Serveur d'exploration sur la rapamycine et les champignons - Exploration (Accueil)

Index « Keywords » - entrée « Heat-Shock Proteins (metabolism) »
Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
Heat-Shock Proteins (isolation & purification) < Heat-Shock Proteins (metabolism) < Heat-Shock Proteins (pharmacology)  Facettes :

List of bibliographic references indexed by Heat-Shock Proteins (metabolism)

Number of relevant bibliographic references: 34.
[0-20] [0 - 20][0 - 34][20-33][20-40]
Ident.Authors (with country if any)Title
000191 (2019) C A Padilla [Espagne] ; J A Bárcena [Espagne] ; M J L Pez-Grueso [Espagne] ; R. Requejo-Aguilar [Espagne]The regulation of TORC1 pathway by the yeast chaperones Hsp31 is mediated by SFP1 and affects proteasomal activity.
000B85 (2015) Ge Niu ; Huan Zhang ; Dan Liu ; Li Chen ; Chandra Belani [États-Unis] ; Hong-Gang Wang [États-Unis] ; Hua Cheng [États-Unis]Tid1, the Mammalian Homologue of Drosophila Tumor Suppressor Tid56, Mediates Macroautophagy by Interacting with Beclin1-containing Autophagy Protein Complex.
000D78 (2014) Leonor Miller-Fleming [Royaume-Uni] ; Pedro Antas [Portugal] ; Teresa Faria Pais [Portugal] ; Joshua L. Smalley [Royaume-Uni] ; Flaviano Giorgini [Royaume-Uni] ; Tiago Fleming Outeiro [Royaume-Uni]Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase.
000E56 (2014) Stefan H. Millson [Royaume-Uni] ; Peter W. Piper [Royaume-Uni]Insights from yeast into whether the inhibition of heat shock transcription factor (Hsf1) by rapamycin can prevent the Hsf1 activation that results from treatment with an Hsp90 inhibitor.
000E95 (2014) Nour El Houda Benbahouche [France] ; Ioannis Iliopoulos ; István Török ; Joachim Marhold ; Julien Henri ; Andrey V. Kajava ; Robert Farkaš ; Tore Kempf ; Martina Schnölzer ; Philippe Meyer ; István Kiss ; Edouard Bertrand ; Bernard M. Mechler ; Bérengère Pradet-BaladeDrosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries.
000F51 (2013) Evelyn Welter [Allemagne] ; Marco Montino ; Robert Reinhold ; Petra Schlotterhose ; Roswitha Krick ; Jan Dudek ; Peter Rehling ; Michael ThummUth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy.
001630 (2008) Sricharan Bandhakavi [États-Unis] ; Hongwei Xie ; Brennon O'Callaghan ; Hiroshi Sakurai ; Do-Hyung Kim ; Timothy J. GriffinHsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis.
001655 (2008) Prasanthi Geda [États-Unis] ; Srikanth Patury ; Jun Ma ; Nike Bharucha ; Craig J. Dobry ; Sarah K. Lawson ; Jason E. Gestwicki ; Anuj KumarA small molecule-directed approach to control protein localization and function.
001917 (2003) Nadine Camougrand [France] ; Angela Grelaud-Coq ; Esther Marza ; Muriel Priault ; Jean-Jacques Bessoule ; Stéphen ManonThe product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin.
001931 (2003) Andrzej Galat [France]Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity--targets--functions.
001A28 (2000) Y. Kamada [Japon] ; T. Funakoshi ; T. Shintani ; K. Nagano ; M. Ohsumi ; Y. OhsumiTor-mediated induction of autophagy via an Apg1 protein kinase complex.
001A63 (1998) T. Noda [Japon] ; Y. OhsumiTor, a phosphatidylinositol kinase homologue, controls autophagy in yeast.
001A81 (1997) R. Banholzer [Suisse] ; A P Nair ; H H Hirsch ; X F Ming ; C. MoroniRapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3' untranslated region.
001A87 (1997) C M Alarc N [États-Unis] ; J. HeitmanFKBP12 physically and functionally interacts with aspartokinase in Saccharomyces cerevisiae.
001A97 (1996) S. Luan [États-Unis] ; J. Kudla ; W. Gruissem ; S L SchreiberMolecular characterization of a FKBP-type immunophilin from higher plants.
001B01 (1996) C S Hemenway [États-Unis] ; J. HeitmanImmunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast.
001B04 (1996) S N Ho [États-Unis] ; S R Biggar ; D M Spencer ; S L Schreiber ; G R CrabtreeDimeric ligands define a role for transcriptional activation domains in reinitiation.
001B08 (1995) L K Wilson [États-Unis] ; B M Benton ; S. Zhou ; J. Thorner ; G S MartinThe yeast immunophilin Fpr3 is a physiological substrate of the tyrosine-specific phosphoprotein phosphatase Ptp1.
001B09 (1995) M A Santos [Royaume-Uni] ; M F TuiteThe CUG codon is decoded in vivo as serine and not leucine in Candida albicans.
001B10 (1995) M C Lorenz [États-Unis] ; J. HeitmanTOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin.
001B11 (1995) X F Zheng [États-Unis] ; D. Florentino ; J. Chen ; G R Crabtree ; S L SchreiberTOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin.

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdEn.i -k "Heat-Shock Proteins (metabolism)" 
HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/KwdEn.i  \
                -Sk "Heat-Shock Proteins (metabolism)" \
         | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd 

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    indexItem
   |index=    KwdEn.i
   |clé=    Heat-Shock Proteins (metabolism)
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020