Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview

Identifieur interne : 001237 ( Istex/Corpus ); précédent : 001236; suivant : 001238

Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview

Auteurs : Ronald W. Hardy

Source :

RBID : ISTEX:04887F820369492FA4DE354D8C95653975C895EF

Abstract

Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.

Url:
DOI: 10.1016/S0044-8486(99)00086-1

Links to Exploration step

ISTEX:04887F820369492FA4DE354D8C95653975C895EF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
<author>
<name sortKey="Hardy, Ronald W" sort="Hardy, Ronald W" uniqKey="Hardy R" first="Ronald W" last="Hardy">Ronald W. Hardy</name>
<affiliation>
<mods:affiliation>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:04887F820369492FA4DE354D8C95653975C895EF</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0044-8486(99)00086-1</idno>
<idno type="url">https://api.istex.fr/document/04887F820369492FA4DE354D8C95653975C895EF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001237</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001237</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
<author>
<name sortKey="Hardy, Ronald W" sort="Hardy, Ronald W" uniqKey="Hardy R" first="Ronald W" last="Hardy">Ronald W. Hardy</name>
<affiliation>
<mods:affiliation>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Aquaculture</title>
<title level="j" type="abbrev">AQUA</title>
<idno type="ISSN">0044-8486</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">177</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="217">217</biblScope>
<biblScope unit="page" to="230">230</biblScope>
</imprint>
<idno type="ISSN">0044-8486</idno>
</series>
<idno type="istex">04887F820369492FA4DE354D8C95653975C895EF</idno>
<idno type="DOI">10.1016/S0044-8486(99)00086-1</idno>
<idno type="PII">S0044-8486(99)00086-1</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0044-8486</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Ronald W Hardy</name>
<affiliations>
<json:string>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fish nutrition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Demand</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Increased aquaculture production</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.</abstract>
<qualityIndicators>
<score>7.928</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>435 x 643 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1747</abstractCharCount>
<pdfWordCount>5924</pdfWordCount>
<pdfCharCount>36970</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>244</abstractWordCount>
</qualityIndicators>
<title>Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
<pii>
<json:string>S0044-8486(99)00086-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>177</volume>
<pii>
<json:string>S0044-8486(00)X0092-0</json:string>
</pii>
<pages>
<last>230</last>
<first>217</first>
</pages>
<issn>
<json:string>0044-8486</json:string>
</issn>
<issue>1–4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Aquaculture</title>
<publicationDate>1999</publicationDate>
</host>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0044-8486(99)00086-1</json:string>
</doi>
<id>04887F820369492FA4DE354D8C95653975C895EF</id>
<score>0.019430002</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/04887F820369492FA4DE354D8C95653975C895EF/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/04887F820369492FA4DE354D8C95653975C895EF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/04887F820369492FA4DE354D8C95653975C895EF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Annual world fishery landings, 1950–1995, for inland and marine sectors.</note>
<note type="content">Fig. 2: Annual world fishery landings for seafood, 1950–1995 (total world landings minus landings of industrial fish used to make fish meal and oil) showing the growing importance of aquaculture production in relation to total production.</note>
<note type="content">Fig. 3: Predicted world seafood demand, 1995–2025, showing production required from aquaculture assuming inland and marine capture fisheries remain at 1995 levels of production.</note>
<note type="content">Table 1: Comparison of advances in poultry feeds and selective breeding of poultry</note>
<note type="content">Table 2: Comparison of growth, feed intake, and FCRs of rainbow trout strains fed to apparent satiation or to a percentage of tank biomass from swim-up to 28 weeks</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ronald W</forename>
<surname>Hardy</surname>
</persName>
<note type="biography">Tel.: +1-208-837-9096; Fax: +1-208-837-6047; E-mail: rhardy@micron.net</note>
<affiliation>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Aquaculture</title>
<title level="j" type="abbrev">AQUA</title>
<idno type="pISSN">0044-8486</idno>
<idno type="PII">S0044-8486(00)X0092-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">177</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="217">217</biblScope>
<biblScope unit="page" to="230">230</biblScope>
</imprint>
</monogr>
<idno type="istex">04887F820369492FA4DE354D8C95653975C895EF</idno>
