Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.

Identifieur interne : 001280 ( Main/Corpus ); précédent : 001279; suivant : 001281

The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.

Auteurs : Tidhar Turgeman ; Olga Lubinsky ; Nurit Roth-Bejerano ; Varda Kagan-Zur ; Yoram Kapulnik ; Hinanit Koltai ; Eli Zaady ; Shimon Ben-Shabat ; Ofer Guy ; Efraim Lewinsohn ; Yaron Sitrit

Source :

RBID : pubmed:26563200

English descriptors

Abstract

The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.

DOI: 10.1007/s00572-015-0667-y
PubMed: 26563200

Links to Exploration step

pubmed:26563200

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.</title>
<author>
<name sortKey="Turgeman, Tidhar" sort="Turgeman, Tidhar" uniqKey="Turgeman T" first="Tidhar" last="Turgeman">Tidhar Turgeman</name>
<affiliation>
<nlm:affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lubinsky, Olga" sort="Lubinsky, Olga" uniqKey="Lubinsky O" first="Olga" last="Lubinsky">Olga Lubinsky</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roth Bejerano, Nurit" sort="Roth Bejerano, Nurit" uniqKey="Roth Bejerano N" first="Nurit" last="Roth-Bejerano">Nurit Roth-Bejerano</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kagan Zur, Varda" sort="Kagan Zur, Varda" uniqKey="Kagan Zur V" first="Varda" last="Kagan-Zur">Varda Kagan-Zur</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kapulnik, Yoram" sort="Kapulnik, Yoram" uniqKey="Kapulnik Y" first="Yoram" last="Kapulnik">Yoram Kapulnik</name>
<affiliation>
<nlm:affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koltai, Hinanit" sort="Koltai, Hinanit" uniqKey="Koltai H" first="Hinanit" last="Koltai">Hinanit Koltai</name>
<affiliation>
<nlm:affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaady, Eli" sort="Zaady, Eli" uniqKey="Zaady E" first="Eli" last="Zaady">Eli Zaady</name>
<affiliation>
<nlm:affiliation>Agricultural Research Organization, Gilat Research Center, 85280, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ben Shabat, Shimon" sort="Ben Shabat, Shimon" uniqKey="Ben Shabat S" first="Shimon" last="Ben-Shabat">Shimon Ben-Shabat</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guy, Ofer" sort="Guy, Ofer" uniqKey="Guy O" first="Ofer" last="Guy">Ofer Guy</name>
<affiliation>
<nlm:affiliation>Desert Agro-Research Center, Ramat-Negev R & D, D.N, 85515, Halutza, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewinsohn, Efraim" sort="Lewinsohn, Efraim" uniqKey="Lewinsohn E" first="Efraim" last="Lewinsohn">Efraim Lewinsohn</name>
<affiliation>
<nlm:affiliation>Department of Vegetable Crops, Newe Yaár Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitrit, Yaron" sort="Sitrit, Yaron" uniqKey="Sitrit Y" first="Yaron" last="Sitrit">Yaron Sitrit</name>
<affiliation>
<nlm:affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. sitrit@bgu.ac.il.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26563200</idno>
<idno type="pmid">26563200</idno>
<idno type="doi">10.1007/s00572-015-0667-y</idno>
<idno type="wicri:Area/Main/Corpus">001280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.</title>
<author>
<name sortKey="Turgeman, Tidhar" sort="Turgeman, Tidhar" uniqKey="Turgeman T" first="Tidhar" last="Turgeman">Tidhar Turgeman</name>
<affiliation>
<nlm:affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lubinsky, Olga" sort="Lubinsky, Olga" uniqKey="Lubinsky O" first="Olga" last="Lubinsky">Olga Lubinsky</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roth Bejerano, Nurit" sort="Roth Bejerano, Nurit" uniqKey="Roth Bejerano N" first="Nurit" last="Roth-Bejerano">Nurit Roth-Bejerano</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kagan Zur, Varda" sort="Kagan Zur, Varda" uniqKey="Kagan Zur V" first="Varda" last="Kagan-Zur">Varda Kagan-Zur</name>
<affiliation>
<nlm:affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kapulnik, Yoram" sort="Kapulnik, Yoram" uniqKey="Kapulnik Y" first="Yoram" last="Kapulnik">Yoram Kapulnik</name>
<affiliation>
<nlm:affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koltai, Hinanit" sort="Koltai, Hinanit" uniqKey="Koltai H" first="Hinanit" last="Koltai">Hinanit Koltai</name>
<affiliation>
<nlm:affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zaady, Eli" sort="Zaady, Eli" uniqKey="Zaady E" first="Eli" last="Zaady">Eli Zaady</name>
<affiliation>
<nlm:affiliation>Agricultural Research Organization, Gilat Research Center, 85280, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ben Shabat, Shimon" sort="Ben Shabat, Shimon" uniqKey="Ben Shabat S" first="Shimon" last="Ben-Shabat">Shimon Ben-Shabat</name>
<affiliation>
<nlm:affiliation>Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guy, Ofer" sort="Guy, Ofer" uniqKey="Guy O" first="Ofer" last="Guy">Ofer Guy</name>
<affiliation>
<nlm:affiliation>Desert Agro-Research Center, Ramat-Negev R & D, D.N, 85515, Halutza, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lewinsohn, Efraim" sort="Lewinsohn, Efraim" uniqKey="Lewinsohn E" first="Efraim" last="Lewinsohn">Efraim Lewinsohn</name>
<affiliation>
<nlm:affiliation>Department of Vegetable Crops, Newe Yaár Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, Israel.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitrit, Yaron" sort="Sitrit, Yaron" uniqKey="Sitrit Y" first="Yaron" last="Sitrit">Yaron Sitrit</name>
<affiliation>
