Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.

Identifieur interne : 000476 ( Main/Exploration ); précédent : 000475; suivant : 000477

Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.

Auteurs : Cheng Yang [États-Unis] ; J W Pflugrath ; D A Courville ; C N Stence ; Joseph D. Ferrara

Source :

RBID : pubmed:14573949

Descripteurs français

English descriptors

Abstract

Anomalous scattering with soft X-ray radiation opens new possibilities in phasing for macromolecular crystallography. Anomalous scattering from S atoms collected on an in-house chromium radiation source (lambda = 2.29 A) was used to phase the X-ray diffraction data of thaumatin (22 kDa) and trypsin (24 kDa) crystals. The contribution to the anomalous term, Deltaf" = 1.14 e(-), from sulfur for Cr Kalpha radiation is doubled compared with that for Cu Kalpha radiation, Deltaf" = 0.56 e(-). The direct-methods programs RANTAN or SHELXD successfully found sulfur positions using data sets with resolution limited to 3.5 A. The statistical phasing program SHARP was used to produce the electron-density maps using the sulfur anomalous signal alone at low resolution ( approximately 3.5 A). An interpretable electron-density map for each structure was obtained solely from the phases derived from single-wavelength anomalous dispersion (SAD) data obtained using Cr Kalpha radiation. Much fewer data (that is, lower redundancy) are required for this sulfur SAD phasing procedure compared with the highly redundant data reported in the sulfur SAD phasing procedure with Cu Kalpha radiation. Cr Kalpha radiation can also improve the strength of anomalous scattering of many other intrinsic elements in macromolecules, such as calcium, zinc and phosphorus, because of the increased Deltaf". Furthermore, the anomalous scattering of selenium is increased substantially from 1.14 e(-) with Cu Kalpha radiation to 2.28 e(-) with Cr Kalpha radiation. In order to measure the small Bijvoet differences accurately, several devices were developed for the experiment, including an Osmic Confocal MaxFlux optic optimized for Cr Kalpha radiation, a helium path and a beam stop. In the cases studied here, radiation damage to the samples and reduction of anomalous signal were observed in some long exposure time data sets. Therefore, an adequate data-collection strategy to maximize the completeness in a short scan range was used in subsequent data collections. The results show that the anomalous signal of S atoms can be collected quickly. Since the absorption of solvent and the loop may no longer be negligible with Cr Kalpha radiation, the orientation of the crystal and exposure time were taken into account in order to minimize the effects of radiation damage and absorption. This experimental study shows that using Cr Kalpha radiation from an in-house rotating-anode X-ray generator can provide sufficient phasing power from sulfur anomalous signals to routinely phase protein diffraction data.

