Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.

Identifieur interne : 000066 ( Main/Corpus ); précédent : 000065; suivant : 000067

X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.

Auteurs : Nicolas Foos ; Carolin Seuring ; Robin Schubert ; Anja Burkhardt ; Olof Svensson ; Alke Meents ; Henry N. Chapman ; Max H. Nanao

Source :

RBID : pubmed:29652263

English descriptors

Abstract

Specific radiation damage can be used to determine phases de novo from macromolecular crystals. This method is known as radiation-damage-induced phasing (RIP). One limitation of the method is that the dose of individual data sets must be minimized, which in turn leads to data sets with low multiplicity. A solution to this problem is to use data from multiple crystals. However, the resulting signal can be degraded by a lack of isomorphism between crystals. Here, it is shown that serial synchrotron crystallography in combination with selective merging of data sets can be used to determine high-quality phases for insulin and thaumatin, and that the increased multiplicity can greatly enhance the success rate of the experiment.

DOI: 10.1107/S2059798318001535
PubMed: 29652263
PubMed Central: PMC5892880

Links to Exploration step

pubmed:29652263

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.</title>
<author>
<name sortKey="Foos, Nicolas" sort="Foos, Nicolas" uniqKey="Foos N" first="Nicolas" last="Foos">Nicolas Foos</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seuring, Carolin" sort="Seuring, Carolin" uniqKey="Seuring C" first="Carolin" last="Seuring">Carolin Seuring</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schubert, Robin" sort="Schubert, Robin" uniqKey="Schubert R" first="Robin" last="Schubert">Robin Schubert</name>
<affiliation>
<nlm:affiliation>The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burkhardt, Anja" sort="Burkhardt, Anja" uniqKey="Burkhardt A" first="Anja" last="Burkhardt">Anja Burkhardt</name>
<affiliation>
<nlm:affiliation>Photon Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Svensson, Olof" sort="Svensson, Olof" uniqKey="Svensson O" first="Olof" last="Svensson">Olof Svensson</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meents, Alke" sort="Meents, Alke" uniqKey="Meents A" first="Alke" last="Meents">Alke Meents</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Henry N" sort="Chapman, Henry N" uniqKey="Chapman H" first="Henry N" last="Chapman">Henry N. Chapman</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nanao, Max H" sort="Nanao, Max H" uniqKey="Nanao M" first="Max H" last="Nanao">Max H. Nanao</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29652263</idno>
<idno type="pmid">29652263</idno>
<idno type="doi">10.1107/S2059798318001535</idno>
<idno type="pmc">PMC5892880</idno>
<idno type="wicri:Area/Main/Corpus">000066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.</title>
<author>
<name sortKey="Foos, Nicolas" sort="Foos, Nicolas" uniqKey="Foos N" first="Nicolas" last="Foos">Nicolas Foos</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Seuring, Carolin" sort="Seuring, Carolin" uniqKey="Seuring C" first="Carolin" last="Seuring">Carolin Seuring</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schubert, Robin" sort="Schubert, Robin" uniqKey="Schubert R" first="Robin" last="Schubert">Robin Schubert</name>
<affiliation>
<nlm:affiliation>The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burkhardt, Anja" sort="Burkhardt, Anja" uniqKey="Burkhardt A" first="Anja" last="Burkhardt">Anja Burkhardt</name>
<affiliation>
<nlm:affiliation>Photon Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Svensson, Olof" sort="Svensson, Olof" uniqKey="Svensson O" first="Olof" last="Svensson">Olof Svensson</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meents, Alke" sort="Meents, Alke" uniqKey="Meents A" first="Alke" last="Meents">Alke Meents</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chapman, Henry N" sort="Chapman, Henry N" uniqKey="Chapman H" first="Henry N" last="Chapman">Henry N. Chapman</name>
<affiliation>
<nlm:affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nanao, Max H" sort="Nanao, Max H" uniqKey="Nanao M" first="Max H" last="Nanao">Max H. Nanao</name>
<affiliation>
<nlm:affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta crystallographica. Section D, Structural biology</title>
<idno type="eISSN">2059-7983</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (instrumentation)</term>
<term>Insulin (chemistry)</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Macromolecular Substances (radiation effects)</term>
<term>Plant Proteins (chemistry)</term>
<term>Swine (MeSH)</term>
<term>Synchrotrons (MeSH)</term>
<term>Ultraviolet Rays (MeSH)</term>
<term>X-Rays (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Insulin</term>
<term>Macromolecular Substances</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Crystallography, X-Ray</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="radiation effects" xml:lang="en">
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Crystallization</term>
<term>Swine</term>
<term>Synchrotrons</term>
<term>Ultraviolet Rays</term>
<term>X-Rays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Specific radiation damage can be used to determine phases de novo from macromolecular crystals. This method is known as radiation-damage-induced phasing (RIP). One limitation of the method is that the dose of individual data sets must be minimized, which in turn leads to data sets with low multiplicity. A solution to this problem is to use data from multiple crystals. However, the resulting signal can be degraded by a lack of isomorphism between crystals. Here, it is shown that serial synchrotron crystallography in combination with selective merging of data sets can be used to determine high-quality phases for insulin and thaumatin, and that the increased multiplicity can greatly enhance the success rate of the experiment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29652263</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2059-7983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>Pt 4</Issue>
<PubDate>
<Year>2018</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Acta crystallographica. Section D, Structural biology</Title>
<ISOAbbreviation>Acta Crystallogr D Struct Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.</ArticleTitle>
<Pagination>
<MedlinePgn>366-378</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S2059798318001535</ELocationID>
<Abstract>
