Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Disease interaction between farmed and wild fish populations

Identifieur interne : 001413 ( Istex/Corpus ); précédent : 001412; suivant : 001414

Disease interaction between farmed and wild fish populations

Auteurs : E. J. Peeler ; A. G. Murray

Source :

RBID : ISTEX:20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62

Abstract

This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.

Url:
DOI: 10.1111/j.0022-1112.2004.0559s.x

Links to Exploration step

ISTEX:20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Disease interaction between farmed and wild fish populations</title>
<author>
<name sortKey="Peeler, E J" sort="Peeler, E J" uniqKey="Peeler E" first="E. J." last="Peeler">E. J. Peeler</name>
<affiliation>
<mods:affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murray, A G" sort="Murray, A G" uniqKey="Murray A" first="A. G." last="Murray">A. G. Murray</name>
<affiliation>
<mods:affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1111/j.0022-1112.2004.0559s.x</idno>
<idno type="url">https://api.istex.fr/document/20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001413</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001413</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Disease interaction between farmed and wild fish populations</title>
<author>
<name sortKey="Peeler, E J" sort="Peeler, E J" uniqKey="Peeler E" first="E. J." last="Peeler">E. J. Peeler</name>
<affiliation>
<mods:affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Murray, A G" sort="Murray, A G" uniqKey="Murray A" first="A. G." last="Murray">A. G. Murray</name>
<affiliation>
<mods:affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Fish Biology</title>
<idno type="ISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-12">2004-12</date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="supplement">s1</biblScope>
<biblScope unit="page" from="321">321</biblScope>
<biblScope unit="page" to="322">322</biblScope>
</imprint>
<idno type="ISSN">0022-1112</idno>
</series>
<idno type="istex">20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62</idno>
<idno type="DOI">10.1111/j.0022-1112.2004.0559s.x</idno>
<idno type="ArticleID">JFB559S</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1112</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>E. J. Peeler</name>
<affiliations>
<json:string>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. G. Murray</name>
<affiliations>
<json:string>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JFB559S</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>abstract</json:string>
</originalGenre>
<abstract>This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>488 x 703 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractCharCount>1718</abstractCharCount>
<pdfWordCount>11257</pdfWordCount>
<pdfCharCount>70692</pdfCharCount>
<pdfPageCount>23</pdfPageCount>
<abstractWordCount>253</abstractWordCount>
</qualityIndicators>
<title>Disease interaction between farmed and wild fish populations</title>
<genre>
<json:string>abstract</json:string>
</genre>
<host>
<volume>65</volume>
<publisherId>
<json:string>JFB</json:string>
</publisherId>
<pages>
<total>2</total>
<last>322</last>
<first>321</first>
</pages>
<issn>
<json:string>0022-1112</json:string>
</issn>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1095-8649</json:string>
</eissn>
<title>Journal of Fish Biology</title>
<doi>
<json:string>10.1111/(ISSN)1095-8649</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>marine & freshwater biology</json:string>
<json:string>fisheries</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>fisheries</json:string>
</scienceMetrix>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1111/j.0022-1112.2004.0559s.x</json:string>
</doi>
<id>20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62</id>
<score>0.050120346</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Disease interaction between farmed and wild fish populations</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Disease interaction between farmed and wild fish populations</title>
<author xml:id="author-1">
<persName>
<forename type="first">E. J.</forename>
<surname>Peeler</surname>
</persName>
<affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">A. G.</forename>
<surname>Murray</surname>
</persName>
<affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Fish Biology</title>
<idno type="pISSN">0022-1112</idno>
<idno type="eISSN">1095-8649</idno>
<idno type="DOI">10.1111/(ISSN)1095-8649</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK; Malden, USA</pubPlace>
<date type="published" when="2004-12"></date>
<biblScope unit="volume">65</biblScope>
<biblScope unit="supplement">s1</biblScope>
<biblScope unit="page" from="321">321</biblScope>
<biblScope unit="page" to="322">322</biblScope>
</imprint>
</monogr>
<idno type="istex">20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62</idno>
<idno type="DOI">10.1111/j.0022-1112.2004.0559s.x</idno>
<idno type="ArticleID">JFB559S</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2004-12">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-12-13">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-02-8">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK; Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1095-8649</doi>
<issn type="print">0022-1112</issn>
<issn type="electronic">1095-8649</issn>
<idGroup>
<id type="product" value="JFB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF FISH BIOLOGY">Journal of Fish Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12000">
