Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Measurement of mass, density, and volume during the cell cycle of yeast.

Identifieur interne : 001416 ( Main/Exploration ); précédent : 001415; suivant : 001417

Measurement of mass, density, and volume during the cell cycle of yeast.

Auteurs : Andrea K. Bryan [États-Unis] ; Alexi Goranov ; Angelika Amon ; Scott R. Manalis

Source :

RBID : pubmed:20080562

Descripteurs français

English descriptors

Abstract

Cell growth comprises changes in both mass and volume--two processes that are distinct, yet coordinated through the cell cycle. Understanding this relationship requires a means for measuring each of the cell's three basic physical parameters: mass, volume, and the ratio of the two, density. The suspended microchannel resonator weighs single cells with a precision in mass of 0.1% for yeast. Here we use the suspended microchannel resonator with a Coulter counter to measure the mass, volume, and density of budding yeast cells through the cell cycle. We observe that cell density increases prior to bud formation at the G1/S transition, which is consistent with previous measurements using density gradient centrifugation. To investigate the origin of this density increase, we monitor relative density changes of growing yeast cells. We find that the density increase requires energy, function of the protein synthesis regulator target of rapamycin, passage through START (commitment to cell division), and an intact actin cytoskeleton. Although we focus on basic cell cycle questions in yeast, our techniques are suitable for most nonadherent cells and subcellular particles to characterize cell growth in a variety of applications.

DOI: 10.1073/pnas.0901851107
PubMed: 20080562
PubMed Central: PMC2824314


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Measurement of mass, density, and volume during the cell cycle of yeast.</title>
<author>
<name sortKey="Bryan, Andrea K" sort="Bryan, Andrea K" uniqKey="Bryan A" first="Andrea K" last="Bryan">Andrea K. Bryan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goranov, Alexi" sort="Goranov, Alexi" uniqKey="Goranov A" first="Alexi" last="Goranov">Alexi Goranov</name>
</author>
<author>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
</author>
<author>
<name sortKey="Manalis, Scott R" sort="Manalis, Scott R" uniqKey="Manalis S" first="Scott R" last="Manalis">Scott R. Manalis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20080562</idno>
<idno type="pmid">20080562</idno>
<idno type="doi">10.1073/pnas.0901851107</idno>
<idno type="pmc">PMC2824314</idno>
<idno type="wicri:Area/Main/Corpus">001444</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001444</idno>
<idno type="wicri:Area/Main/Curation">001444</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001444</idno>
<idno type="wicri:Area/Main/Exploration">001444</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Measurement of mass, density, and volume during the cell cycle of yeast.</title>
<author>
<name sortKey="Bryan, Andrea K" sort="Bryan, Andrea K" uniqKey="Bryan A" first="Andrea K" last="Bryan">Andrea K. Bryan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Goranov, Alexi" sort="Goranov, Alexi" uniqKey="Goranov A" first="Alexi" last="Goranov">Alexi Goranov</name>
</author>
<author>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
</author>
<author>
<name sortKey="Manalis, Scott R" sort="Manalis, Scott R" uniqKey="Manalis S" first="Scott R" last="Manalis">Scott R. Manalis</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Cell Cycle (MeSH)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Yeasts (cytology)</term>
<term>Yeasts (growth & development)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (métabolisme)</term>
<term>Cycle cellulaire (MeSH)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>Levures (croissance et développement)</term>
<term>Levures (cytologie)</term>
<term>Levures (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Levures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Cycle</term>
<term>Flow Cytometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cycle cellulaire</term>
<term>Cytométrie en flux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell growth comprises changes in both mass and volume--two processes that are distinct, yet coordinated through the cell cycle. Understanding this relationship requires a means for measuring each of the cell's three basic physical parameters: mass, volume, and the ratio of the two, density. The suspended microchannel resonator weighs single cells with a precision in mass of 0.1% for yeast. Here we use the suspended microchannel resonator with a Coulter counter to measure the mass, volume, and density of budding yeast cells through the cell cycle. We observe that cell density increases prior to bud formation at the G1/S transition, which is consistent with previous measurements using density gradient centrifugation. To investigate the origin of this density increase, we monitor relative density changes of growing yeast cells. We find that the density increase requires energy, function of the protein synthesis regulator target of rapamycin, passage through START (commitment to cell division), and an intact actin cytoskeleton. Although we focus on basic cell cycle questions in yeast, our techniques are suitable for most nonadherent cells and subcellular particles to characterize cell growth in a variety of applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20080562</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Measurement of mass, density, and volume during the cell cycle of yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>999-1004</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0901851107</ELocationID>
<Abstract>
<AbstractText>Cell growth comprises changes in both mass and volume--two processes that are distinct, yet coordinated through the cell cycle. Understanding this relationship requires a means for measuring each of the cell's three basic physical parameters: mass, volume, and the ratio of the two, density. The suspended microchannel resonator weighs single cells with a precision in mass of 0.1% for yeast. Here we use the suspended microchannel resonator with a Coulter counter to measure the mass, volume, and density of budding yeast cells through the cell cycle. We observe that cell density increases prior to bud formation at the G1/S transition, which is consistent with previous measurements using density gradient centrifugation. To investigate the origin of this density increase, we monitor relative density changes of growing yeast cells. We find that the density increase requires energy, function of the protein synthesis regulator target of rapamycin, passage through START (commitment to cell division), and an intact actin cytoskeleton. Although we focus on basic cell cycle questions in yeast, our techniques are suitable for most nonadherent cells and subcellular particles to characterize cell growth in a variety of applications.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bryan</LastName>
<ForeName>Andrea K</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goranov</LastName>
<ForeName>Alexi</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Amon</LastName>
<ForeName>Angelika</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Manalis</LastName>
<ForeName>Scott R</ForeName>
<Initials>SR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM085457</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM085457</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R29 GM056800</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM056800</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50GM68762</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 GM068762</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM056800</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002453" MajorTopicYN="Y">Cell Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20080562</ArticleId>
<ArticleId IdType="pii">0901851107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0901851107</ArticleId>
<ArticleId IdType="pmc">PMC2824314</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Microbiol. 1995 Aug;164(2):155-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8588736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1984 May;158(2):701-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6373726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1977 Jan;98(1):177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">319198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Sep;175(17):5714-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8366059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):768-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1970 Jul;10(7):630-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5465290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1970 Dec;104(3):1280-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16559104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 26;446(7139):1066-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jun 15;23(12):1408-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1957 Oct;13(2):244-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13480293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1984 Jan;118(1):22-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6690449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Oct;165(2):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 May;11(5):1727-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10793147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 Sep;155(3):1027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6350259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 21;407(6802):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Apr;14(4):2493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Sep;18(9):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1985 Jun;162(3):902-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3997783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2000 Jul 10;44(1-2):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1981 Oct;148(1):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6270065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Amon, Angelika" sort="Amon, Angelika" uniqKey="Amon A" first="Angelika" last="Amon">Angelika Amon</name>
<name sortKey="Goranov, Alexi" sort="Goranov, Alexi" uniqKey="Goranov A" first="Alexi" last="Goranov">Alexi Goranov</name>
<name sortKey="Manalis, Scott R" sort="Manalis, Scott R" uniqKey="Manalis S" first="Scott R" last="Manalis">Scott R. Manalis</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Bryan, Andrea K" sort="Bryan, Andrea K" uniqKey="Bryan A" first="Andrea K" last="Bryan">Andrea K. Bryan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20080562
   |texte=   Measurement of mass, density, and volume during the cell cycle of yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20080562" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020