Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

Identifieur interne : 000465 ( Main/Exploration ); précédent : 000464; suivant : 000466

Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

Auteurs : Stephanie N. Hurwitz [États-Unis] ; Mujeeb R. Cheerathodi [États-Unis] ; Dingani Nkosi [États-Unis] ; Sara B. York [États-Unis] ; David G. Meckes [États-Unis]

Source :

RBID : pubmed:29212935

Descripteurs français

English descriptors

Abstract

The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells.IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major oncoprotein, LMP1, into vesicles for secretion. We have recently described a role of the host cell protein CD63 in regulating intracellular signaling of the viral oncoprotein by shuttling LMP1 into exosomes. Here, we provide strong evidence of the utility of CD63-dependent EVs in regulating global intracellular signaling, including mTOR activation by LMP1. We also demonstrate a key role of CD63 in coordinating endosomal and autophagic processes to regulate LMP1 levels within the cell. Overall, this study offers new insights into the complex intersection of cellular secretory and degradative mechanisms and the implications of these processes in viral replication.

DOI: 10.1128/JVI.01969-17
PubMed: 29212935
PubMed Central: PMC5809724


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1</title>
<author>
<name sortKey="Hurwitz, Stephanie N" sort="Hurwitz, Stephanie N" uniqKey="Hurwitz S" first="Stephanie N" last="Hurwitz">Stephanie N. Hurwitz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheerathodi, Mujeeb R" sort="Cheerathodi, Mujeeb R" uniqKey="Cheerathodi M" first="Mujeeb R" last="Cheerathodi">Mujeeb R. Cheerathodi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nkosi, Dingani" sort="Nkosi, Dingani" uniqKey="Nkosi D" first="Dingani" last="Nkosi">Dingani Nkosi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="York, Sara B" sort="York, Sara B" uniqKey="York S" first="Sara B" last="York">Sara B. York</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meckes, David G" sort="Meckes, David G" uniqKey="Meckes D" first="David G" last="Meckes">David G. Meckes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA david.meckes@med.fsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29212935</idno>
<idno type="pmid">29212935</idno>
<idno type="doi">10.1128/JVI.01969-17</idno>
<idno type="pmc">PMC5809724</idno>
<idno type="wicri:Area/Main/Corpus">000656</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000656</idno>
<idno type="wicri:Area/Main/Curation">000656</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000656</idno>
<idno type="wicri:Area/Main/Exploration">000656</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1</title>
<author>
<name sortKey="Hurwitz, Stephanie N" sort="Hurwitz, Stephanie N" uniqKey="Hurwitz S" first="Stephanie N" last="Hurwitz">Stephanie N. Hurwitz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheerathodi, Mujeeb R" sort="Cheerathodi, Mujeeb R" uniqKey="Cheerathodi M" first="Mujeeb R" last="Cheerathodi">Mujeeb R. Cheerathodi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nkosi, Dingani" sort="Nkosi, Dingani" uniqKey="Nkosi D" first="Dingani" last="Nkosi">Dingani Nkosi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="York, Sara B" sort="York, Sara B" uniqKey="York S" first="Sara B" last="York">Sara B. York</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meckes, David G" sort="Meckes, David G" uniqKey="Meckes D" first="David G" last="Meckes">David G. Meckes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA david.meckes@med.fsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (drug effects)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Endosomes (metabolism)</term>
<term>Epstein-Barr Virus Infections (virology)</term>
<term>Exocytosis (physiology)</term>
<term>Exosomes (metabolism)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Herpesviridae (metabolism)</term>
<term>Herpesvirus 4, Human (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Transport (physiology)</term>
<term>Secretory Vesicles (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Tetraspanin 30 (metabolism)</term>
<term>Tetraspanins (metabolism)</term>
<term>Trehalose (pharmacology)</term>
<term>Vacuoles (metabolism)</term>
<term>Vacuoles (ultrastructure)</term>
<term>Viral Matrix Proteins (genetics)</term>
<term>Viral Matrix Proteins (metabolism)</term>
<term>Virus Assembly (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antigène CD63 (métabolisme)</term>
<term>Assemblage viral (MeSH)</term>
<term>Autophagie (effets des médicaments et des substances chimiques)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Endosomes (métabolisme)</term>
<term>Exocytose (physiologie)</term>
<term>Exosomes (métabolisme)</term>
<term>Herpesviridae (métabolisme)</term>
<term>Herpèsvirus humain de type 4 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Infections à virus Epstein-Barr (virologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Protéines de la matrice virale (génétique)</term>
<term>Protéines de la matrice virale (métabolisme)</term>
<term>Sirolimus (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport des protéines (physiologie)</term>
<term>Tréhalose (pharmacologie)</term>
<term>Tétraspanines (métabolisme)</term>
<term>Vacuoles (métabolisme)</term>
<term>Vacuoles (ultrastructure)</term>
<term>Vésicules de sécrétion (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
<term>Tetraspanin 30</term>
<term>Tetraspanins</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Trehalose</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Autophagie</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de la matrice virale</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Exosomes</term>
<term>Herpesviridae</term>
<term>Herpesvirus 4, Human</term>
<term>Secretory Vesicles</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antigène CD63</term>
<term>Endosomes</term>
<term>Exosomes</term>
<term>Herpesviridae</term>
<term>Herpèsvirus humain de type 4</term>
<term>Protéines de la matrice virale</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Tétraspanines</term>
<term>Vacuoles</term>
<term>Vésicules de sécrétion</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Tréhalose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Exocytose</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Exocytosis</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à virus Epstein-Barr</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Epstein-Barr Virus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Proliferation</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Microscopy, Electron, Transmission</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Assemblage viral</term>
