Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.

Identifieur interne : 000376 ( Main/Corpus ); précédent : 000375; suivant : 000377

A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.

Auteurs : T C Marcel ; R K Varshney ; M. Barbieri ; H. Jafary ; M J D. De Kock ; A. Graner ; R E Niks

Source :

RBID : pubmed:17115126

English descriptors

Abstract

A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin.

DOI: 10.1007/s00122-006-0448-2
PubMed: 17115126

Links to Exploration step

pubmed:17115126

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.</title>
<author>
<name sortKey="Marcel, T C" sort="Marcel, T C" uniqKey="Marcel T" first="T C" last="Marcel">T C Marcel</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Breeding, Graduate school for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Varshney, R K" sort="Varshney, R K" uniqKey="Varshney R" first="R K" last="Varshney">R K Varshney</name>
</author>
<author>
<name sortKey="Barbieri, M" sort="Barbieri, M" uniqKey="Barbieri M" first="M" last="Barbieri">M. Barbieri</name>
</author>
<author>
<name sortKey="Jafary, H" sort="Jafary, H" uniqKey="Jafary H" first="H" last="Jafary">H. Jafary</name>
</author>
<author>
<name sortKey="De Kock, M J D" sort="De Kock, M J D" uniqKey="De Kock M" first="M J D" last="De Kock">M J D. De Kock</name>
</author>
<author>
<name sortKey="Graner, A" sort="Graner, A" uniqKey="Graner A" first="A" last="Graner">A. Graner</name>
</author>
<author>
<name sortKey="Niks, R E" sort="Niks, R E" uniqKey="Niks R" first="R E" last="Niks">R E Niks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17115126</idno>
<idno type="pmid">17115126</idno>
<idno type="doi">10.1007/s00122-006-0448-2</idno>
<idno type="wicri:Area/Main/Corpus">000376</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000376</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.</title>
<author>
<name sortKey="Marcel, T C" sort="Marcel, T C" uniqKey="Marcel T" first="T C" last="Marcel">T C Marcel</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant Breeding, Graduate school for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Varshney, R K" sort="Varshney, R K" uniqKey="Varshney R" first="R K" last="Varshney">R K Varshney</name>
</author>
<author>
<name sortKey="Barbieri, M" sort="Barbieri, M" uniqKey="Barbieri M" first="M" last="Barbieri">M. Barbieri</name>
</author>
<author>
<name sortKey="Jafary, H" sort="Jafary, H" uniqKey="Jafary H" first="H" last="Jafary">H. Jafary</name>
</author>
<author>
<name sortKey="De Kock, M J D" sort="De Kock, M J D" uniqKey="De Kock M" first="M J D" last="De Kock">M J D. De Kock</name>
</author>
<author>
<name sortKey="Graner, A" sort="Graner, A" uniqKey="Graner A" first="A" last="Graner">A. Graner</name>
</author>
<author>
<name sortKey="Niks, R E" sort="Niks, R E" uniqKey="Niks R" first="R E" last="Niks">R E Niks</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Chi-Square Distribution (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosome Segregation (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Hordeum (genetics)</term>
<term>Immunity, Innate (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (microbiology)</term>
<term>Selection, Genetic (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Hordeum</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Quantitative Trait Loci</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chi-Square Distribution</term>
<term>Chromosome Mapping</term>
<term>Chromosome Segregation</term>
<term>Genes, Plant</term>
<term>Genetic Linkage</term>
<term>Selection, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17115126</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>114</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.</ArticleTitle>
<Pagination>
<MedlinePgn>487-500</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marcel</LastName>
<ForeName>T C</ForeName>
<Initials>TC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Breeding, Graduate school for Experimental Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Varshney</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barbieri</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jafary</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Kock</LastName>
<ForeName>M J D</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Graner</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niks</LastName>
<ForeName>R E</ForeName>
<Initials>RE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016009" MajorTopicYN="N">Chi-Square Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="Y">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001467" MajorTopicYN="N">Hordeum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>10</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17115126</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-006-0448-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Pathol. 2001 Nov 1;2(6):311-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jul;17(7):729-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Nov 11;23(21):4407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7501463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jan;16(1):14-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12580278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1991 Dec;83(2):250-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Dec;156(4):1997-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Jul;113(2):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16791690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jul;16(7):626-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12848428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1998 Mar;96(3-4):376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Dec;274(5):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16244872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Apr;114(6):1091-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17345060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Nov;109(7):1434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1146-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Oct;18(10):1107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16255250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Jul;255(4):438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9267440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1996 Oct;21(4):700-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8891224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Apr;7(2):132-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Nov;83 (Pt 5):613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Dec;110(1):12-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15526086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Jul;19(1):34-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7669292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 2001 Dec;78(3):213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11865710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Mar;112(5):808-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16429310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Apr 16;254(3):330-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 Jul;86(6):705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Dec;165(4):2107-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 May;14(3):387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9628033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Feb 20;253(5):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Oct 25;16(20):9677-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2460825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1993 May;14(5):748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8512694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Sep;84(7-8):803-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Feb;16(2):169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Jun;15(6):587-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12059107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 Feb;85(6-7):897-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2001 Apr;265(2):302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11361341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1996 Apr;39(2):379-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):139-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Apr;216(6):891-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12687357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):516-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1477405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Nov;19(11):1270-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17073309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Jan;23(1):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 Jul-Aug;96(4):465-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000376 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000376 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17115126
   |texte=   A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:17115126" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020