Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.

Identifieur interne : 000230 ( Main/Exploration ); précédent : 000229; suivant : 000231

Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.

Auteurs : Elena Corredoira [Espagne] ; Silvia Valladares ; Isabel Allona ; Cipriano Aragoncillo ; Ana M. Vieitez ; Antonio Ballester

Source :

RBID : pubmed:23086811

Descripteurs français

English descriptors

Abstract

The availability of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa Mill.) would offer an alternative approach to conventional breeding for production of chestnut trees tolerant to ink disease caused by Phytophthora spp. For the first time, a chestnut thaumatin-like protein gene (CsTL1), isolated from chestnut cotyledons, has been overexpressed in three chestnut somatic embryogenic lines. Transformation experiments have been performed using an Agrobacterium tumefaciens Smith and Townsend vector harboring the neomycin phosphotransferase (NPTII) selectable and the green fluorescent protein (EGFP) reporter genes. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was clearly genotype dependent and ranged from 32.5% in the CI-9 line to 7.1% in the CI-3 line. A total of 126 independent transformed lines were obtained. The presence and integration of chestnut CsTL1 in genomic DNA was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Quantitative real-time PCR revealed that CsTL1 expression was up to 13.5-fold higher in a transgenic line compared with its corresponding untransformed line. In only one of the 11 transformed lines tested, expression of the CsTL1 was lower than the control. The remaining 115 transformed lines were successfully subjected to cryopreservation. Embryo proliferation was achieved in all of the transgenic lines regenerated and the transformed lines showed a higher mean number of cotyledonary stage embryos and total number of embryos per embryo clump than their corresponding untransformed lines. Transgenic plants were regenerated after maturation and germination of transformed somatic embryos. Furthermore, due to the low plantlet conversion achieved, axillary shoot proliferation cultures were established from partially germinated embryos (only shoot development), which were multiplied and rooted according to procedures already established. Transgenic plants were acclimatized and grown in a greenhouse. No phenotypic differences were found with control plants, suggesting no potential cytotoxic effects of the green fluorescent protein. The results reported in the present work could be considered as a first step toward the production of fungal-disease tolerant cisgenic chestnut plants.

