Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.

Identifieur interne : 000B12 ( Main/Exploration ); précédent : 000B11; suivant : 000B13

Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.

Auteurs : Dong Keun Rhee [États-Unis] ; Jung Chae Lim [États-Unis] ; Steven C. Hockman [États-Unis] ; Faiyaz Ahmad [États-Unis] ; Dong Ho Woo [États-Unis] ; Youn Wook Chung [États-Unis] ; Shiwei Liu [États-Unis] ; Allison L. Hockman [États-Unis] ; Vincent C. Manganiello [États-Unis]

Source :

RBID : pubmed:27647936

Descripteurs français

English descriptors

Abstract

Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H2O2), respectively. H2O2-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H2O2 increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H2O2, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H2O2, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.

DOI: 10.1042/BCJ20160572
PubMed: 27647936


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.</title>
<author>
<name sortKey="Rhee, Dong Keun" sort="Rhee, Dong Keun" uniqKey="Rhee D" first="Dong Keun" last="Rhee">Dong Keun Rhee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lim, Jung Chae" sort="Lim, Jung Chae" uniqKey="Lim J" first="Jung Chae" last="Lim">Jung Chae Lim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hockman, Steven C" sort="Hockman, Steven C" uniqKey="Hockman S" first="Steven C" last="Hockman">Steven C. Hockman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Faiyaz" sort="Ahmad, Faiyaz" uniqKey="Ahmad F" first="Faiyaz" last="Ahmad">Faiyaz Ahmad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woo, Dong Ho" sort="Woo, Dong Ho" uniqKey="Woo D" first="Dong Ho" last="Woo">Dong Ho Woo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chung, Youn Wook" sort="Chung, Youn Wook" uniqKey="Chung Y" first="Youn Wook" last="Chung">Youn Wook Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shiwei" sort="Liu, Shiwei" uniqKey="Liu S" first="Shiwei" last="Liu">Shiwei Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hockman, Allison L" sort="Hockman, Allison L" uniqKey="Hockman A" first="Allison L" last="Hockman">Allison L. Hockman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manganiello, Vincent C" sort="Manganiello, Vincent C" uniqKey="Manganiello V" first="Vincent C" last="Manganiello">Vincent C. Manganiello</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27647936</idno>
<idno type="pmid">27647936</idno>
<idno type="doi">10.1042/BCJ20160572</idno>
<idno type="wicri:Area/Main/Corpus">000968</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000968</idno>
<idno type="wicri:Area/Main/Curation">000968</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000968</idno>
<idno type="wicri:Area/Main/Exploration">000968</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.</title>
<author>
<name sortKey="Rhee, Dong Keun" sort="Rhee, Dong Keun" uniqKey="Rhee D" first="Dong Keun" last="Rhee">Dong Keun Rhee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lim, Jung Chae" sort="Lim, Jung Chae" uniqKey="Lim J" first="Jung Chae" last="Lim">Jung Chae Lim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hockman, Steven C" sort="Hockman, Steven C" uniqKey="Hockman S" first="Steven C" last="Hockman">Steven C. Hockman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Faiyaz" sort="Ahmad, Faiyaz" uniqKey="Ahmad F" first="Faiyaz" last="Ahmad">Faiyaz Ahmad</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Woo, Dong Ho" sort="Woo, Dong Ho" uniqKey="Woo D" first="Dong Ho" last="Woo">Dong Ho Woo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chung, Youn Wook" sort="Chung, Youn Wook" uniqKey="Chung Y" first="Youn Wook" last="Chung">Youn Wook Chung</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shiwei" sort="Liu, Shiwei" uniqKey="Liu S" first="Shiwei" last="Liu">Shiwei Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hockman, Allison L" sort="Hockman, Allison L" uniqKey="Hockman A" first="Allison L" last="Hockman">Allison L. Hockman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manganiello, Vincent C" sort="Manganiello, Vincent C" uniqKey="Manganiello V" first="Vincent C" last="Manganiello">Vincent C. Manganiello</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclic AMP (metabolism)</term>
<term>Cyclic AMP-Dependent Protein Kinases (genetics)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3 (genetics)</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3 (metabolism)</term>
<term>Enzyme Activation (drug effects)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique (métabolisme)</term>
<term>Activation enzymatique (effets des médicaments et des substances chimiques)</term>
<term>Cyclic AMP-Dependent Protein Kinases (génétique)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3 (génétique)</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3 (métabolisme)</term>
<term>Cytométrie en flux (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>RT-PCR (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cyclic AMP</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Enzyme Activation</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Oxydoréduction</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP cyclique</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Cyclic Nucleotide Phosphodiesterases, Type 3</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Flow Cytometry</term>