DOI: 10.1107/s0907444903018547
PubMed: 14573949


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.</title>
<author>
<name sortKey="Yang, Cheng" sort="Yang, Cheng" uniqKey="Yang C" first="Cheng" last="Yang">Cheng Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rigaku/MSC Inc, 9009 New Trails Drive, The Woodlands, TX 7738, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rigaku/MSC Inc, 9009 New Trails Drive, The Woodlands, TX 7738</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pflugrath, J W" sort="Pflugrath, J W" uniqKey="Pflugrath J" first="J W" last="Pflugrath">J W Pflugrath</name>
</author>
<author>
<name sortKey="Courville, D A" sort="Courville, D A" uniqKey="Courville D" first="D A" last="Courville">D A Courville</name>
</author>
<author>
<name sortKey="Stence, C N" sort="Stence, C N" uniqKey="Stence C" first="C N" last="Stence">C N Stence</name>
</author>
<author>
<name sortKey="Ferrara, Joseph D" sort="Ferrara, Joseph D" uniqKey="Ferrara J" first="Joseph D" last="Ferrara">Joseph D. Ferrara</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14573949</idno>
<idno type="pmid">14573949</idno>
<idno type="doi">10.1107/s0907444903018547</idno>
<idno type="wicri:Area/Main/Corpus">000463</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000463</idno>
<idno type="wicri:Area/Main/Curation">000463</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000463</idno>
<idno type="wicri:Area/Main/Exploration">000463</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.</title>
<author>
<name sortKey="Yang, Cheng" sort="Yang, Cheng" uniqKey="Yang C" first="Cheng" last="Yang">Cheng Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rigaku/MSC Inc, 9009 New Trails Drive, The Woodlands, TX 7738, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rigaku/MSC Inc, 9009 New Trails Drive, The Woodlands, TX 7738</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pflugrath, J W" sort="Pflugrath, J W" uniqKey="Pflugrath J" first="J W" last="Pflugrath">J W Pflugrath</name>
</author>
<author>
<name sortKey="Courville, D A" sort="Courville, D A" uniqKey="Courville D" first="D A" last="Courville">D A Courville</name>
</author>
<author>
<name sortKey="Stence, C N" sort="Stence, C N" uniqKey="Stence C" first="C N" last="Stence">C N Stence</name>
</author>
<author>
<name sortKey="Ferrara, Joseph D" sort="Ferrara, Joseph D" uniqKey="Ferrara J" first="Joseph D" last="Ferrara">Joseph D. Ferrara</name>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Biological crystallography</title>
<idno type="ISSN">0907-4449</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromium (chemistry)</term>
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (methods)</term>
<term>Models, Molecular (MeSH)</term>
<term>Protein Conformation (radiation effects)</term>
<term>Radiation (MeSH)</term>
<term>Sulfur (chemistry)</term>
<term>Trypsin (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chrome (composition chimique)</term>
<term>Conformation des protéines (effets des radiations)</term>
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (méthodes)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Rayonnement (MeSH)</term>
<term>Soufre (composition chimique)</term>
<term>Trypsine (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chromium</term>
<term>Sulfur</term>
<term>Trypsin</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chrome</term>
<term>Soufre</term>
<term>Trypsine</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Conformation des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Models, Molecular</term>
<term>Radiation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Modèles moléculaires</term>
<term>Rayonnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Anomalous scattering with soft X-ray radiation opens new possibilities in phasing for macromolecular crystallography. Anomalous scattering from S atoms collected on an in-house chromium radiation source (lambda = 2.29 A) was used to phase the X-ray diffraction data of thaumatin (22 kDa) and trypsin (24 kDa) crystals. The contribution to the anomalous term, Deltaf" = 1.14 e(-), from sulfur for Cr Kalpha radiation is doubled compared with that for Cu Kalpha radiation, Deltaf" = 0.56 e(-). The direct-methods programs RANTAN or SHELXD successfully found sulfur positions using data sets with resolution limited to 3.5 A. The statistical phasing program SHARP was used to produce the electron-density maps using the sulfur anomalous signal alone at low resolution ( approximately 3.5 A). An interpretable electron-density map for each structure was obtained solely from the phases derived from single-wavelength anomalous dispersion (SAD) data obtained using Cr Kalpha radiation. Much fewer data (that is, lower redundancy) are required for this sulfur SAD phasing procedure compared with the highly redundant data reported in the sulfur SAD phasing procedure with Cu Kalpha radiation. Cr Kalpha radiation can also improve the strength of anomalous scattering of many other intrinsic elements in macromolecules, such as calcium, zinc and phosphorus, because of the increased Deltaf". Furthermore, the anomalous scattering of selenium is increased substantially from 1.14 e(-) with Cu Kalpha radiation to 2.28 e(-) with Cr Kalpha radiation. In order to measure the small Bijvoet differences accurately, several devices were developed for the experiment, including an Osmic Confocal MaxFlux optic optimized for Cr Kalpha radiation, a helium path and a beam stop. In the cases studied here, radiation damage to the samples and reduction of anomalous signal were observed in some long exposure time data sets. Therefore, an adequate data-collection strategy to maximize the completeness in a short scan range was used in subsequent data collections. The results show that the anomalous signal of S atoms can be collected quickly. Since the absorption of solvent and the loop may no longer be negligible with Cr Kalpha radiation, the orientation of the crystal and exposure time were taken into account in order to minimize the effects of radiation damage and absorption. This experimental study shows that using Cr Kalpha radiation from an in-house rotating-anode X-ray generator can provide sufficient phasing power from sulfur anomalous signals to routinely phase protein diffraction data.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14573949</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0907-4449</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>59</Volume>
