Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.

Identifieur interne : 000302 ( Main/Corpus ); précédent : 000301; suivant : 000303

A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.

Auteurs : Tian Zeng ; Luis Rodriguez-Moreno ; Artem Mansurkhodzaev ; Peng Wang ; Willy Van Den Berg ; Virginie Gasciolli ; Sylvain Cottaz ; Sébastien Fort ; Bart P H J. Thomma ; Jean-Jacques Bono ; Ton Bisseling ; Erik Limpens

Source :

RBID : pubmed:31596956

English descriptors

Abstract

Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.

DOI: 10.1111/nph.16245
PubMed: 31596956
PubMed Central: PMC6916333

Links to Exploration step

pubmed:31596956

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Zeng, Tian" sort="Zeng, Tian" uniqKey="Zeng T" first="Tian" last="Zeng">Tian Zeng</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Moreno, Luis" sort="Rodriguez Moreno, Luis" uniqKey="Rodriguez Moreno L" first="Luis" last="Rodriguez-Moreno">Luis Rodriguez-Moreno</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mansurkhodzaev, Artem" sort="Mansurkhodzaev, Artem" uniqKey="Mansurkhodzaev A" first="Artem" last="Mansurkhodzaev">Artem Mansurkhodzaev</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Peng" sort="Wang, Peng" uniqKey="Wang P" first="Peng" last="Wang">Peng Wang</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Willy" sort="Van Den Berg, Willy" uniqKey="Van Den Berg W" first="Willy" last="Van Den Berg">Willy Van Den Berg</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gasciolli, Virginie" sort="Gasciolli, Virginie" uniqKey="Gasciolli V" first="Virginie" last="Gasciolli">Virginie Gasciolli</name>
<affiliation>
<nlm:affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
<affiliation>
<nlm:affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fort, Sebastien" sort="Fort, Sebastien" uniqKey="Fort S" first="Sébastien" last="Fort">Sébastien Fort</name>
<affiliation>
<nlm:affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomma, Bart P H J" sort="Thomma, Bart P H J" uniqKey="Thomma B" first="Bart P H J" last="Thomma">Bart P H J. Thomma</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bono, Jean Jacques" sort="Bono, Jean Jacques" uniqKey="Bono J" first="Jean-Jacques" last="Bono">Jean-Jacques Bono</name>
<affiliation>
<nlm:affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31596956</idno>
<idno type="pmid">31596956</idno>
<idno type="doi">10.1111/nph.16245</idno>
<idno type="pmc">PMC6916333</idno>
<idno type="wicri:Area/Main/Corpus">000302</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000302</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.</title>
<author>
<name sortKey="Zeng, Tian" sort="Zeng, Tian" uniqKey="Zeng T" first="Tian" last="Zeng">Tian Zeng</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Moreno, Luis" sort="Rodriguez Moreno, Luis" uniqKey="Rodriguez Moreno L" first="Luis" last="Rodriguez-Moreno">Luis Rodriguez-Moreno</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mansurkhodzaev, Artem" sort="Mansurkhodzaev, Artem" uniqKey="Mansurkhodzaev A" first="Artem" last="Mansurkhodzaev">Artem Mansurkhodzaev</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Peng" sort="Wang, Peng" uniqKey="Wang P" first="Peng" last="Wang">Peng Wang</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Willy" sort="Van Den Berg, Willy" uniqKey="Van Den Berg W" first="Willy" last="Van Den Berg">Willy Van Den Berg</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gasciolli, Virginie" sort="Gasciolli, Virginie" uniqKey="Gasciolli V" first="Virginie" last="Gasciolli">Virginie Gasciolli</name>
<affiliation>
<nlm:affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
<affiliation>
<nlm:affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fort, Sebastien" sort="Fort, Sebastien" uniqKey="Fort S" first="Sébastien" last="Fort">Sébastien Fort</name>
<affiliation>
<nlm:affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thomma, Bart P H J" sort="Thomma, Bart P H J" uniqKey="Thomma B" first="Bart P H J" last="Thomma">Bart P H J. Thomma</name>
<affiliation>
<nlm:affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bono, Jean Jacques" sort="Bono, Jean Jacques" uniqKey="Bono J" first="Jean-Jacques" last="Bono">Jean-Jacques Bono</name>
<affiliation>
<nlm:affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bisseling, Ton" sort="Bisseling, Ton" uniqKey="Bisseling T" first="Ton" last="Bisseling">Ton Bisseling</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Limpens, Erik" sort="Limpens, Erik" uniqKey="Limpens E" first="Erik" last="Limpens">Erik Limpens</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Chitin (analogs & derivatives)</term>
<term>Chitin (metabolism)</term>
<term>Chitinases (metabolism)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Silencing (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (physiology)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Lysine (metabolism)</term>
<term>Mycelium (metabolism)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Immunity (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Chitin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chitin</term>
<term>Chitinases</term>
<term>Fungal Proteins</term>
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mycelium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Gene Silencing</term>
<term>Genes, Fungal</term>
<term>Host-Pathogen Interactions</term>
<term>Plant Immunity</term>
<term>Symbiosis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31596956</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.</ArticleTitle>
<Pagination>
<MedlinePgn>448-460</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16245</ELocationID>
<Abstract>
<AbstractText>Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Tian</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-0315-7658</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez-Moreno</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-2385-8782</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansurkhodzaev</LastName>
