:item>
<name>PA Carling</name>
</json:item>
</author>
<host>
<pages>
<last>236</last>
<first>228</first>
</pages>
<author></author>
<title>Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances</title>
</host>
<title>An instrument to record sediment movement in bedrock channels</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Rickenmann</name>
</json:item>
<json:item>
<name>BW McArdell</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>137</last>
<first>1362</first>
</pages>
<author></author>
<title>Earth Surface Processes and Landforms</title>
</host>
<title>Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D Rickenmann</name>
</json:item>
</author>
<host>
<pages>
<last>66</last>
<first>53</first>
</pages>
<author></author>
<title>Dynamics and Geomorphology of Mountain Rivers</title>
</host>
<title>Bedload transport and discharge in the Erlenbach stream</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Riedmiller</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>278</last>
<first>265</first>
</pages>
<issue>5</issue>
<author></author>
<title>Computer Standards and Interfaces</title>
</host>
<title>Advanced supervised learning in multi‐layer perceptrons – from backpropagation to adaptive learning algorithms</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Zell A. 1994. Simulation Neuronaler Netze. Addison Wesley: München.</title>
</host>
</json:item>
</refBibs>
<genre>
<json:string>other</json:string>
</genre>
<host>
<volume>33</volume>
<publisherId>
<json:string>ESP</json:string>
</publisherId>
<pages>
<total>12</total>
<last>163</last>
<first>152</first>
</pages>
<issn>
<json:string>0197-9337</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Technical Communication</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9837</json:string>
</eissn>
<title>Earth Surface Processes and Landforms</title>
<doi>
<json:string>10.1002/(ISSN)1096-9837</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>geography, physical</json:string>
</wos>
<scienceMetrix>
<json:string>economic & social sciences</json:string>
<json:string>social sciences</json:string>
<json:string>geography</json:string>
</scienceMetrix>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1002/esp.1576</json:string>
</doi>
<id>CA80C8ED308E3B0EB9EC0968342837B85CA6475B</id>
<score>0.8487439</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CA80C8ED308E3B0EB9EC0968342837B85CA6475B/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CA80C8ED308E3B0EB9EC0968342837B85CA6475B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CA80C8ED308E3B0EB9EC0968342837B85CA6475B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2007 John Wiley & Sons, Ltd.</p>
</availability>
<date>2008</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
<author xml:id="author-1">
<persName>
<forename type="first">Andreas</forename>
<surname>Krein</surname>
</persName>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Holger</forename>
<surname>Klinck</surname>
</persName>
<affiliation>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Michael</forename>
<surname>Eiden</surname>
</persName>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Wolfhard</forename>
<surname>Symader</surname>
</persName>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Reinhard</forename>
<surname>Bierl</surname>
</persName>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Lucien</forename>
<surname>Hoffmann</surname>
</persName>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Laurent</forename>
<surname>Pfister</surname>
</persName>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Earth Surface Processes and Landforms</title>
<title level="j" type="sub">The Journal of the British Geomorphological Research Group</title>
<title level="j" type="abbrev">Earth Surf. Process. Landforms</title>
<idno type="pISSN">0197-9337</idno>
<idno type="eISSN">1096-9837</idno>
<idno type="DOI">10.1002/(ISSN)1096-9837</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2008-01"></date>
<biblScope unit="volume">33</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="152">152</biblScope>
<biblScope unit="page" to="163">163</biblScope>
</imprint>
</monogr>
<idno type="istex">CA80C8ED308E3B0EB9EC0968342837B85CA6475B</idno>
<idno type="DOI">10.1002/esp.1576</idno>
<idno type="ArticleID">ESP1576</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>hydrophones</term>
</item>
<item>
<term>hydro‐acoustics</term>
</item>
<item>
<term>sediment transport</term>
</item>
<item>
<term>bedload</term>
</item>
<item>
<term>flood events</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Technical Communication</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-07-26">Received</change>
<change when="2007-06-11">Registration</change>
<change when="2008-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CA80C8ED308E3B0EB9EC0968342837B85CA6475B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9837</doi>
<issn type="print">0197-9337</issn>
<issn type="electronic">1096-9837</issn>
<idGroup>
<id type="product" value="ESP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="EARTH SURFACE PROCESSES AND LANDFORMS">Earth Surface Processes and Landforms</title>
<title type="subtitle">The Journal of the British Geomorphological Research Group</title>
<title type="short">Earth Surf. Process. Landforms</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/esp.v33:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="33">33</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2008-01">January 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="miscellaneous" position="11" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/esp.1576</doi>
