Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.

Identifieur interne : 003464 ( Main/Corpus ); précédent : 003463; suivant : 003465

Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.

Auteurs : Facundo Rivera-Becerril ; Diederik Van Tuinen ; Fabrice Martin-Laurent ; Ashraf Metwally ; Karl-Josef Dietz ; Silvio Gianinazzi ; Vivienne Gianinazzi-Pearson

Source :

RBID : pubmed:16136340

English descriptors

Abstract

Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.

DOI: 10.1007/s00572-005-0016-7
PubMed: 16136340

Links to Exploration step

pubmed:16136340

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.</title>
<author>
<name sortKey="Rivera Becerril, Facundo" sort="Rivera Becerril, Facundo" uniqKey="Rivera Becerril F" first="Facundo" last="Rivera-Becerril">Facundo Rivera-Becerril</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Depto. El Hombre y su Ambiente, CBS, Universidad Autónoma Metropolitana-Xochimilco, Calz. del Hueso 1100, Col. Villa Quietud, 04960, México DF, Mexico.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Tuinen, Diederik" sort="Van Tuinen, Diederik" uniqKey="Van Tuinen D" first="Diederik" last="Van Tuinen">Diederik Van Tuinen</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin Laurent, Fabrice" sort="Martin Laurent, Fabrice" uniqKey="Martin Laurent F" first="Fabrice" last="Martin-Laurent">Fabrice Martin-Laurent</name>
<affiliation>
<nlm:affiliation>Microbiologie et Géochimie des Sols, UMR A111 INRA/U. Bourgogne, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Metwally, Ashraf" sort="Metwally, Ashraf" uniqKey="Metwally A" first="Ashraf" last="Metwally">Ashraf Metwally</name>
<affiliation>
<nlm:affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Botany Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
<affiliation>
<nlm:affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gianinazzi, Silvio" sort="Gianinazzi, Silvio" uniqKey="Gianinazzi S" first="Silvio" last="Gianinazzi">Silvio Gianinazzi</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gianinazzi Pearson, Vivienne" sort="Gianinazzi Pearson, Vivienne" uniqKey="Gianinazzi Pearson V" first="Vivienne" last="Gianinazzi-Pearson">Vivienne Gianinazzi-Pearson</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France. Vivienne.Gianinazzi-Pearson@epoisses.inra.fr.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16136340</idno>
<idno type="pmid">16136340</idno>
<idno type="doi">10.1007/s00572-005-0016-7</idno>
<idno type="wicri:Area/Main/Corpus">003464</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003464</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.</title>
<author>
<name sortKey="Rivera Becerril, Facundo" sort="Rivera Becerril, Facundo" uniqKey="Rivera Becerril F" first="Facundo" last="Rivera-Becerril">Facundo Rivera-Becerril</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Depto. El Hombre y su Ambiente, CBS, Universidad Autónoma Metropolitana-Xochimilco, Calz. del Hueso 1100, Col. Villa Quietud, 04960, México DF, Mexico.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Tuinen, Diederik" sort="Van Tuinen, Diederik" uniqKey="Van Tuinen D" first="Diederik" last="Van Tuinen">Diederik Van Tuinen</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martin Laurent, Fabrice" sort="Martin Laurent, Fabrice" uniqKey="Martin Laurent F" first="Fabrice" last="Martin-Laurent">Fabrice Martin-Laurent</name>
<affiliation>
<nlm:affiliation>Microbiologie et Géochimie des Sols, UMR A111 INRA/U. Bourgogne, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Metwally, Ashraf" sort="Metwally, Ashraf" uniqKey="Metwally A" first="Ashraf" last="Metwally">Ashraf Metwally</name>
<affiliation>
<nlm:affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Botany Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
<affiliation>
<nlm:affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gianinazzi, Silvio" sort="Gianinazzi, Silvio" uniqKey="Gianinazzi S" first="Silvio" last="Gianinazzi">Silvio Gianinazzi</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gianinazzi Pearson, Vivienne" sort="Gianinazzi Pearson, Vivienne" uniqKey="Gianinazzi Pearson V" first="Vivienne" last="Gianinazzi-Pearson">Vivienne Gianinazzi-Pearson</name>
<affiliation>
<nlm:affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France. Vivienne.Gianinazzi-Pearson@epoisses.inra.fr.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="ISSN">0940-6360</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Cadmium (metabolism)</term>
<term>Cadmium (toxicity)</term>
<term>Chitinases (biosynthesis)</term>
<term>Chitinases (genetics)</term>
<term>Fungal Proteins (biosynthesis)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungi (growth & development)</term>
<term>Fungi (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutamate-Cysteine Ligase (biosynthesis)</term>
<term>Glutamate-Cysteine Ligase (genetics)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (analysis)</term>
<term>Glutathione Synthase (biosynthesis)</term>
<term>Glutathione Synthase (genetics)</term>
<term>Heat-Shock Proteins (biosynthesis)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Metallothionein (biosynthesis)</term>
<term>Metallothionein (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Peas (drug effects)</term>
<term>Peas (growth & development)</term>
<term>Peas (metabolism)</term>
<term>Peas (microbiology)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (microbiology)</term>
<term>RNA, Messenger (analysis)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Sulfhydryl Compounds (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glutathione</term>
<term>RNA, Messenger</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Glutamate-Cysteine Ligase</term>
<term>Glutathione Synthase</term>
<term>Heat-Shock Proteins</term>
<term>Metallothionein</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Glutamate-Cysteine Ligase</term>
<term>Glutathione Synthase</term>
