Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.

Identifieur interne : 000C96 ( Main/Exploration ); précédent : 000C95; suivant : 000C97

Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.

Auteurs : Tomoyuki Hatano [Japon] ; Susumu Morigasaki ; Hisashi Tatebe ; Kyoko Ikeda ; Kazuhiro Shiozaki

Source :

RBID : pubmed:25590601

Descripteurs français

English descriptors

Abstract

The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.

DOI: 10.1080/15384101.2014.1000215
PubMed: 25590601
PubMed Central: PMC4612450


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.</title>
<author>
<name sortKey="Hatano, Tomoyuki" sort="Hatano, Tomoyuki" uniqKey="Hatano T" first="Tomoyuki" last="Hatano">Tomoyuki Hatano</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Nara , Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>a Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Nara </wicri:regionArea>
<wicri:noRegion>Nara </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morigasaki, Susumu" sort="Morigasaki, Susumu" uniqKey="Morigasaki S" first="Susumu" last="Morigasaki">Susumu Morigasaki</name>
</author>
<author>
<name sortKey="Tatebe, Hisashi" sort="Tatebe, Hisashi" uniqKey="Tatebe H" first="Hisashi" last="Tatebe">Hisashi Tatebe</name>
</author>
<author>
<name sortKey="Ikeda, Kyoko" sort="Ikeda, Kyoko" uniqKey="Ikeda K" first="Kyoko" last="Ikeda">Kyoko Ikeda</name>
</author>
<author>
<name sortKey="Shiozaki, Kazuhiro" sort="Shiozaki, Kazuhiro" uniqKey="Shiozaki K" first="Kazuhiro" last="Shiozaki">Kazuhiro Shiozaki</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25590601</idno>
<idno type="pmid">25590601</idno>
<idno type="doi">10.1080/15384101.2014.1000215</idno>
<idno type="pmc">PMC4612450</idno>
<idno type="wicri:Area/Main/Corpus">000D18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D18</idno>
<idno type="wicri:Area/Main/Curation">000D18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D18</idno>
<idno type="wicri:Area/Main/Exploration">000D18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.</title>
<author>
<name sortKey="Hatano, Tomoyuki" sort="Hatano, Tomoyuki" uniqKey="Hatano T" first="Tomoyuki" last="Hatano">Tomoyuki Hatano</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Nara , Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>a Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Nara </wicri:regionArea>
<wicri:noRegion>Nara </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morigasaki, Susumu" sort="Morigasaki, Susumu" uniqKey="Morigasaki S" first="Susumu" last="Morigasaki">Susumu Morigasaki</name>
</author>
<author>
<name sortKey="Tatebe, Hisashi" sort="Tatebe, Hisashi" uniqKey="Tatebe H" first="Hisashi" last="Tatebe">Hisashi Tatebe</name>
</author>
<author>
<name sortKey="Ikeda, Kyoko" sort="Ikeda, Kyoko" uniqKey="Ikeda K" first="Kyoko" last="Ikeda">Kyoko Ikeda</name>
</author>
<author>
<name sortKey="Shiozaki, Kazuhiro" sort="Shiozaki, Kazuhiro" uniqKey="Shiozaki K" first="Kazuhiro" last="Shiozaki">Kazuhiro Shiozaki</name>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Glucose (pharmacology)</term>
<term>Hydrophobic and Hydrophilic Interactions (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Monomeric GTP-Binding Proteins (chemistry)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Nitrogen (deficiency)</term>
<term>Phosphorylation (drug effects)</term>
<term>Protein-Serine-Threonine Kinases (chemistry)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (enzymology)</term>
<term>Schizosaccharomyces pombe Proteins (chemistry)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (déficit)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Glucose (pharmacologie)</term>
<term>Interactions hydrophobes et hydrophiles (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Protein-Serine-Threonine Kinases (composition chimique)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines G monomériques (composition chimique)</term>
<term>Protéines G monomériques (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (composition chimique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (enzymologie)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Nitrogen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Monomeric GTP-Binding Proteins</term>
<term>Multiprotein Complexes</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines G monomériques</term>
<term>Protéines de Schizosaccharomyces pombe</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Azote</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines G monomériques</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Motifs d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25590601</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.</ArticleTitle>
<Pagination>
<MedlinePgn>848-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15384101.2014.1000215</ELocationID>
<Abstract>
<AbstractText>The Target Of Rapamycin (TOR) is an evolutionarily conserved protein kinase that forms 2 distinct protein complexes referred to as TOR complex 1 (TORC1) and 2 (TORC2). Recent extensive studies have demonstrated that TORC1 is under the control of the small GTPases Rheb and Rag that funnel multiple input signals including those derived from nutritional sources; however, information is scarce as to the regulation of TORC2. A previous study using the model system provided by the fission yeast Schizosaccharomyces pombe identified Ryh1, a Rab-family GTPase, as an activator of TORC2. Here, we show that the nucleotide-binding state of Ryh1 is regulated in response to glucose, mediating this major nutrient signal to TORC2. In glucose-rich growth media, the GTP-bound form of Ryh1 induces TORC2-dependent phosphorylation of Gad8, a downstream target of TORC2 in fission yeast. Upon glucose deprivation, Ryh1 becomes inactive, which turns off the TORC2-Gad8 pathway. During glucose starvation, however, Gad8 phosphorylation by TORC2 gradually recovers independently of Ryh1, implying an additional TORC2 activator that is regulated negatively by glucose. The paired positive and negative regulatory mechanisms may allow fine-tuning of the TORC2-Gad8 pathway, which is essential for growth under glucose-limited environment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hatano</LastName>