<Issue>Pt 11</Issue>
<PubDate>
<Year>2003</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Biological crystallography</Title>
<ISOAbbreviation>Acta Crystallogr D Biol Crystallogr</ISOAbbreviation>
</Journal>
<ArticleTitle>Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.</ArticleTitle>
<Pagination>
<MedlinePgn>1943-57</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Anomalous scattering with soft X-ray radiation opens new possibilities in phasing for macromolecular crystallography. Anomalous scattering from S atoms collected on an in-house chromium radiation source (lambda = 2.29 A) was used to phase the X-ray diffraction data of thaumatin (22 kDa) and trypsin (24 kDa) crystals. The contribution to the anomalous term, Deltaf" = 1.14 e(-), from sulfur for Cr Kalpha radiation is doubled compared with that for Cu Kalpha radiation, Deltaf" = 0.56 e(-). The direct-methods programs RANTAN or SHELXD successfully found sulfur positions using data sets with resolution limited to 3.5 A. The statistical phasing program SHARP was used to produce the electron-density maps using the sulfur anomalous signal alone at low resolution ( approximately 3.5 A). An interpretable electron-density map for each structure was obtained solely from the phases derived from single-wavelength anomalous dispersion (SAD) data obtained using Cr Kalpha radiation. Much fewer data (that is, lower redundancy) are required for this sulfur SAD phasing procedure compared with the highly redundant data reported in the sulfur SAD phasing procedure with Cu Kalpha radiation. Cr Kalpha radiation can also improve the strength of anomalous scattering of many other intrinsic elements in macromolecules, such as calcium, zinc and phosphorus, because of the increased Deltaf". Furthermore, the anomalous scattering of selenium is increased substantially from 1.14 e(-) with Cu Kalpha radiation to 2.28 e(-) with Cr Kalpha radiation. In order to measure the small Bijvoet differences accurately, several devices were developed for the experiment, including an Osmic Confocal MaxFlux optic optimized for Cr Kalpha radiation, a helium path and a beam stop. In the cases studied here, radiation damage to the samples and reduction of anomalous signal were observed in some long exposure time data sets. Therefore, an adequate data-collection strategy to maximize the completeness in a short scan range was used in subsequent data collections. The results show that the anomalous signal of S atoms can be collected quickly. Since the absorption of solvent and the loop may no longer be negligible with Cr Kalpha radiation, the orientation of the crystal and exposure time were taken into account in order to minimize the effects of radiation damage and absorption. This experimental study shows that using Cr Kalpha radiation from an in-house rotating-anode X-ray generator can provide sufficient phasing power from sulfur anomalous signals to routinely phase protein diffraction data.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Rigaku/MSC Inc, 9009 New Trails Drive, The Woodlands, TX 7738, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pflugrath</LastName>
<ForeName>J W</ForeName>
<Initials>JW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Courville</LastName>
<ForeName>D A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stence</LastName>
<ForeName>C N</ForeName>
<Initials>CN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ferrara</LastName>
<ForeName>Joseph D</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2003</Year>
<Month>10</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Biol Crystallogr</MedlineTA>
<NlmUniqueID>9305878</NlmUniqueID>
<ISSNLinking>0907-4449</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0R0008Q3JB</RegistryNumber>
<NameOfSubstance UI="D002857">Chromium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002857" MajorTopicYN="N">Chromium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011827" MajorTopicYN="N">Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2003</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14573949</ArticleId>
<ArticleId IdType="pii">S0907444903018547</ArticleId>
<ArticleId IdType="doi">10.1107/s0907444903018547</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Courville, D A" sort="Courville, D A" uniqKey="Courville D" first="D A" last="Courville">D A Courville</name>
<name sortKey="Ferrara, Joseph D" sort="Ferrara, Joseph D" uniqKey="Ferrara J" first="Joseph D" last="Ferrara">Joseph D. Ferrara</name>
<name sortKey="Pflugrath, J W" sort="Pflugrath, J W" uniqKey="Pflugrath J" first="J W" last="Pflugrath">J W Pflugrath</name>
<name sortKey="Stence, C N" sort="Stence, C N" uniqKey="Stence C" first="C N" last="Stence">C N Stence</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Yang, Cheng" sort="Yang, Cheng" uniqKey="Yang C" first="Cheng" last="Yang">Cheng Yang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000476 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000476 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14573949
   |texte=   Away from the edge: SAD phasing from the sulfur anomalous signal measured in-house with chromium radiation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14573949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020