<idGroup>
<id type="unit" value="ESP1576"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Technical Communication</title>
<title type="tocHeading1">Technical Communications</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2007 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-07-26"></event>
<event type="manuscriptRevised" date="2007-06-06"></event>
<event type="manuscriptAccepted" date="2007-06-11"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2007-08-31"></event>
<event type="firstOnline" date="2007-08-31"></event>
<event type="publishedOnlineFinalForm" date="2007-12-28"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.10 mode:FullText" date="2010-06-29"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">152</numbering>
<numbering type="pageLast">163</numbering>
</numberingGroup>
<correspondenceTo>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:ESP.ESP1576.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
<title type="short" xml:lang="en">Hydro‐acoustic bedload observations</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Andreas</givenNames>
<familyName>Krein</familyName>
</personName>
<contactDetails>
<email>krein@lippmann.lu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Holger</givenNames>
<familyName>Klinck</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Michael</givenNames>
<familyName>Eiden</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Wolfhard</givenNames>
<familyName>Symader</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Reinhard</givenNames>
<familyName>Bierl</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Lucien</givenNames>
<familyName>Hoffmann</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Laurent</givenNames>
<familyName>Pfister</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="LU" type="organization">
<unparsedAffiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="DE" type="organization">
<unparsedAffiliation>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="DE" type="organization">
<unparsedAffiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">hydrophones</keyword>
<keyword xml:id="kwd2">hydro‐acoustics</keyword>
<keyword xml:id="kwd3">sediment transport</keyword>
<keyword xml:id="kwd4">bedload</keyword>
<keyword xml:id="kwd5">flood events</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Hydro‐acoustic bedload observations</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Krein</namePart>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Holger</namePart>
<namePart type="family">Klinck</namePart>
<affiliation>Alfred Wegener Institute – Foundation for Polar and Marine Research, Postfach 120161, D‐27515 Bremerhaven, Germany, e‐mail: holger.klinck@awi.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Eiden</namePart>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfhard</namePart>
<namePart type="family">Symader</namePart>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reinhard</namePart>
<namePart type="family">Bierl</namePart>
<affiliation>Department of Hydrology, University of Trier, D‐54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucien</namePart>
<namePart type="family">Hoffmann</namePart>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Pfister</namePart>
<affiliation>Public Research Centre – Gabriel Lippmann, Department of Environment and Agro‐Biotechnologies, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="other" displayLabel="miscellaneous"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008-01</dateIssued>
<dateCaptured encoding="w3cdtf">2006-07-26</dateCaptured>
<dateValid encoding="w3cdtf">2007-06-11</dateValid>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="references">20</extent>
</physicalDescription>
<abstract lang="en">This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAP1 Portable Data Recorder) and hydrophones (International Transducer Corp. ITC‐4001 A). The ITC‐4001 is a shallow water omnidirectional transducer containing a flexural disc transducer utilizing Channelite‐5400 ceramics mounted in a rugged corrosion‐resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>hydrophones</topic>
<topic>hydro‐acoustics</topic>
<topic>sediment transport</topic>
<topic>bedload</topic>
<topic>flood events</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Earth Surface Processes and Landforms</title>
<subTitle>The Journal of the British Geomorphological Research Group</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Earth Surf. Process. Landforms</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Technical Communication</topic>
</subject>
<identifier type="ISSN">0197-9337</identifier>
<identifier type="eISSN">1096-9837</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9837</identifier>
<identifier type="PublisherID">ESP</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>152</start>
<end>163</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CA80C8ED308E3B0EB9EC0968342837B85CA6475B</identifier>
<identifier type="DOI">10.1002/esp.1576</identifier>
<identifier type="ArticleID">ESP1576</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2007 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001975 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001975 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CA80C8ED308E3B0EB9EC0968342837B85CA6475B
   |texte=   Investigating the transport dynamics and the properties of bedload material with a hydro‐acoustic measuring system
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024