DOI: 10.1093/treephys/tps098
PubMed: 23086811


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.</title>
<author>
<name sortKey="Corredoira, Elena" sort="Corredoira, Elena" uniqKey="Corredoira E" first="Elena" last="Corredoira">Elena Corredoira</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Investigaciones Agrobiológicas de Galicia, IIAG, CSIC, Avenida de Vigo s/n, 15705 Santiago de Compostela, Spain. elenac@iiag.csic.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Investigaciones Agrobiológicas de Galicia, IIAG, CSIC, Avenida de Vigo s/n, 15705 Santiago de Compostela</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Galice</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Silvia" sort="Valladares, Silvia" uniqKey="Valladares S" first="Silvia" last="Valladares">Silvia Valladares</name>
</author>
<author>
<name sortKey="Allona, Isabel" sort="Allona, Isabel" uniqKey="Allona I" first="Isabel" last="Allona">Isabel Allona</name>
</author>
<author>
<name sortKey="Aragoncillo, Cipriano" sort="Aragoncillo, Cipriano" uniqKey="Aragoncillo C" first="Cipriano" last="Aragoncillo">Cipriano Aragoncillo</name>
</author>
<author>
<name sortKey="Vieitez, Ana M" sort="Vieitez, Ana M" uniqKey="Vieitez A" first="Ana M" last="Vieitez">Ana M. Vieitez</name>
</author>
<author>
<name sortKey="Ballester, Antonio" sort="Ballester, Antonio" uniqKey="Ballester A" first="Antonio" last="Ballester">Antonio Ballester</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23086811</idno>
<idno type="pmid">23086811</idno>
<idno type="doi">10.1093/treephys/tps098</idno>
<idno type="wicri:Area/Main/Corpus">000206</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000206</idno>
<idno type="wicri:Area/Main/Curation">000206</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000206</idno>
<idno type="wicri:Area/Main/Exploration">000206</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.</title>
<author>
<name sortKey="Corredoira, Elena" sort="Corredoira, Elena" uniqKey="Corredoira E" first="Elena" last="Corredoira">Elena Corredoira</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Investigaciones Agrobiológicas de Galicia, IIAG, CSIC, Avenida de Vigo s/n, 15705 Santiago de Compostela, Spain. elenac@iiag.csic.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Instituto de Investigaciones Agrobiológicas de Galicia, IIAG, CSIC, Avenida de Vigo s/n, 15705 Santiago de Compostela</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Galice</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Silvia" sort="Valladares, Silvia" uniqKey="Valladares S" first="Silvia" last="Valladares">Silvia Valladares</name>
</author>
<author>
<name sortKey="Allona, Isabel" sort="Allona, Isabel" uniqKey="Allona I" first="Isabel" last="Allona">Isabel Allona</name>
</author>
<author>
<name sortKey="Aragoncillo, Cipriano" sort="Aragoncillo, Cipriano" uniqKey="Aragoncillo C" first="Cipriano" last="Aragoncillo">Cipriano Aragoncillo</name>
</author>
<author>
<name sortKey="Vieitez, Ana M" sort="Vieitez, Ana M" uniqKey="Vieitez A" first="Ana M" last="Vieitez">Ana M. Vieitez</name>
</author>
<author>
<name sortKey="Ballester, Antonio" sort="Ballester, Antonio" uniqKey="Ballester A" first="Antonio" last="Ballester">Antonio Ballester</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Breeding (MeSH)</term>
<term>Cotyledon (anatomy & histology)</term>
<term>Cotyledon (genetics)</term>
<term>Cotyledon (growth & development)</term>
<term>Cryopreservation (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Fagaceae (anatomy & histology)</term>
<term>Fagaceae (genetics)</term>
<term>Fagaceae (growth & development)</term>
<term>Gene Expression (MeSH)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Germination (MeSH)</term>
<term>Green Fluorescent Proteins (MeSH)</term>
<term>Kanamycin Kinase (genetics)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (anatomy & histology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Shoots (anatomy & histology)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Somatic Embryogenesis Techniques (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Seeds (anatomy & histology)</term>
<term>Seeds (genetics)</term>
<term>Seeds (growth & development)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrobacterium tumefaciens (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Cotylédon (anatomie et histologie)</term>
<term>Cotylédon (croissance et développement)</term>
<term>Cotylédon (génétique)</term>
<term>Cryoconservation (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Fagaceae (anatomie et histologie)</term>
<term>Fagaceae (croissance et développement)</term>
<term>Fagaceae (génétique)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (génétique)</term>
<term>Germination (MeSH)</term>
<term>Graines (anatomie et histologie)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Kanamycin kinase (génétique)</term>
<term>Pousses de plante (anatomie et histologie)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines à fluorescence verte (MeSH)</term>
<term>Racines de plante (anatomie et histologie)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Sélection (MeSH)</term>
<term>Techniques d'embryogenèse somatique végétale (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Kanamycin Kinase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Cotylédon</term>
<term>Fagaceae</term>
<term>Feuilles de plante</term>
<term>Graines</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Cotyledon</term>
<term>Fagaceae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Cotylédon</term>
<term>Fagaceae</term>
<term>Feuilles de plante</term>
<term>Graines</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cotyledon</term>
<term>Fagaceae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cotyledon</term>
<term>Fagaceae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cotylédon</term>
<term>Fagaceae</term>
<term>Feuilles de plante</term>
<term>Graines</term>
<term>Kanamycin kinase</term>
<term>Pousses de plante</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Breeding</term>
<term>Cryopreservation</term>
<term>Gene Expression</term>
<term>Genetic Vectors</term>
<term>Genotype</term>
<term>Germination</term>
<term>Green Fluorescent Proteins</term>
<term>Plant Somatic Embryogenesis Techniques</term>
<term>Plants, Genetically Modified</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Transformation, Genetic</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Arbres</term>
<term>Cryoconservation</term>
<term>Expression des gènes</term>
<term>Germination</term>
<term>Génotype</term>
<term>Protéines à fluorescence verte</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Sélection</term>
<term>Techniques d'embryogenèse somatique végétale</term>
<term>Transformation génétique</term>
