Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences

Identifieur interne : 001349 ( Istex/Corpus ); précédent : 001348; suivant : 001350

Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences

Auteurs : C. Grunwald ; J. Stabile ; J. R. Waldman ; R. Gross ; I. Wirgin

Source :

RBID : ISTEX:9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F

English descriptors

Abstract

Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.

Url:
DOI: 10.1046/j.1365-294X.2002.01575.x

Links to Exploration step

ISTEX:9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
<author>
<name sortKey="Grunwald, C" sort="Grunwald, C" uniqKey="Grunwald C" first="C." last="Grunwald">C. Grunwald</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stabile, J" sort="Stabile, J" uniqKey="Stabile J" first="J." last="Stabile">J. Stabile</name>
<affiliation>
<mods:affiliation>Iona College, Department of Biology, New Rochelle 10801, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Waldman, J R" sort="Waldman, J R" uniqKey="Waldman J" first="J. R." last="Waldman">J. R. Waldman</name>
<affiliation>
<mods:affiliation>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, R" sort="Gross, R" uniqKey="Gross R" first="R." last="Gross">R. Gross</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wirgin, I" sort="Wirgin, I" uniqKey="Wirgin I" first="I." last="Wirgin">I. Wirgin</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wirgin@env.med.nyu.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1046/j.1365-294X.2002.01575.x</idno>
<idno type="url">https://api.istex.fr/document/9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001349</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001349</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
<author>
<name sortKey="Grunwald, C" sort="Grunwald, C" uniqKey="Grunwald C" first="C." last="Grunwald">C. Grunwald</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stabile, J" sort="Stabile, J" uniqKey="Stabile J" first="J." last="Stabile">J. Stabile</name>
<affiliation>
<mods:affiliation>Iona College, Department of Biology, New Rochelle 10801, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Waldman, J R" sort="Waldman, J R" uniqKey="Waldman J" first="J. R." last="Waldman">J. R. Waldman</name>
<affiliation>
<mods:affiliation>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gross, R" sort="Gross, R" uniqKey="Gross R" first="R." last="Gross">R. Gross</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wirgin, I" sort="Wirgin, I" uniqKey="Wirgin I" first="I." last="Wirgin">I. Wirgin</name>
<affiliation>
<mods:affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: wirgin@env.med.nyu.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Ecology</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2002-10">2002-10</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1885">1885</biblScope>
<biblScope unit="page" to="1898">1898</biblScope>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
<idno type="istex">9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F</idno>
<idno type="DOI">10.1046/j.1365-294X.2002.01575.x</idno>
<idno type="ArticleID">MEC1575</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acipenseriformes</term>
<term>control region</term>
<term>endangered species</term>
<term>heteroplasmy</term>
<term>mitochondrial DNA</term>
<term>sturgeon</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>C. Grunwald</name>
<affiliations>
<json:string>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Stabile</name>
<affiliations>
<json:string>Iona College, Department of Biology, New Rochelle 10801, USA;</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. R. Waldman</name>
<affiliations>
<json:string>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Gross</name>
<affiliations>
<json:string>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</json:string>
</affiliations>
</json:item>
<json:item>
<name>I. Wirgin</name>
<affiliations>
<json:string>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</json:string>
<json:string>E-mail: wirgin@env.med.nyu.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Acipenseriformes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>control region</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>endangered species</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heteroplasmy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mitochondrial DNA</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sturgeon</value>
</json:item>
</subject>
<articleId>
<json:string>MEC1575</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (P > 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (> 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.638 x 781.984 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2229</abstractCharCount>
<pdfWordCount>8873</pdfWordCount>
<pdfCharCount>58248</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>316</abstractWordCount>
</qualityIndicators>
<title>Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>11</volume>
<publisherId>
<json:string>MEC</json:string>
</publisherId>
<pages>
<total>14</total>
<last>1898</last>
<first>1885</first>
</pages>
<issn>
<json:string>0962-1083</json:string>
</issn>
<issue>10</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-294X</json:string>
</eissn>
<title>Molecular Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1365-294X</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>evolutionary biology</json:string>
<json:string>ecology</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>evolutionary biology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1046/j.1365-294X.2002.01575.x</json:string>
</doi>
<id>9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F</id>
<score>0.32970345</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2002</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
<author xml:id="author-1">
<persName>
<forename type="first">C.</forename>
<surname>Grunwald</surname>
</persName>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">J.</forename>
<surname>Stabile</surname>
</persName>
<affiliation>Iona College, Department of Biology, New Rochelle 10801, USA;</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">J. R.</forename>
<surname>Waldman</surname>
</persName>
<affiliation>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">R.</forename>
<surname>Gross</surname>
</persName>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">I.</forename>
<surname>Wirgin</surname>
</persName>
<email>wirgin@env.med.nyu.edu</email>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Molecular Ecology</title>
<idno type="pISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<idno type="DOI">10.1111/(ISSN)1365-294X</idno>
<imprint>
<publisher>Blackwell Science Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2002-10"></date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1885">1885</biblScope>
<biblScope unit="page" to="1898">1898</biblScope>
</imprint>
</monogr>
<idno type="istex">9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F</idno>
<idno type="DOI">10.1046/j.1365-294X.2002.01575.x</idno>
<idno type="ArticleID">MEC1575</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2002</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Acipenseriformes</term>
</item>
<item>
<term>control region</term>
</item>
<item>
<term>endangered species</term>
</item>
<item>
<term>heteroplasmy</term>
</item>
<item>
<term>mitochondrial DNA</term>
</item>
<item>
