Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.

Identifieur interne : 001002 ( Main/Corpus ); précédent : 001001; suivant : 001003

Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.

Auteurs : G J Mileski ; J A Bumpus ; M A Jurek ; S D Aust

Source :

RBID : pubmed:3223759

English descriptors

Abstract

Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).

DOI: 10.1128/AEM.54.12.2885-2889.1988
PubMed: 3223759
PubMed Central: PMC204399

Links to Exploration step

pubmed:3223759

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Mileski, G J" sort="Mileski, G J" uniqKey="Mileski G" first="G J" last="Mileski">G J Mileski</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Chemistry and Biochemistry Department, Utah State University, Logan 84322-4430.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bumpus, J A" sort="Bumpus, J A" uniqKey="Bumpus J" first="J A" last="Bumpus">J A Bumpus</name>
</author>
<author>
<name sortKey="Jurek, M A" sort="Jurek, M A" uniqKey="Jurek M" first="M A" last="Jurek">M A Jurek</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1988">1988</date>
<idno type="RBID">pubmed:3223759</idno>
<idno type="pmid">3223759</idno>
<idno type="pmc">PMC204399</idno>
<idno type="doi">10.1128/AEM.54.12.2885-2889.1988</idno>
<idno type="wicri:Area/Main/Corpus">001002</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Mileski, G J" sort="Mileski, G J" uniqKey="Mileski G" first="G J" last="Mileski">G J Mileski</name>
<affiliation>
<nlm:affiliation>Biotechnology Center, Chemistry and Biochemistry Department, Utah State University, Logan 84322-4430.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bumpus, J A" sort="Bumpus, J A" uniqKey="Bumpus J" first="J A" last="Bumpus">J A Bumpus</name>
</author>
<author>
<name sortKey="Jurek, M A" sort="Jurek, M A" uniqKey="Jurek M" first="M A" last="Jurek">M A Jurek</name>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1988" type="published">1988</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cell Division (drug effects)</term>
<term>Chlorophenols (metabolism)</term>
<term>Fungi (cytology)</term>
<term>Fungi (drug effects)</term>
<term>Fungi (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygenases (metabolism)</term>
<term>Pentachlorophenol (metabolism)</term>
<term>Pentachlorophenol (toxicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophenols</term>
<term>Oxygenases</term>
<term>Pentachlorophenol</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Division</term>
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Pentachlorophenol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Oxidation-Reduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3223759</PMID>
<DateCompleted>
<Year>1989</Year>
<Month>03</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>54</Volume>
<Issue>12</Issue>
<PubDate>
<Year>1988</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>2885-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mileski</LastName>
<ForeName>G J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Chemistry and Biochemistry Department, Utah State University, Logan 84322-4430.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bumpus</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jurek</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002733">Chlorophenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D9BSU0SE4T</RegistryNumber>
<NameOfSubstance UI="D010416">Pentachlorophenol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.-</RegistryNumber>
<NameOfSubstance UI="D010105">Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C044391">ligninase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002455" MajorTopicYN="N">Cell Division</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002733" MajorTopicYN="N">Chlorophenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010105" MajorTopicYN="N">Oxygenases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010416" MajorTopicYN="N">Pentachlorophenol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1988</Year>
<Month>12</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1988</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1988</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3223759</ArticleId>
<ArticleId IdType="pmc">PMC204399</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.54.12.2885-2889.1988</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1985 Jun 21;228(4706):1434-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3925550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 May;54(5):1143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3389809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jan 5;262(1):419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2432065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Sep;53(9):2001-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3674869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Nov;50(5):1274-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 May 25;261(15):6900-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3700421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1981 Aug;42(2):290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16345829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Dec 25;261(36):16948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:3223759
   |texte=   Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:3223759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020