<term>Vecteurs génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The availability of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa Mill.) would offer an alternative approach to conventional breeding for production of chestnut trees tolerant to ink disease caused by Phytophthora spp. For the first time, a chestnut thaumatin-like protein gene (CsTL1), isolated from chestnut cotyledons, has been overexpressed in three chestnut somatic embryogenic lines. Transformation experiments have been performed using an Agrobacterium tumefaciens Smith and Townsend vector harboring the neomycin phosphotransferase (NPTII) selectable and the green fluorescent protein (EGFP) reporter genes. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was clearly genotype dependent and ranged from 32.5% in the CI-9 line to 7.1% in the CI-3 line. A total of 126 independent transformed lines were obtained. The presence and integration of chestnut CsTL1 in genomic DNA was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Quantitative real-time PCR revealed that CsTL1 expression was up to 13.5-fold higher in a transgenic line compared with its corresponding untransformed line. In only one of the 11 transformed lines tested, expression of the CsTL1 was lower than the control. The remaining 115 transformed lines were successfully subjected to cryopreservation. Embryo proliferation was achieved in all of the transgenic lines regenerated and the transformed lines showed a higher mean number of cotyledonary stage embryos and total number of embryos per embryo clump than their corresponding untransformed lines. Transgenic plants were regenerated after maturation and germination of transformed somatic embryos. Furthermore, due to the low plantlet conversion achieved, axillary shoot proliferation cultures were established from partially germinated embryos (only shoot development), which were multiplied and rooted according to procedures already established. Transgenic plants were acclimatized and grown in a greenhouse. No phenotypic differences were found with control plants, suggesting no potential cytotoxic effects of the green fluorescent protein. The results reported in the present work could be considered as a first step toward the production of fungal-disease tolerant cisgenic chestnut plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23086811</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.</ArticleTitle>
<Pagination>
<MedlinePgn>1389-402</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tps098</ELocationID>
<Abstract>
<AbstractText>The availability of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa Mill.) would offer an alternative approach to conventional breeding for production of chestnut trees tolerant to ink disease caused by Phytophthora spp. For the first time, a chestnut thaumatin-like protein gene (CsTL1), isolated from chestnut cotyledons, has been overexpressed in three chestnut somatic embryogenic lines. Transformation experiments have been performed using an Agrobacterium tumefaciens Smith and Townsend vector harboring the neomycin phosphotransferase (NPTII) selectable and the green fluorescent protein (EGFP) reporter genes. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was clearly genotype dependent and ranged from 32.5% in the CI-9 line to 7.1% in the CI-3 line. A total of 126 independent transformed lines were obtained. The presence and integration of chestnut CsTL1 in genomic DNA was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Quantitative real-time PCR revealed that CsTL1 expression was up to 13.5-fold higher in a transgenic line compared with its corresponding untransformed line. In only one of the 11 transformed lines tested, expression of the CsTL1 was lower than the control. The remaining 115 transformed lines were successfully subjected to cryopreservation. Embryo proliferation was achieved in all of the transgenic lines regenerated and the transformed lines showed a higher mean number of cotyledonary stage embryos and total number of embryos per embryo clump than their corresponding untransformed lines. Transgenic plants were regenerated after maturation and germination of transformed somatic embryos. Furthermore, due to the low plantlet conversion achieved, axillary shoot proliferation cultures were established from partially germinated embryos (only shoot development), which were multiplied and rooted according to procedures already established. Transgenic plants were acclimatized and grown in a greenhouse. No phenotypic differences were found with control plants, suggesting no potential cytotoxic effects of the green fluorescent protein. The results reported in the present work could be considered as a first step toward the production of fungal-disease tolerant cisgenic chestnut plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Corredoira</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Investigaciones Agrobiológicas de Galicia, IIAG, CSIC, Avenida de Vigo s/n, 15705 Santiago de Compostela, Spain. elenac@iiag.csic.es</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valladares</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Allona</LastName>
<ForeName>Isabel</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aragoncillo</LastName>
<ForeName>Cipriano</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vieitez</LastName>
<ForeName>Ana M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ballester</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485184">enhanced green fluorescent protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.95</RegistryNumber>
<NameOfSubstance UI="D019868">Kanamycin Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001947" MajorTopicYN="N">Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018548" MajorTopicYN="N">Cotyledon</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015925" MajorTopicYN="N">Cryopreservation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029962" MajorTopicYN="N">Fagaceae</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018525" MajorTopicYN="N">Germination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019868" MajorTopicYN="N">Kanamycin Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058439" MajorTopicYN="N">Plant Somatic Embryogenesis Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23086811</ArticleId>
<ArticleId IdType="pii">tps098</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tps098</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Galice</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Allona, Isabel" sort="Allona, Isabel" uniqKey="Allona I" first="Isabel" last="Allona">Isabel Allona</name>
<name sortKey="Aragoncillo, Cipriano" sort="Aragoncillo, Cipriano" uniqKey="Aragoncillo C" first="Cipriano" last="Aragoncillo">Cipriano Aragoncillo</name>
<name sortKey="Ballester, Antonio" sort="Ballester, Antonio" uniqKey="Ballester A" first="Antonio" last="Ballester">Antonio Ballester</name>
<name sortKey="Valladares, Silvia" sort="Valladares, Silvia" uniqKey="Valladares S" first="Silvia" last="Valladares">Silvia Valladares</name>
<name sortKey="Vieitez, Ana M" sort="Vieitez, Ana M" uniqKey="Vieitez A" first="Ana M" last="Vieitez">Ana M. Vieitez</name>
</noCountry>
<country name="Espagne">
<region name="Galice">
<name sortKey="Corredoira, Elena" sort="Corredoira, Elena" uniqKey="Corredoira E" first="Elena" last="Corredoira">Elena Corredoira</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23086811
   |texte=   Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23086811" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020