Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.

Identifieur interne : 001008 ( Main/Exploration ); précédent : 001007; suivant : 001009

Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.

Auteurs : Charulatha Gururaj [États-Unis] ; Ross S. Federman ; Ross Federman ; Amy Chang

Source :

RBID : pubmed:23737533

Descripteurs français

English descriptors

Abstract

Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis.

DOI: 10.1074/jbc.M113.472860
PubMed: 23737533
PubMed Central: PMC3711311


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.</title>
<author>
<name sortKey="Gururaj, Charulatha" sort="Gururaj, Charulatha" uniqKey="Gururaj C" first="Charulatha" last="Gururaj">Charulatha Gururaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109</wicri:regionArea>
<wicri:noRegion>Michigan 48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Federman, Ross S" sort="Federman, Ross S" uniqKey="Federman R" first="Ross S" last="Federman">Ross S. Federman</name>
</author>
<author>
<name sortKey="Federman, Ross" sort="Federman, Ross" uniqKey="Federman R" first="Ross" last="Federman">Ross Federman</name>
</author>
<author>
<name sortKey="Chang, Amy" sort="Chang, Amy" uniqKey="Chang A" first="Amy" last="Chang">Amy Chang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23737533</idno>
<idno type="pmid">23737533</idno>
<idno type="doi">10.1074/jbc.M113.472860</idno>
<idno type="pmc">PMC3711311</idno>
<idno type="wicri:Area/Main/Corpus">001010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001010</idno>
<idno type="wicri:Area/Main/Curation">001010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001010</idno>
<idno type="wicri:Area/Main/Exploration">001010</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.</title>
<author>
<name sortKey="Gururaj, Charulatha" sort="Gururaj, Charulatha" uniqKey="Gururaj C" first="Charulatha" last="Gururaj">Charulatha Gururaj</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109</wicri:regionArea>
<wicri:noRegion>Michigan 48109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Federman, Ross S" sort="Federman, Ross S" uniqKey="Federman R" first="Ross S" last="Federman">Ross S. Federman</name>
</author>
<author>
<name sortKey="Federman, Ross" sort="Federman, Ross" uniqKey="Federman R" first="Ross" last="Federman">Ross Federman</name>
</author>
<author>
<name sortKey="Chang, Amy" sort="Chang, Amy" uniqKey="Chang A" first="Amy" last="Chang">Amy Chang</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Blotting, Western (MeSH)</term>
<term>Calcineurin (metabolism)</term>
<term>Calcium (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Feedback, Physiological (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Serine C-Palmitoyltransferase (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sphingolipids (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
<term>Type C Phospholipases (genetics)</term>
<term>Type C Phospholipases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calcineurine (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Rétrocontrôle physiologique (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Serine C-palmitoyltransferase (métabolisme)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Technique de Western (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Type C Phospholipases (génétique)</term>
<term>Type C Phospholipases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Membrane Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Calcineurin</term>
<term>Calcium</term>
<term>Membrane Proteins</term>
<term>Multiprotein Complexes</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Serine C-Palmitoyltransferase</term>
<term>Sphingolipids</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Transcription Factors</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcineurine</term>
<term>Calcium</term>
<term>Complexes multiprotéiques</term>
<term>Facteurs de transcription</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomyces cerevisiae</term>
<term>Serine C-palmitoyltransferase</term>
<term>Sphingolipides</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Type C Phospholipases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Western</term>
<term>Feedback, Physiological</term>
<term>Homeostasis</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Models, Biological</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Homéostasie</term>
<term>Modèles biologiques</term>
<term>Mutation</term>
<term>Phosphorylation</term>
<term>Rétrocontrôle physiologique</term>
<term>Technique de Western</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23737533</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>28</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.</ArticleTitle>
<Pagination>
<MedlinePgn>20453-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.472860</ELocationID>
<Abstract>
<AbstractText>Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gururaj</LastName>
<ForeName>Charulatha</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Federman</LastName>
<ForeName>Ross S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="N">
<LastName>Federman</LastName>
<ForeName>Ross</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Amy</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C548539">Orm1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C548540">Orm2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C406284">TSC3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.50</RegistryNumber>
<NameOfSubstance UI="D051102">Serine C-Palmitoyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D019703">Calcineurin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="C419391">ISC1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.-</RegistryNumber>
<NameOfSubstance UI="D010738">Type C Phospholipases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>J Biol Chem. 2015 Jan 16;290(3):1455</RefSource>
<Note>Federman, Ross [corrected to Federman, Ross S]</Note>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019703" MajorTopicYN="N">Calcineurin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="N">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051102" MajorTopicYN="N">Serine C-Palmitoyltransferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010738" MajorTopicYN="N">Type C Phospholipases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Calcineurin</Keyword>
<Keyword MajorTopicYN="N">ER Stress</Keyword>
<Keyword MajorTopicYN="N">Phosphorylation</Keyword>
<Keyword MajorTopicYN="N">Signal Transduction</Keyword>
<Keyword MajorTopicYN="N">Sphingolipid</Keyword>
<Keyword MajorTopicYN="N">TOR</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23737533</ArticleId>
<ArticleId IdType="pii">M113.472860</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.472860</ArticleId>
<ArticleId IdType="pmc">PMC3711311</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Mar 17;275(11):7597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Mar;24(6):870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 May 15;21(10):2343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12006487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):31079-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Sep;162(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Nov;46(3):781-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Dec 24;41(51):15105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12484746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):284-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 3;278(40):38723-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Oct;14(10):4296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14517337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Nov 28;311(4):1143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Apr 11;19(7):1687-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2027776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Oct;115(2):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1833410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jun 18;73(6):1197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8513503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 26;269(34):21480-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8063782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Nov 1;87(3):391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8898193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1997 Feb 1;7(2):R67-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9081665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Sep;8(9):1805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9307975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 28;272(48):30196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9374502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 11;280(10):9106-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Jun;69(2):262-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jun;26(12):4729-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5861-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jan;27(2):633-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Mar;1771(3):442-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16997624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):470-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 May;49(5):922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Dec;7(12):2037-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18806210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Jan;20(1):164-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Mar;71(6):1523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Oct;20(20):4444-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 1;327(5961):46-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 25;463(7284):1048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 2;285(14):10951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20123986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 May 31;189(5):783-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2011 Feb;285(2):125-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21136082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Sep;22(18):3520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Feb;190(2):317-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 May;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(12):2388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2012 Jun 25;197(7):857-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 May 15;125(Pt 10):2428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chang, Amy" sort="Chang, Amy" uniqKey="Chang A" first="Amy" last="Chang">Amy Chang</name>
<name sortKey="Federman, Ross" sort="Federman, Ross" uniqKey="Federman R" first="Ross" last="Federman">Ross Federman</name>
<name sortKey="Federman, Ross S" sort="Federman, Ross S" uniqKey="Federman R" first="Ross S" last="Federman">Ross S. Federman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gururaj, Charulatha" sort="Gururaj, Charulatha" uniqKey="Gururaj C" first="Charulatha" last="Gururaj">Charulatha Gururaj</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23737533
   |texte=   Orm proteins integrate multiple signals to maintain sphingolipid homeostasis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23737533" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020