<idno type="DOI">10.1016/S0044-8486(99)00086-1</idno>
<idno type="PII">S0044-8486(99)00086-1</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Fish nutrition</term>
</item>
<item>
<term>Demand</term>
</item>
<item>
<term>Increased aquaculture production</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/04887F820369492FA4DE354D8C95653975C895EF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>AQUA</jid>
<aid>60892</aid>
<ce:pii>S0044-8486(99)00086-1</ce:pii>
<ce:doi>10.1016/S0044-8486(99)00086-1</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Ronald W</ce:given-name>
<ce:surname>Hardy</ce:surname>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Tel.: +1-208-837-9096; Fax: +1-208-837-6047; E-mail: rhardy@micron.net</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="1" month="10" year="1998"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Fish nutrition</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Demand</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Increased aquaculture production</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ronald W</namePart>
<namePart type="family">Hardy</namePart>
<affiliation>Hagerman Fish Culture Experiment Station, University of Idaho, 3059F National Fish Hatchery Road, Hagerman, ID 83332 USA</affiliation>
<description>Tel.: +1-208-837-9096; Fax: +1-208-837-6047; E-mail: rhardy@micron.net</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Demand for seafood currently exceeds wild harvest but increased production from aquaculture has so far supplied the difference between demand and supply. Seafood harvest from the oceans is unlikely to increase further, thus increasing demand for seafood must be supplied by increased aquaculture production. For aquaculture production to increase, many technological problems must be overcome including insufficient fish meal supplies, broodstock and seed stock production, and water resources. Slow growth rates of some fish species and losses due to disease are also major problems that currently limit expanded aquaculture production. Improvements in feed formulation, feed ingredient modification and agronomy, reproductive physiology, genetics and breeding, and health management made over the past 40 years in agriculture provide a guide for scientists working on the problems limiting higher aquaculture production. Based upon the experience of animal breeders, improving fish growth rates through selective breeding has tremendous potential. Another factor limiting expanded aquaculture production is its effect on the aquatic environment. Thus, reducing the environmental effects of aquaculture through improvements in nutrient utilization by fish and capture of waste products is critical for aquaculture production to increase. Fish nutritionists must improve fish feeds during a period of increasing world demand for the fish meal, traditionally the main protein source for fish feeds. Developing alternate protein sources for fish feeds which support rapid fish growth but do not increase pollution from aquaculture will require the combined efforts of all of the major scientific disciplines that collectively constitute aquaculture.</abstract>
<note type="content">Fig. 1: Annual world fishery landings, 1950–1995, for inland and marine sectors.</note>
<note type="content">Fig. 2: Annual world fishery landings for seafood, 1950–1995 (total world landings minus landings of industrial fish used to make fish meal and oil) showing the growing importance of aquaculture production in relation to total production.</note>
<note type="content">Fig. 3: Predicted world seafood demand, 1995–2025, showing production required from aquaculture assuming inland and marine capture fisheries remain at 1995 levels of production.</note>
<note type="content">Table 1: Comparison of advances in poultry feeds and selective breeding of poultry</note>
<note type="content">Table 2: Comparison of growth, feed intake, and FCRs of rainbow trout strains fed to apparent satiation or to a percentage of tank biomass from swim-up to 28 weeks</note>
<subject>
<genre>Keywords</genre>
<topic>Fish nutrition</topic>
<topic>Demand</topic>
<topic>Increased aquaculture production</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Aquaculture</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AQUA</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19990701</dateIssued>
</originInfo>
<identifier type="ISSN">0044-8486</identifier>
<identifier type="PII">S0044-8486(00)X0092-0</identifier>
<part>
<date>19990701</date>
<detail type="volume">
<number>177</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>380</end>
</extent>
<extent unit="pages">
<start>217</start>
<end>230</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">04887F820369492FA4DE354D8C95653975C895EF</identifier>
<identifier type="DOI">10.1016/S0044-8486(99)00086-1</identifier>
<identifier type="PII">S0044-8486(99)00086-1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:04887F820369492FA4DE354D8C95653975C895EF
   |texte=   Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024