Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.

Identifieur interne : 003225 ( Main/Exploration ); précédent : 003224; suivant : 003226

Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.

Auteurs : Keunho Cho [États-Unis] ; Heather Toler ; Jaehoon Lee ; Bonnie Ownley ; Jean C. Stutz ; Jennifer L. Moore ; Robert M. Augé

Source :

RBID : pubmed:16473656

Descripteurs français

English descriptors

Abstract

Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.

DOI: 10.1016/j.jplph.2005.05.003
PubMed: 16473656


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.</title>
<author>
<name sortKey="Cho, Keunho" sort="Cho, Keunho" uniqKey="Cho K" first="Keunho" last="Cho">Keunho Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Toler, Heather" sort="Toler, Heather" uniqKey="Toler H" first="Heather" last="Toler">Heather Toler</name>
</author>
<author>
<name sortKey="Lee, Jaehoon" sort="Lee, Jaehoon" uniqKey="Lee J" first="Jaehoon" last="Lee">Jaehoon Lee</name>
</author>
<author>
<name sortKey="Ownley, Bonnie" sort="Ownley, Bonnie" uniqKey="Ownley B" first="Bonnie" last="Ownley">Bonnie Ownley</name>
</author>
<author>
<name sortKey="Stutz, Jean C" sort="Stutz, Jean C" uniqKey="Stutz J" first="Jean C" last="Stutz">Jean C. Stutz</name>
</author>
<author>
<name sortKey="Moore, Jennifer L" sort="Moore, Jennifer L" uniqKey="Moore J" first="Jennifer L" last="Moore">Jennifer L. Moore</name>
</author>
<author>
<name sortKey="Auge, Robert M" sort="Auge, Robert M" uniqKey="Auge R" first="Robert M" last="Augé">Robert M. Augé</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16473656</idno>
<idno type="pmid">16473656</idno>
<idno type="doi">10.1016/j.jplph.2005.05.003</idno>
<idno type="wicri:Area/Main/Corpus">003345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003345</idno>
<idno type="wicri:Area/Main/Curation">003345</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003345</idno>
<idno type="wicri:Area/Main/Exploration">003345</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.</title>
<author>
<name sortKey="Cho, Keunho" sort="Cho, Keunho" uniqKey="Cho K" first="Keunho" last="Cho">Keunho Cho</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Toler, Heather" sort="Toler, Heather" uniqKey="Toler H" first="Heather" last="Toler">Heather Toler</name>
</author>
<author>
<name sortKey="Lee, Jaehoon" sort="Lee, Jaehoon" uniqKey="Lee J" first="Jaehoon" last="Lee">Jaehoon Lee</name>
</author>
<author>
<name sortKey="Ownley, Bonnie" sort="Ownley, Bonnie" uniqKey="Ownley B" first="Bonnie" last="Ownley">Bonnie Ownley</name>
</author>
<author>
<name sortKey="Stutz, Jean C" sort="Stutz, Jean C" uniqKey="Stutz J" first="Jean C" last="Stutz">Jean C. Stutz</name>
</author>
<author>
<name sortKey="Moore, Jennifer L" sort="Moore, Jennifer L" uniqKey="Moore J" first="Jennifer L" last="Moore">Jennifer L. Moore</name>
</author>
<author>
<name sortKey="Auge, Robert M" sort="Auge, Robert M" uniqKey="Auge R" first="Robert M" last="Augé">Robert M. Augé</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant physiology</title>
<idno type="ISSN">0176-1617</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Osmotic Pressure (MeSH)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plant Shoots (microbiology)</term>
<term>Plant Shoots (physiology)</term>
<term>Sodium Chloride (metabolism)</term>
<term>Soil (analysis)</term>
<term>Sorghum (growth & development)</term>
<term>Sorghum (microbiology)</term>
<term>Sorghum (physiology)</term>
<term>Symbiosis (physiology)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Chlorure de sodium (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (microbiologie)</term>
<term>Pousses de plante (physiologie)</term>
<term>Pression osmotique (MeSH)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Sol (analyse)</term>
<term>Sorghum (croissance et développement)</term>
<term>Sorghum (microbiologie)</term>
<term>Sorghum (physiologie)</term>
<term>Symbiose (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium Chloride</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Sorghum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorure de sodium</term>
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Mycorhizes</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Sorghum</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
<term>Sorghum</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Osmotic Pressure</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Pression osmotique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16473656</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0176-1617</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>163</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant physiology</Title>
<ISOAbbreviation>J Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>517-28</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) symbiosis can confer increased host resistance to drought stress, although the effect is unpredictable. Since AM symbiosis also frequently increases host resistance to salinity stress, and since drought and salinity stress are often linked in drying soils, we speculated that the AM influence on plant drought response may be partially the result of AM influence on salinity stress. We tested the hypothesis that AM-induced effects on drought responses would be more pronounced when plants of comparable size are exposed to drought in salinized soils. In two greenhouse experiments, several water relations characteristics were measured in sorghum plants colonized by Glomus intraradices (Gi), Gigaspora margarita (Gm) or a mixture of AM species, during a sustained drought following exposure to salinity treatments (NaCl stress, osmotic stress via concentrated macronutrients, or soil leaching). The presence of excess salt in soils widened the difference in drought responses between AM and nonAM plants in just two instances. Days required for plants to reach stomatal closure were similar for Gi and nonAM plants exposed to drought alone, but with exposure to combined NaCl and drought stress, stomates of Gi plants remained open 17-22% longer than in nonAM plants. Promotion of stomatal conductance by Gm occurred with exposure to NaCl/drought stress but not with drought alone or with soil leaching before drought. In other instances, however, the addition of salt tended to nullify an AM-induced change in drought response. Our findings confirm that AM fungi can alter host response to drought but do not lend much support to the idea that AM-induced salt resistance might help explain why AM plants can be more resilient to drought stress than their nonAM counterparts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Keunho</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Toler</LastName>
<ForeName>Heather</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Jaehoon</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ownley</LastName>
<ForeName>Bonnie</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stutz</LastName>
<ForeName>Jean C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Jennifer L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Augé</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Plant Physiol</MedlineTA>
<NlmUniqueID>9882059</NlmUniqueID>
<ISSNLinking>0176-1617</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16473656</ArticleId>
<ArticleId IdType="pii">S0176-1617(05)00186-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jplph.2005.05.003</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Auge, Robert M" sort="Auge, Robert M" uniqKey="Auge R" first="Robert M" last="Augé">Robert M. Augé</name>
<name sortKey="Lee, Jaehoon" sort="Lee, Jaehoon" uniqKey="Lee J" first="Jaehoon" last="Lee">Jaehoon Lee</name>
<name sortKey="Moore, Jennifer L" sort="Moore, Jennifer L" uniqKey="Moore J" first="Jennifer L" last="Moore">Jennifer L. Moore</name>
<name sortKey="Ownley, Bonnie" sort="Ownley, Bonnie" uniqKey="Ownley B" first="Bonnie" last="Ownley">Bonnie Ownley</name>
<name sortKey="Stutz, Jean C" sort="Stutz, Jean C" uniqKey="Stutz J" first="Jean C" last="Stutz">Jean C. Stutz</name>
<name sortKey="Toler, Heather" sort="Toler, Heather" uniqKey="Toler H" first="Heather" last="Toler">Heather Toler</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Cho, Keunho" sort="Cho, Keunho" uniqKey="Cho K" first="Keunho" last="Cho">Keunho Cho</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16473656
   |texte=   Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16473656" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020