<ForeName>Tomoyuki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>a Graduate School of Biological Sciences , Nara Institute of Science and Technology , Ikoma , Nara , Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morigasaki</LastName>
<ForeName>Susumu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tatebe</LastName>
<ForeName>Hisashi</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ikeda</LastName>
<ForeName>Kyoko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shiozaki</LastName>
<ForeName>Kazuhiro</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C476401">Gad8 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C064392">ryh1 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Rab GTPase</Keyword>
<Keyword MajorTopicYN="N">TOR</Keyword>
<Keyword MajorTopicYN="N">TORC2</Keyword>
<Keyword MajorTopicYN="N">fission yeast</Keyword>
<Keyword MajorTopicYN="N">glucose</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25590601</ArticleId>
<ArticleId IdType="doi">10.1080/15384101.2014.1000215</ArticleId>
<ArticleId IdType="pmc">PMC4612450</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Mar;29(6):1411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2012 Aug;17(8):698-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small GTPases. 2010 Nov;1(3):180-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 1;289(31):21727-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24928510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 30;284(5):2628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Apr;5(4):561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1849107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1993 Aug;105 ( Pt 4):1095-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8227198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Nov 2;294(5544):1102-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Apr;278(8):1299-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21306563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Aug;23(15):5132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12861001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Jul 23;27(14):1919-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2002 Dec;13(10):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12431841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 May;10(5):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 Jul-Aug;43(4):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1992 Dec;6(12B):2455-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1340462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Oct;87(20):7814-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2172964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 4;144(5):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1993 Jan 15;123(1):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Dec 15;416(3):375-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18925875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 1;286(13):10998-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 Feb;18(3):207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11180454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Oct 6;127(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Jul;35(6):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Dec;11(6):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1990 Apr;124(4):807-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2157626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Apr;20(7):1992-2003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Feb;13(2):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22240970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jul 15;10(14):2305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jun 29;129(7):1261-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2013 Jul;154(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27019-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Feb;33(Pt 1):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15667320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jun;15(6):555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Apr 1;15(7):807-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Sep 15;10(18):2276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Feb 15;410(1):19-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Dec;155(Pt 12):3816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19778961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 1;284(18):12297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 1;269(13):9632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Oct;11(4):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2001 Mar;56 Spec No 1:20-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12088209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Sep;138(1):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8001792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ikeda, Kyoko" sort="Ikeda, Kyoko" uniqKey="Ikeda K" first="Kyoko" last="Ikeda">Kyoko Ikeda</name>
<name sortKey="Morigasaki, Susumu" sort="Morigasaki, Susumu" uniqKey="Morigasaki S" first="Susumu" last="Morigasaki">Susumu Morigasaki</name>
<name sortKey="Shiozaki, Kazuhiro" sort="Shiozaki, Kazuhiro" uniqKey="Shiozaki K" first="Kazuhiro" last="Shiozaki">Kazuhiro Shiozaki</name>
<name sortKey="Tatebe, Hisashi" sort="Tatebe, Hisashi" uniqKey="Tatebe H" first="Hisashi" last="Tatebe">Hisashi Tatebe</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Hatano, Tomoyuki" sort="Hatano, Tomoyuki" uniqKey="Hatano T" first="Tomoyuki" last="Hatano">Tomoyuki Hatano</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25590601
   |texte=   Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25590601" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020