<AbstractText>Specific radiation damage can be used to determine phases de novo from macromolecular crystals. This method is known as radiation-damage-induced phasing (RIP). One limitation of the method is that the dose of individual data sets must be minimized, which in turn leads to data sets with low multiplicity. A solution to this problem is to use data from multiple crystals. However, the resulting signal can be degraded by a lack of isomorphism between crystals. Here, it is shown that serial synchrotron crystallography in combination with selective merging of data sets can be used to determine high-quality phases for insulin and thaumatin, and that the increased multiplicity can greatly enhance the success rate of the experiment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Foos</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seuring</LastName>
<ForeName>Carolin</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-1000-0859</Identifier>
<AffiliationInfo>
<Affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schubert</LastName>
<ForeName>Robin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Burkhardt</LastName>
<ForeName>Anja</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Photon Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Svensson</LastName>
<ForeName>Olof</ForeName>
<Initials>O</Initials>
<Identifier Source="ORCID">0000-0002-6937-7039</Identifier>
<AffiliationInfo>
<Affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meents</LastName>
<ForeName>Alke</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0001-6078-4095</Identifier>
<AffiliationInfo>
<Affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chapman</LastName>
<ForeName>Henry N</ForeName>
<Initials>HN</Initials>
<Identifier Source="ORCID">0000-0002-4655-1743</Identifier>
<AffiliationInfo>
<Affiliation>Center for Free-Electron Laser Science, Deutsches Elektronensynchrotron, Notkestrasse 85, 22607 Hamburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nanao</LastName>
<ForeName>Max H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Genoble, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Acta Crystallogr D Struct Biol</MedlineTA>
<NlmUniqueID>101676043</NlmUniqueID>
<ISSNLinking>2059-7983</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
<QualifierName UI="Q000295" MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017356" MajorTopicYN="Y">Synchrotrons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014466" MajorTopicYN="N">Ultraviolet Rays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014965" MajorTopicYN="N">X-Rays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">experimental phasing</Keyword>
<Keyword MajorTopicYN="N">genetic algorithms</Keyword>
<Keyword MajorTopicYN="N">radiation damage</Keyword>
<Keyword MajorTopicYN="N">radiation-damage-induced phasing</Keyword>
<Keyword MajorTopicYN="N">synchrotron serial crystallography</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29652263</ArticleId>
<ArticleId IdType="pii">S2059798318001535</ArticleId>
<ArticleId IdType="doi">10.1107/S2059798318001535</ArticleId>
<ArticleId IdType="pmc">PMC5892880</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Jun;60(Pt 6):1024-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15159561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1607:239-272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28573576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Jul;D64(Pt 7):711-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Jun;60(Pt 6):1085-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15159568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2013 Jun 1;46(Pt 3):804-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23682196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUCrJ. 2015 Sep 30;2(Pt 6):627-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26594370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1289-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2015 Nov;71(Pt 11):2328-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Dec;64(Pt 12):1196-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 25;336(6084):1030-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22628654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2010 Jan;17(1):107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2010 Sep;17(5):700-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):447-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jan;59(Pt 1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12499540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Struct Biol. 2016 Mar;72 (Pt 3):303-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26960118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2014 Jan;70(Pt 1):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24419383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Nov;60(Pt 11):1958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15502302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16131756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2016 May 23;49(Pt 3):968-975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27275143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2015 Mar;22(2):249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25723926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Struct Biol. 2016 Mar;72 (Pt 3):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26960126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2017 Aug;14 (8):805-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28628129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1152-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22948916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24189237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Struct Biol. 2016 Sep;72 (Pt 9):1026-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27599735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Apr;60(Pt 4):686-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2000 Mar 15;8(3):315-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUCrJ. 2014 May 30;1(Pt 4):213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25075342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Apr;14(4):791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16615919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2016;1320:205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26227045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2011 Dec 1;44(Pt 6):1285-1287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22477786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Feb;11(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:29652263
   |texte=   X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:29652263" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020