Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upside-down protein crystallization: designing microbatch experiments for microgravity.

Identifieur interne : 000375 ( Main/Corpus ); précédent : 000374; suivant : 000376

Upside-down protein crystallization: designing microbatch experiments for microgravity.

Auteurs : Sahir Khurshid ; Naomi E. Chayen

Source :

RBID : pubmed:17124125

English descriptors

Abstract

The benefits of protein crystal growth in microgravity are well documented. The crystallization vessels currently employed for microgravity crystallization are far from optimal with regards to cost, sample volume, size, and ease of use. The use of microbatch experiments is a favorable alternative in each respect: 96 experiments of 0.5-2 microL volumes can be performed in a single microtiter tray measuring 5 x 8 cm and costing 1 pound sterling each. To date, the use of microbatch has not been pursued on account of concerns of oil leakage. To address this issue, a novel approach to microbatch crystallization experiments is described, where the microbatch plates are inverted throughout the duration of the experiment. The findings intimate the application of the microbatch method to space flight and the potential to drastically increase the output of microgravity crystallization research .

DOI: 10.1196/annals.1362.047
PubMed: 17124125

Links to Exploration step

pubmed:17124125

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Upside-down protein crystallization: designing microbatch experiments for microgravity.</title>
<author>
<name sortKey="Khurshid, Sahir" sort="Khurshid, Sahir" uniqKey="Khurshid S" first="Sahir" last="Khurshid">Sahir Khurshid</name>
<affiliation>
<nlm:affiliation>Biological Structure and Function Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chayen, Naomi E" sort="Chayen, Naomi E" uniqKey="Chayen N" first="Naomi E" last="Chayen">Naomi E. Chayen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:17124125</idno>
<idno type="pmid">17124125</idno>
<idno type="doi">10.1196/annals.1362.047</idno>
<idno type="wicri:Area/Main/Corpus">000375</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Upside-down protein crystallization: designing microbatch experiments for microgravity.</title>
<author>
<name sortKey="Khurshid, Sahir" sort="Khurshid, Sahir" uniqKey="Khurshid S" first="Sahir" last="Khurshid">Sahir Khurshid</name>
<affiliation>
<nlm:affiliation>Biological Structure and Function Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chayen, Naomi E" sort="Chayen, Naomi E" uniqKey="Chayen N" first="Naomi E" last="Chayen">Naomi E. Chayen</name>
</author>
</analytic>
<series>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="ISSN">0077-8923</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carrier Proteins (MeSH)</term>
<term>Chickens (MeSH)</term>
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Microchemistry (instrumentation)</term>
<term>Microchemistry (methods)</term>
<term>Muramidase (chemistry)</term>
<term>Nephropidae (MeSH)</term>
<term>Oils (MeSH)</term>
<term>Paraffin (MeSH)</term>
<term>Plant Proteins (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Space Flight (MeSH)</term>
<term>Surface Tension (MeSH)</term>
<term>Weightlessness (MeSH)</term>
<term>Weightlessness Simulation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Muramidase</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carrier Proteins</term>
<term>Oils</term>
<term>Paraffin</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Microchemistry</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Microchemistry</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chickens</term>
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
<term>Nephropidae</term>
<term>Space Flight</term>
<term>Surface Tension</term>
<term>Weightlessness</term>
<term>Weightlessness Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The benefits of protein crystal growth in microgravity are well documented. The crystallization vessels currently employed for microgravity crystallization are far from optimal with regards to cost, sample volume, size, and ease of use. The use of microbatch experiments is a favorable alternative in each respect: 96 experiments of 0.5-2 microL volumes can be performed in a single microtiter tray measuring 5 x 8 cm and costing 1 pound sterling each. To date, the use of microbatch has not been pursued on account of concerns of oil leakage. To address this issue, a novel approach to microbatch crystallization experiments is described, where the microbatch plates are inverted throughout the duration of the experiment. The findings intimate the application of the microbatch method to space flight and the potential to drastically increase the output of microgravity crystallization research .</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17124125</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0077-8923</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1077</Volume>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Annals of the New York Academy of Sciences</Title>
<ISOAbbreviation>Ann N Y Acad Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Upside-down protein crystallization: designing microbatch experiments for microgravity.</ArticleTitle>
<Pagination>
<MedlinePgn>208-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The benefits of protein crystal growth in microgravity are well documented. The crystallization vessels currently employed for microgravity crystallization are far from optimal with regards to cost, sample volume, size, and ease of use. The use of microbatch experiments is a favorable alternative in each respect: 96 experiments of 0.5-2 microL volumes can be performed in a single microtiter tray measuring 5 x 8 cm and costing 1 pound sterling each. To date, the use of microbatch has not been pursued on account of concerns of oil leakage. To address this issue, a novel approach to microbatch crystallization experiments is described, where the microbatch plates are inverted throughout the duration of the experiment. The findings intimate the application of the microbatch method to space flight and the potential to drastically increase the output of microgravity crystallization research .</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Khurshid</LastName>
<ForeName>Sahir</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Biological Structure and Function Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chayen</LastName>
<ForeName>Naomi E</ForeName>
<Initials>NE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ann N Y Acad Sci</MedlineTA>
<NlmUniqueID>7506858</NlmUniqueID>
<ISSNLinking>0077-8923</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009821">Oils</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C018494">crustacyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8002-74-2</RegistryNumber>
<NameOfSubstance UI="D010232">Paraffin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8012-95-1</RegistryNumber>
<NameOfSubstance UI="C015418">paraffin oils</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.17</RegistryNumber>
<NameOfSubstance UI="D009113">Muramidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008832" MajorTopicYN="N">Microchemistry</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="N">instrumentation</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009113" MajorTopicYN="N">Muramidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008121" MajorTopicYN="N">Nephropidae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009821" MajorTopicYN="N">Oils</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010232" MajorTopicYN="N">Paraffin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013026" MajorTopicYN="N">Space Flight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013500" MajorTopicYN="N">Surface Tension</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014893" MajorTopicYN="Y">Weightlessness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018474" MajorTopicYN="N">Weightlessness Simulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17124125</ArticleId>
<ArticleId IdType="pii">1077/1/208</ArticleId>
<ArticleId IdType="doi">10.1196/annals.1362.047</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17124125
   |texte=   Upside-down protein crystallization: designing microbatch experiments for microgravity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:17124125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020