<term>Cellules HEK293</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Microscopie électronique à transmission</term>
<term>Prolifération cellulaire</term>
<term>Sirolimus</term>
<term>Transduction du signal</term>
<term>Vacuoles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells.
<b>IMPORTANCE</b>
The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major oncoprotein, LMP1, into vesicles for secretion. We have recently described a role of the host cell protein CD63 in regulating intracellular signaling of the viral oncoprotein by shuttling LMP1 into exosomes. Here, we provide strong evidence of the utility of CD63-dependent EVs in regulating global intracellular signaling, including mTOR activation by LMP1. We also demonstrate a key role of CD63 in coordinating endosomal and autophagic processes to regulate LMP1 levels within the cell. Overall, this study offers new insights into the complex intersection of cellular secretory and degradative mechanisms and the implications of these processes in viral replication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29212935</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01969-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01969-17</ELocationID>
<Abstract>
<AbstractText>The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells.
<b>IMPORTANCE</b>
The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major oncoprotein, LMP1, into vesicles for secretion. We have recently described a role of the host cell protein CD63 in regulating intracellular signaling of the viral oncoprotein by shuttling LMP1 into exosomes. Here, we provide strong evidence of the utility of CD63-dependent EVs in regulating global intracellular signaling, including mTOR activation by LMP1. We also demonstrate a key role of CD63 in coordinating endosomal and autophagic processes to regulate LMP1 levels within the cell. Overall, this study offers new insights into the complex intersection of cellular secretory and degradative mechanisms and the implications of these processes in viral replication.</AbstractText>
<CopyrightInformation>Copyright © 2018 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hurwitz</LastName>
<ForeName>Stephanie N</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheerathodi</LastName>
<ForeName>Mujeeb R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nkosi</LastName>
<ForeName>Dingani</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>York</LastName>
<ForeName>Sara B</ForeName>
<Initials>SB</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meckes</LastName>
<ForeName>David G</ForeName>
<Initials>DG</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA david.meckes@med.fsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA204621</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R15 CA188941</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C554586">CD63 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C037662">EBV-associated membrane antigen, Epstein-Barr virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485950">TSPAN32 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060149">Tetraspanin 30</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D059470">Tetraspanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>B8WCK70T7I</RegistryNumber>
<NameOfSubstance UI="D014199">Trehalose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546842">MTOR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020031" MajorTopicYN="N">Epstein-Barr Virus Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005089" MajorTopicYN="N">Exocytosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055354" MajorTopicYN="N">Exosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006564" MajorTopicYN="N">Herpesviridae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004854" MajorTopicYN="N">Herpesvirus 4, Human</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022142" MajorTopicYN="N">Secretory Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060149" MajorTopicYN="N">Tetraspanin 30</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059470" MajorTopicYN="N">Tetraspanins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014199" MajorTopicYN="N">Trehalose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Epstein-Barr virus</Keyword>
<Keyword MajorTopicYN="Y">amphisomes</Keyword>
<Keyword MajorTopicYN="Y">exosomes</Keyword>
<Keyword MajorTopicYN="Y">extracellular vesicles</Keyword>
<Keyword MajorTopicYN="Y">herpesvirus</Keyword>
<Keyword MajorTopicYN="Y">herpesviruses</Keyword>
<Keyword MajorTopicYN="Y">multivesicular bodies</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29212935</ArticleId>
<ArticleId IdType="pii">JVI.01969-17</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01969-17</ArticleId>
<ArticleId IdType="pmc">PMC5809724</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>F1000 Biol Rep. 2011;3:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 22;6:28423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27328819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jul 27;186(2):255-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19635843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;285:139-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Aug;86(16):8705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioarchitecture. 2013 Jan-Feb;3(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Dec;32(12):561-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Feb 23;9(416):fs2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26905424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 23;282(8):5641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunopathol. 2010 Dec;32(4):323-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Jan;4(1):46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18340111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2010 Jan;11(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Feb 28;91(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28053105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Nov 15;21(22):2861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Jun;9(6):654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1996 May;18(5):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8639161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26858453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Aug;84(Pt 8):1997-2008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Extracell Vesicles. 