<term>Humans</term>
<term>Immunoprecipitation</term>
<term>Microscopy, Fluorescence</term>
<term>Models, Biological</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cytométrie en flux</term>
<term>Humains</term>
<term>Immunoprécipitation</term>
<term>Microscopie de fluorescence</term>
<term>Modèles biologiques</term>
<term>RT-PCR</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), respectively. H
<sub>2</sub>
O
<sub>2</sub>
-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H
<sub>2</sub>
O
<sub>2</sub>
increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H
<sub>2</sub>
O
<sub>2</sub>
, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H
<sub>2</sub>
O
<sub>2</sub>
, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27647936</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>473</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2016</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>4205-4225</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), respectively. H
<sub>2</sub>
O
<sub>2</sub>
-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H
<sub>2</sub>
O
<sub>2</sub>
increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H
<sub>2</sub>
O
<sub>2</sub>
, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H
<sub>2</sub>
O
<sub>2</sub>
, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.</AbstractText>
<CopyrightInformation>© 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rhee</LastName>
<ForeName>Dong Keun</ForeName>
<Initials>DK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lim</LastName>
<ForeName>Jung Chae</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hockman</LastName>
<ForeName>Steven C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahmad</LastName>
<ForeName>Faiyaz</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Woo</LastName>
<ForeName>Dong Ho</ForeName>
<Initials>DH</Initials>
<AffiliationInfo>
<Affiliation>Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Youn Wook</ForeName>
<Initials>YW</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shiwei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hockman</LastName>
<ForeName>Allison L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manganiello</LastName>
<ForeName>Vincent C</ForeName>
<Initials>VC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemical Physiology, Cardiovascular and Pulmonary Branch, NHLBI/NIH, Room 5N-307, Building 10, Bethesda, MD 20892-1434, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E0399OZS9N</RegistryNumber>
<NameOfSubstance UI="D000242">Cyclic AMP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.17</RegistryNumber>
<NameOfSubstance UI="D054684">Cyclic Nucleotide Phosphodiesterases, Type 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.4.17</RegistryNumber>
<NameOfSubstance UI="C517287">PDE3A protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000242" MajorTopicYN="N">Cyclic AMP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054684" MajorTopicYN="N">Cyclic Nucleotide Phosphodiesterases, Type 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PKA</Keyword>
<Keyword MajorTopicYN="N">Sch9</Keyword>
<Keyword MajorTopicYN="N">cAMP</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">phosphodiesterase 3A</Keyword>
<Keyword MajorTopicYN="N">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27647936</ArticleId>
<ArticleId IdType="pii">BCJ20160572</ArticleId>
<ArticleId IdType="doi">10.1042/BCJ20160572</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Rhee, Dong Keun" sort="Rhee, Dong Keun" uniqKey="Rhee D" first="Dong Keun" last="Rhee">Dong Keun Rhee</name>
</region>
<name sortKey="Ahmad, Faiyaz" sort="Ahmad, Faiyaz" uniqKey="Ahmad F" first="Faiyaz" last="Ahmad">Faiyaz Ahmad</name>
<name sortKey="Chung, Youn Wook" sort="Chung, Youn Wook" uniqKey="Chung Y" first="Youn Wook" last="Chung">Youn Wook Chung</name>
<name sortKey="Hockman, Allison L" sort="Hockman, Allison L" uniqKey="Hockman A" first="Allison L" last="Hockman">Allison L. Hockman</name>
<name sortKey="Hockman, Steven C" sort="Hockman, Steven C" uniqKey="Hockman S" first="Steven C" last="Hockman">Steven C. Hockman</name>
<name sortKey="Lim, Jung Chae" sort="Lim, Jung Chae" uniqKey="Lim J" first="Jung Chae" last="Lim">Jung Chae Lim</name>
<name sortKey="Liu, Shiwei" sort="Liu, Shiwei" uniqKey="Liu S" first="Shiwei" last="Liu">Shiwei Liu</name>
<name sortKey="Manganiello, Vincent C" sort="Manganiello, Vincent C" uniqKey="Manganiello V" first="Vincent C" last="Manganiello">Vincent C. Manganiello</name>
<name sortKey="Woo, Dong Ho" sort="Woo, Dong Ho" uniqKey="Woo D" first="Dong Ho" last="Woo">Dong Ho Woo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B12 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B12 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27647936
   |texte=   Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27647936" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020