<ForeName>Artem</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van den Berg</LastName>
<ForeName>Willy</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gasciolli</LastName>
<ForeName>Virginie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cottaz</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fort</LastName>
<ForeName>Sébastien</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-6133-9900</Identifier>
<AffiliationInfo>
<Affiliation>CNRS, CERMAV, University Grenoble Alpes, UPR 5301, 38041, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomma</LastName>
<ForeName>Bart P H J</ForeName>
<Initials>BPHJ</Initials>
<Identifier Source="ORCID">0000-0003-4125-4181</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bono</LastName>
<ForeName>Jean-Jacques</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bisseling</LastName>
<ForeName>Ton</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Limpens</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">0000-0002-9668-4085</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493484">oligochitosan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1398-61-4</RegistryNumber>
<NameOfSubstance UI="D002686">Chitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.14</RegistryNumber>
<NameOfSubstance UI="D002688">Chitinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002686" MajorTopicYN="N">Chitin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002688" MajorTopicYN="N">Chitinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">LysM</Keyword>
<Keyword MajorTopicYN="Y">arbuscular mycorrhiza</Keyword>
<Keyword MajorTopicYN="Y">chitin</Keyword>
<Keyword MajorTopicYN="Y">effector</Keyword>
<Keyword MajorTopicYN="Y">plant immunity</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31596956</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16245</ArticleId>
<ArticleId IdType="pmc">PMC6916333</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2016 Apr;29(4):277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26757243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jul 02;2:e00790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Jan;10(1):130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26046255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 07;14:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23647797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Mar 01;7:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Apr;32(4):489-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Dec;220(4):1161-1171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29355972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 May;94(3):411-425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29570877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1420-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Dec 20;67(6):1131-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1760841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Feb 1;61(3):482-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Sep;211(4):1202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27136716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 May 26;3:17073</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28548655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2016 Mar 21;1(6):16033</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27572831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 23;3:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25340959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E8118-E8127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28874587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24073880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Feb;25(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):756-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21467214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(1):224-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25919491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Sep;211(4):1323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2015 Mar;39(2):171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25725011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:503-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Dec;212(4):896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27329426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2014 Nov 21;3(11):839-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24933124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2312-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26839127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(3):510-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21978245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 26;21(14):1204-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1671-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Oct;23(10):3812-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25329881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Oct;64(2):204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Feb 09;17:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26861502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):1360-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24642938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 May;18(4):596-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27911046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Aug 20;329(5994):953-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(2):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21223389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1040-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jun;53(373):1377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000302 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000302 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31596956
   |texte=   A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31596956" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020