2014 Aug 04;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25143819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Jul;27(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17663981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Jul;84(Pt 7):1871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12810882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Oct;77(20):10917-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1988 Jun 1;48(11):2955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3365686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Feb 14;91(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27974566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2011 Jan 18;20(1):131-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21238931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 Sep;9(10):1728-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18637904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(18):9143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2001 Aug;58(9):1189-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11577978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2001 Oct;114(Pt 20):3619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9680-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Apr 12;6:23978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27068479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(24):12844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(3):1168-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2008 Mar 30;22(6):695-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Jun 19;7(6):3204-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26102580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2002 Aug;2(8):569-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1660:303-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28828667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2003 Nov;24(11):610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14596886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Nov 18;90(3):1387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26581990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Sep 10;73(10):1907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20601276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1144:209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24671686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2010 May;11(5):675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1995 Jan;66(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7750517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11030-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Feb;5(2):136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 1996 Nov;26(11):2657-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8921952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10592-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 Dec;3(6):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12479806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 Dec 27;7(52):86999-87015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27894104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2010 Sep;42(9):1416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Jan 15;243(1-2):240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9030745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Dec 11;32(24):3130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2008 Oct;48(4):1054-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18688877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Jun 1;30(11):2115-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Transl Med. 2010 Mar 26;8:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20338061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Feb 19;152(4):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2003;19:397-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14570575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2002 May;3(5):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Mar;32(3):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Mar 15;372(2):221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Jan;16(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2002 Nov;189:136-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2011 Dec;12(12):1659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21645191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2001 Sep;2(9):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 May 1;27(20):2833-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 May;10(5):480-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):179-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Nov;4(8):989-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18797192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 28;120(2):159-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 5;306(5698):990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21059916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Oct 20;246(4928):382-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2799391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Mar 1;69(5):1821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Dec 11;32(24):3116-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24219988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1996 Apr;109 ( Pt 4):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8718666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 May;3(5):e156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 May;89(10):5200-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1296-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Oct 22;6(4):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 9;315(5817):1398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Oct;6(10):801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Extracell Vesicles. 2016 Jul 13;5:31295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27421995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Feb 23;9(416):ra21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26905426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Hurwitz, Stephanie N" sort="Hurwitz, Stephanie N" uniqKey="Hurwitz S" first="Stephanie N" last="Hurwitz">Stephanie N. Hurwitz</name>
</region>
<name sortKey="Cheerathodi, Mujeeb R" sort="Cheerathodi, Mujeeb R" uniqKey="Cheerathodi M" first="Mujeeb R" last="Cheerathodi">Mujeeb R. Cheerathodi</name>
<name sortKey="Meckes, David G" sort="Meckes, David G" uniqKey="Meckes D" first="David G" last="Meckes">David G. Meckes</name>
<name sortKey="Nkosi, Dingani" sort="Nkosi, Dingani" uniqKey="Nkosi D" first="Dingani" last="Nkosi">Dingani Nkosi</name>
<name sortKey="York, Sara B" sort="York, Sara B" uniqKey="York S" first="Sara B" last="York">Sara B. York</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000465 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000465 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29212935
   |texte=   Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29212935" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020