<term>sturgeon</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-294X</doi>
<issn type="print">0962-1083</issn>
<issn type="electronic">1365-294X</issn>
<idGroup>
<id type="product" value="MEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MOLECULAR ECOLOGY">Molecular Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10010">
<doi origin="wiley">10.1111/mec.2002.11.issue-10</doi>
<numberingGroup>
<numbering type="journalVolume" number="11">11</numbering>
<numbering type="journalIssue" number="10">10</numbering>
</numberingGroup>
<coverDate startDate="2002-10">October 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0188500" status="forIssue">
<doi origin="wiley">10.1046/j.1365-294X.2002.01575.x</doi>
<idGroup>
<id type="unit" value="MEC1575"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Population and Conservation Genetics</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2002-09-23"></event>
<event type="publishedOnlineFinalForm" date="2002-09-23"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText" date="2010-04-20"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-01"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1885">1885</numbering>
<numbering type="pageLast" number="1898">1898</numbering>
</numberingGroup>
<correspondenceTo>I. I. Wirgin. Fax: +1 845 351 5472; E‐mail:
<email>wirgin@env.med.nyu.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MEC.MEC1575.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 15 August 2001; revision received 21 December 2001; accepted 3 January 2002</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="6"></count>
<count type="formulaTotal" number="1"></count>
<count type="referenceTotal" number="63"></count>
<count type="wordTotal" number="10043"></count>
</countGroup>
<titleGroup>
<title type="main">Population genetics of shortnose sturgeon
<i>Acipenser brevirostrum</i>
based on mitochondrial DNA control region sequences</title>
<title type="shortAuthors">C. GRUNWALD
<i>ET AL.</i>
</title>
<title type="short">SHORTNOSE STURGEON POPULATION GENETICS</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>C.</givenNames>
<familyName>Grunwald</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>J.</givenNames>
<familyName>Stabile</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>J. R.</givenNames>
<familyName>Waldman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>R.</givenNames>
<familyName>Gross</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>I.</givenNames>
<familyName>Wirgin</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2">
<unparsedAffiliation>Iona College, Department of Biology, New Rochelle 10801, USA;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Acipenseriformes</keyword>
<keyword xml:id="k2">control region</keyword>
<keyword xml:id="k3">endangered species</keyword>
<keyword xml:id="k4">heteroplasmy</keyword>
<keyword xml:id="k5">mitochondrial DNA</keyword>
<keyword xml:id="k6">sturgeon </keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 10
<sup>1</sup>
to 10
<sup>4</sup>
, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (
<i>P</i>
 < 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (
<i>P</i>
 > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SHORTNOSE STURGEON POPULATION GENETICS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Grunwald</namePart>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Stabile</namePart>
<affiliation>Iona College, Department of Biology, New Rochelle 10801, USA;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. R.</namePart>
<namePart type="family">Waldman</namePart>
<affiliation>Hudson River Foundation for Science and Environmental Research, New York 10011, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Gross</namePart>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="family">Wirgin</namePart>
<affiliation>Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA;</affiliation>
<affiliation>E-mail: wirgin@env.med.nyu.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-10</dateIssued>
<edition>Received 15 August 2001; revision received 21 December 2001; accepted 3 January 2002</edition>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">6</extent>
<extent unit="formulas">1</extent>
<extent unit="references">63</extent>
<extent unit="words">10043</extent>
</physicalDescription>
<abstract lang="en">Shortnose sturgeon is an anadromous North American acipenserid that since 1973 has been designated as federally endangered in US waters. Historically, shortnose sturgeon occurred in as many as 19 rivers from the St. John River, NB, to the St. Johns River, FL, and these populations ranged in census size from 101 to 104, but little is known of their population structure or levels of gene flow. We used the polymerase chain reaction (PCR) and direct sequence analysis of a 440 bp portion of the mitochondrial DNA (mtDNA) control region to address these issues and to compare haplotype diversity with population size. Twenty‐nine mtDNA nucleotide‐substitution haplotypes were revealed among 275 specimens from 11 rivers and estuaries. Additionally, mtDNA length variation (6 haplotypes) and heteroplasmy (2–5 haplotypes for some individuals) were found. Significant genetic differentiation (P < 0.05) of mtDNA nucleotide‐substitution haplotypes and length‐variant haplotypes was observed among populations from all rivers and estuaries surveyed with the exception of the Delaware River and Chesapeake Bay collections. Significant haplotype differentiation was even observed between samples from two rivers (Kennebec and Androscoggin) within the Kennebec River drainage. The absence of haplotype frequency differences between samples from the Delaware River and Chesapeake Bay reflects a probable current absence of spawning within the Chesapeake Bay system and immigration of fish from the adjoining Delaware River. Haplotypic diversity indices ranged between 0.817 and 0.641; no relationship (P > 0.05) was found between haplotype diversity and census size. Gene flow estimates among populations were often low (< 2.0), but were generally higher at the latitudinal extremes of their distribution. A moderate level of haplotype diversity and a high percentage (37.9%) of haplotypes unique to the northern, once‐glaciated region suggests that northern populations survived the Pleistocene in a northern refugium. Analysis of molecular variance best supported a five‐region hierarchical grouping of populations, but our results indicate that in almost all cases populations of shortnose sturgeon should be managed as separate units.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Acipenseriformes</topic>
<topic>control region</topic>
<topic>endangered species</topic>
<topic>heteroplasmy</topic>
<topic>mitochondrial DNA</topic>
<topic>sturgeon</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0962-1083</identifier>
<identifier type="eISSN">1365-294X</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-294X</identifier>
<identifier type="PublisherID">MEC</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1885</start>
<end>1898</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F</identifier>
<identifier type="DOI">10.1046/j.1365-294X.2002.01575.x</identifier>
<identifier type="ArticleID">MEC1575</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001349 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001349 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9D4AFE03D3C460D1D84E9A7522DBA35F8FD3670F
   |texte=   Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024