<term>Heat-Shock Proteins</term>
<term>Metallothionein</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Peas</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fungi</term>
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Mycorrhizae</term>
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Peas</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Biomass</term>
<term>Gene Expression Regulation, Plant</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16136340</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0940-6360</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2005</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.</ArticleTitle>
<Pagination>
<MedlinePgn>51-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-005-0016-7</ELocationID>
<Abstract>
<AbstractText>Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rivera-Becerril</LastName>
<ForeName>Facundo</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Depto. El Hombre y su Ambiente, CBS, Universidad Autónoma Metropolitana-Xochimilco, Calz. del Hueso 1100, Col. Villa Quietud, 04960, México DF, Mexico.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Tuinen</LastName>
<ForeName>Diederik</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin-Laurent</LastName>
<ForeName>Fabrice</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Microbiologie et Géochimie des Sols, UMR A111 INRA/U. Bourgogne, BP 86510, 21065, Dijon Cédex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Metwally</LastName>
<ForeName>Ashraf</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Botany Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dietz</LastName>
<ForeName>Karl-Josef</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology and Biochemistry of Plants, University of Bielefeld, Universitätstraße 25, 33501, Bielefeld, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gianinazzi</LastName>
<ForeName>Silvio</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gianinazzi-Pearson</LastName>
<ForeName>Vivienne</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>UMR 1088 INRA/5184 CNRS/U., Bourgogne Plante-Microbe-Environnement, INRA-CMSE, BP 86510, 21065, Dijon Cédex, France. Vivienne.Gianinazzi-Pearson@epoisses.inra.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C402172">homoglutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9038-94-2</RegistryNumber>
<NameOfSubstance UI="D008668">Metallothionein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.14</RegistryNumber>
<NameOfSubstance UI="D002688">Chitinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.2</RegistryNumber>
<NameOfSubstance UI="D005721">Glutamate-Cysteine Ligase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.3</RegistryNumber>
<NameOfSubstance UI="D005981">Glutathione Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="N">Cadmium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002688" MajorTopicYN="N">Chitinases</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005721" MajorTopicYN="N">Glutamate-Cysteine Ligase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005981" MajorTopicYN="N">Glutathione Synthase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008668" MajorTopicYN="N">Metallothionein</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16136340</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-005-0016-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-005-0016-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1999 Dec;121(4):1169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10594104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1351-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1871-1883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2003 Jun;26(6):821-833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12803610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2004 Mar 4;108(2):95-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15129719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):58-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Mar 12;262(1):29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2318309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Oct;11(10 ):3491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1396551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(2):439-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1999 Aug;106(2):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15093044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 May 25;17(10):4000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2734114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 May;52(358):1101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jun;99(2):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):1048-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(371):1177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Nov;35(5):641-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1998 Nov 1;264(1):98-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Aug;93(4):1579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 15;30(24):5579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Nov;109(3):945-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8552721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 May;49(1):81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12008901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):718-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2004 Jan;56(1):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14706746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Mar;51(4):589-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003464 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 003464 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16136340
   |texte=   Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:16136340" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020