<nlm:affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. sitrit@bgu.ac.il.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis (physiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Ascomycota (metabolism)</term>
<term>Cistaceae (metabolism)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Ascomycota</term>
<term>Cistaceae</term>
<term>Indoleacetic Acids</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26563200</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.</ArticleTitle>
<Pagination>
<MedlinePgn>287-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-015-0667-y</ELocationID>
<Abstract>
<AbstractText>The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root-fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Turgeman</LastName>
<ForeName>Tidhar</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lubinsky</LastName>
<ForeName>Olga</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roth-Bejerano</LastName>
<ForeName>Nurit</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kagan-Zur</LastName>
<ForeName>Varda</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Life Sciences Department, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kapulnik</LastName>
<ForeName>Yoram</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Koltai</LastName>
<ForeName>Hinanit</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, 50250, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zaady</LastName>
<ForeName>Eli</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Agricultural Research Organization, Gilat Research Center, 85280, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ben-Shabat</LastName>
<ForeName>Shimon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guy</LastName>
<ForeName>Ofer</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Desert Agro-Research Center, Ramat-Negev R & D, D.N, 85515, Halutza, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lewinsohn</LastName>
<ForeName>Efraim</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Vegetable Crops, Newe Yaár Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, Israel.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sitrit</LastName>
<ForeName>Yaron</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel. sitrit@bgu.ac.il.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030601" MajorTopicYN="N">Cistaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Auxin</Keyword>
<Keyword MajorTopicYN="N">Desert truffle</Keyword>
<Keyword MajorTopicYN="N">Gravitropism</Keyword>
<Keyword MajorTopicYN="N">Helianthemum sessiliflorum</Keyword>
<Keyword MajorTopicYN="N">Terfezia boudieri</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26563200</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-015-0667-y</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-015-0667-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1130-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23252740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Dec;133(4):1677-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(11):3129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23425316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Dec;238(6):1171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23925852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Apr 15;18(8):2066-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10205161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):144-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 May;161(5):509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15202707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2015 May;25(4):243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 May;36(5):909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17 ):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jan 15;482(7383):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Aug;23 (11):785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12839732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2011 Jan;61(1):64-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21052657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Feb;25(1):62-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jun 18;4:186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23785372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):722-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1838-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):2018-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:705-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19152486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Oct;21(7):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21416258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 Jan 23;32(2):260-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23211744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Feb;13(2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10659705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1944 Jul;19(3):440-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 May 6;23(9):817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jul 15;12(14):2175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9679062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):1762-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562236</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26563200
   |texte=   The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26563200" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020