Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.

Identifieur interne : 001714 ( Main/Exploration ); précédent : 001713; suivant : 001715

MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.

Auteurs : Oliver Medvedik [États-Unis] ; Dudley W. Lamming ; Keyman D. Kim ; David A. Sinclair

Source :

RBID : pubmed:17914901

Descripteurs français

English descriptors

Abstract

Calorie restriction (CR) robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA) circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin) signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging.

DOI: 10.1371/journal.pbio.0050261
PubMed: 17914901
PubMed Central: PMC1994990


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Medvedik, Oliver" sort="Medvedik, Oliver" uniqKey="Medvedik O" first="Oliver" last="Medvedik">Oliver Medvedik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lamming, Dudley W" sort="Lamming, Dudley W" uniqKey="Lamming D" first="Dudley W" last="Lamming">Dudley W. Lamming</name>
</author>
<author>
<name sortKey="Kim, Keyman D" sort="Kim, Keyman D" uniqKey="Kim K" first="Keyman D" last="Kim">Keyman D. Kim</name>
</author>
<author>
<name sortKey="Sinclair, David A" sort="Sinclair, David A" uniqKey="Sinclair D" first="David A" last="Sinclair">David A. Sinclair</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17914901</idno>
<idno type="pmid">17914901</idno>
<idno type="doi">10.1371/journal.pbio.0050261</idno>
<idno type="pmc">PMC1994990</idno>
<idno type="wicri:Area/Main/Corpus">001668</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001668</idno>
<idno type="wicri:Area/Main/Curation">001668</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001668</idno>
<idno type="wicri:Area/Main/Exploration">001668</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Medvedik, Oliver" sort="Medvedik, Oliver" uniqKey="Medvedik O" first="Oliver" last="Medvedik">Oliver Medvedik</name>
<affiliation wicri:level="2">
<nlm:affiliation>Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lamming, Dudley W" sort="Lamming, Dudley W" uniqKey="Lamming D" first="Dudley W" last="Lamming">Dudley W. Lamming</name>
</author>
<author>
<name sortKey="Kim, Keyman D" sort="Kim, Keyman D" uniqKey="Kim K" first="Keyman D" last="Kim">Keyman D. Kim</name>
</author>
<author>
<name sortKey="Sinclair, David A" sort="Sinclair, David A" uniqKey="Sinclair D" first="David A" last="Sinclair">David A. Sinclair</name>
</author>
</analytic>
<series>
<title level="j">PLoS biology</title>
<idno type="eISSN">1545-7885</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Caloric Restriction (MeSH)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>DNA-Binding Proteins (physiology)</term>
<term>Life Expectancy (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factors (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (génétique)</term>
<term>Espérance de vie (MeSH)</term>
<term>Facteurs de transcription (physiologie)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Protéines de liaison à l'ADN (physiologie)</term>
<term>Restriction calorique (MeSH)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN ribosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de liaison à l'ADN</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Caloric Restriction</term>
<term>Life Expectancy</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Espérance de vie</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Restriction calorique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Calorie restriction (CR) robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA) circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin) signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17914901</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>01</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1545-7885</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>PLoS biology</Title>
<ISOAbbreviation>PLoS Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>e261</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Calorie restriction (CR) robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA) circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin) signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Medvedik</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lamming</LastName>
<ForeName>Dudley W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Keyman D</ForeName>
<Initials>KD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sinclair</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01AG19972</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG019719-06A1</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG028730-03</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM068072</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG028730</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG019972</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG019719-07</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG028730-02</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG028730-01A1</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM068072</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG019719</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Biol</MedlineTA>
<NlmUniqueID>101183755</NlmUniqueID>
<ISSNLinking>1544-9173</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081935">MSN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C081937">MSN4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031204" MajorTopicYN="Y">Caloric Restriction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008017" MajorTopicYN="N">Life Expectancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2006</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2006</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
<ArticleId IdType="pii">06-PLBI-RA-0346</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pbio.0050261</ArticleId>
<ArticleId IdType="pmc">PMC1994990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 May;158(1):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Nov;14(14):2135-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 11;425(6954):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 May 25;14(10):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Mar;169(3):1203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jan 27;124(2):315-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2005 Sep;126(9):987-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15893363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43382-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Apr;23(4):131-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9584615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Aug 5;430(7000):686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Jul 1;17(13):3556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Sep 20;66(6):1279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1913809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1950 Jan;4(1):84-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15415559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jan;163(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 13;282(15):10841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jan 15;21(1-2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Sep 1;17(17):2162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 May 12;161(3):497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12732613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 1975 Aug;33(8):241-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1095975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Nov;9(5):605-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16256736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 2;282(9):6161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17200108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 11;426(6967):620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2003 Jul;38(7):807-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12855292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 2;312(5778):1312; author reply 1312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16741098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1861-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2006 Jan;127(1):48-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Sep;67(3):376-99, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Aug;14(11):1041-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9730283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 3;279(49):50754-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2002 Feb;19(3):215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11816029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jan 1;11(1):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9000052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 11;277(41):38095-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 May 1;14(9):1021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Feb 18;17(4):595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15721262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1831-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jan 16;557(1-3):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14741356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Feb 22;445(7130):922-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Jan 24;26(2):448-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17203076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Exp Toxicol. 2000 Jun;19(6):340-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10962503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Feb;24(3):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 2003;48(2):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12800502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2007 Feb;6(1):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17266679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Oct;23(20):7271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 19;278(51):50985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 26;91(7):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Aug 1;14(15):1872-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2005 Jan-Feb;40(1-2):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Kim, Keyman D" sort="Kim, Keyman D" uniqKey="Kim K" first="Keyman D" last="Kim">Keyman D. Kim</name>
<name sortKey="Lamming, Dudley W" sort="Lamming, Dudley W" uniqKey="Lamming D" first="Dudley W" last="Lamming">Dudley W. Lamming</name>
<name sortKey="Sinclair, David A" sort="Sinclair, David A" uniqKey="Sinclair D" first="David A" last="Sinclair">David A. Sinclair</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Medvedik, Oliver" sort="Medvedik, Oliver" uniqKey="Medvedik O" first="Oliver" last="Medvedik">Oliver Medvedik</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001714 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001714 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17914901
   |texte=   MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17914901" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020