<doi origin="wiley">10.1111/jfb.2004.65.issue-s1</doi>
<numberingGroup>
<numbering type="journalVolume" number="65">65</numbering>
<numbering type="supplement">s1</numbering>
</numberingGroup>
<coverDate startDate="2004-12">December 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="abstract" position="0032100" status="forIssue">
<doi origin="wiley">10.1111/j.0022-1112.2004.0559s.x</doi>
<idGroup>
<id type="unit" value="JFB559S"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Abstracts of Oral Papers not published in the Supplement</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2004-12-15"></event>
<event type="publishedOnlineFinalForm" date="2004-12-15"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:Header result:Header" date="2010-02-28"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="321">321</numbering>
<numbering type="pageLast" number="322">322</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JFB.JFB559s.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="0"></count>
<count type="wordTotal" number="0"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Disease interaction between farmed and wild fish populations</title>
<title type="shortAuthors">
<sc>paper abstracts</sc>
</title>
<title type="short">
<sc>paper abstracts</sc>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#aff-1-1">
<personName>
<givenNames>E. J.</givenNames>
<familyName>Peeler</familyName>
</personName>
</creator>
1
<creator creatorRole="author" xml:id="cr2" affiliationRef="#aff-1-1">
<personName>
<givenNames>A. G.</givenNames>
<familyName>Murray</familyName>
</personName>
</creator>
2 </creators>
<affiliationGroup>
<affiliation xml:id="aff-1-1">
<unparsedAffiliation>(
<sup>1</sup>
<i>Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; </i>
<sup>2</sup>
<i>Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.</i>
).</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (
<i>e.g.</i>
high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Disease interaction between farmed and wild fish populations</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>paper abstracts</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Disease interaction between farmed and wild fish populations</title>
</titleInfo>
<name type="personal">
<namePart type="given">E. J.</namePart>
<namePart type="family">Peeler</namePart>
<affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A. G.</namePart>
<namePart type="family">Murray</namePart>
<affiliation>(1Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 7QN, U.K.; 2Fisheries Research Services, P. O. Box 101, 357 Victoria Road, Aberdeen, AB11 9DB, U.K.).</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="abstract" displayLabel="abstract"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK; Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-12</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">This paper reviews the literature on disease interaction between wild and farmed fish and recommends strategies to reduce the disease risks to both populations. Most, if not all, diseases of farmed fish originate in wild populations. The close contact between farmed and wild fish readily leads to pathogens exchange. Aquaculture creates conditions (e.g. high stocking levels) conducive to pathogen transmission and disease; hence pathogens can overspill back, resulting in high levels of challenge to wild populations. This is exemplified by sea lice infections in farmed Atlantic salmon. Stocking with hatchery reared fish or aquaculture escapees can affect disease dynamics in wild populations. Whirling disease has been spread to many wild rainbow trout populations in the US with the release of hatchery reared stock. The greatest impact of aquaculture on disease in wild populations has resulted from the movement of fish for cultivation. Examples of exotic disease introduction following movement of live fish for aquaculture with serious consequences for wild populations are reviewed. The salmon parasite, Gyrodactylus salaris, has destroyed wild salmon populations in 44 Norwegian rivers. Crayfish plague has wiped out European crayfish over much of Europe. Eels numbers have declined in Europe and infection with the swimbladder nematode Anguillicola crassus has in part been blamed. The impact of disease in farmed fish on wild populations can mitigated. Risk analysis methods need to be refined and applied to live fish movement and new aquacultural developments. Appropriate biosecurity strategies, based on risk assessments, should be developed to reduce pathogen exchange and mitigate the consequences.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Fish Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0022-1112</identifier>
<identifier type="eISSN">1095-8649</identifier>
<identifier type="DOI">10.1111/(ISSN)1095-8649</identifier>
<identifier type="PublisherID">JFB</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<detail type="supplement">
<caption>Suppl. no.</caption>
<number>s1</number>
</detail>
<extent unit="pages">
<start>321</start>
<end>322</end>
<total>2</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62</identifier>
<identifier type="DOI">10.1111/j.0022-1112.2004.0559s.x</identifier>
<identifier type="ArticleID">JFB559S</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:20D6069DD58BC724B4CFBC60CFEEFB51D04ABA62
   |texte=   Disease interaction between farmed and wild fish populations
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024