Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.

Identifieur interne : 000301 ( Main/Corpus ); précédent : 000300; suivant : 000302

Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.

Auteurs : Mireille Chabaud ; Joëlle Fournier ; Lukas Brichet ; Iltaf Abdou-Pavy ; Leandro Imanishi ; Laurent Brottier ; Elodie Pirolles ; Valérie Hocher ; Claudine Franche ; Didier Bogusz ; Luis G. Wall ; Sergio Svistoonoff ; Hassen Gherbi ; David G. Barker

Source :

RBID : pubmed:31600251

English descriptors

Abstract

Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.

DOI: 10.1371/journal.pone.0223149
PubMed: 31600251
PubMed Central: PMC6786586

Links to Exploration step

pubmed:31600251

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.</title>
<author>
<name sortKey="Chabaud, Mireille" sort="Chabaud, Mireille" uniqKey="Chabaud M" first="Mireille" last="Chabaud">Mireille Chabaud</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Joelle" sort="Fournier, Joelle" uniqKey="Fournier J" first="Joëlle" last="Fournier">Joëlle Fournier</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brichet, Lukas" sort="Brichet, Lukas" uniqKey="Brichet L" first="Lukas" last="Brichet">Lukas Brichet</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abdou Pavy, Iltaf" sort="Abdou Pavy, Iltaf" uniqKey="Abdou Pavy I" first="Iltaf" last="Abdou-Pavy">Iltaf Abdou-Pavy</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Imanishi, Leandro" sort="Imanishi, Leandro" uniqKey="Imanishi L" first="Leandro" last="Imanishi">Leandro Imanishi</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brottier, Laurent" sort="Brottier, Laurent" uniqKey="Brottier L" first="Laurent" last="Brottier">Laurent Brottier</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pirolles, Elodie" sort="Pirolles, Elodie" uniqKey="Pirolles E" first="Elodie" last="Pirolles">Elodie Pirolles</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
<affiliation>
<nlm:affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
<affiliation>
<nlm:affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wall, Luis G" sort="Wall, Luis G" uniqKey="Wall L" first="Luis G" last="Wall">Luis G. Wall</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barker, David G" sort="Barker, David G" uniqKey="Barker D" first="David G" last="Barker">David G. Barker</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31600251</idno>
<idno type="pmid">31600251</idno>
<idno type="doi">10.1371/journal.pone.0223149</idno>
<idno type="pmc">PMC6786586</idno>
<idno type="wicri:Area/Main/Corpus">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000301</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.</title>
<author>
<name sortKey="Chabaud, Mireille" sort="Chabaud, Mireille" uniqKey="Chabaud M" first="Mireille" last="Chabaud">Mireille Chabaud</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fournier, Joelle" sort="Fournier, Joelle" uniqKey="Fournier J" first="Joëlle" last="Fournier">Joëlle Fournier</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brichet, Lukas" sort="Brichet, Lukas" uniqKey="Brichet L" first="Lukas" last="Brichet">Lukas Brichet</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Abdou Pavy, Iltaf" sort="Abdou Pavy, Iltaf" uniqKey="Abdou Pavy I" first="Iltaf" last="Abdou-Pavy">Iltaf Abdou-Pavy</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Imanishi, Leandro" sort="Imanishi, Leandro" uniqKey="Imanishi L" first="Leandro" last="Imanishi">Leandro Imanishi</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brottier, Laurent" sort="Brottier, Laurent" uniqKey="Brottier L" first="Laurent" last="Brottier">Laurent Brottier</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pirolles, Elodie" sort="Pirolles, Elodie" uniqKey="Pirolles E" first="Elodie" last="Pirolles">Elodie Pirolles</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hocher, Valerie" sort="Hocher, Valerie" uniqKey="Hocher V" first="Valérie" last="Hocher">Valérie Hocher</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Franche, Claudine" sort="Franche, Claudine" uniqKey="Franche C" first="Claudine" last="Franche">Claudine Franche</name>
<affiliation>
<nlm:affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bogusz, Didier" sort="Bogusz, Didier" uniqKey="Bogusz D" first="Didier" last="Bogusz">Didier Bogusz</name>
<affiliation>
<nlm:affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wall, Luis G" sort="Wall, Luis G" uniqKey="Wall L" first="Luis G" last="Wall">Luis G. Wall</name>
<affiliation>
<nlm:affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Svistoonoff, Sergio" sort="Svistoonoff, Sergio" uniqKey="Svistoonoff S" first="Sergio" last="Svistoonoff">Sergio Svistoonoff</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gherbi, Hassen" sort="Gherbi, Hassen" uniqKey="Gherbi H" first="Hassen" last="Gherbi">Hassen Gherbi</name>
<affiliation>
<nlm:affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barker, David G" sort="Barker, David G" uniqKey="Barker D" first="David G" last="Barker">David G. Barker</name>
<affiliation>
<nlm:affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fabaceae (genetics)</term>
<term>Fabaceae (growth & development)</term>
<term>Fabaceae (microbiology)</term>
<term>Fagales (genetics)</term>
<term>Fagales (growth & development)</term>
<term>Fagales (microbiology)</term>
<term>Frankia (genetics)</term>
<term>Frankia (growth & development)</term>
<term>Frankia (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Nitrogen Fixation (genetics)</term>
<term>Oligosaccharides (genetics)</term>
<term>Plant Root Nodulation (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (microbiology)</term>
<term>Signal Transduction (genetics)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligosaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fabaceae</term>
<term>Fagales</term>
<term>Frankia</term>
<term>Nitrogen Fixation</term>
<term>Plant Root Nodulation</term>
<term>Plant Roots</term>
<term>Signal Transduction</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Fabaceae</term>
<term>Fagales</term>
<term>Frankia</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Frankia</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fabaceae</term>
<term>Fagales</term>
<term>Plant Roots</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31600251</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.</ArticleTitle>
<Pagination>
<MedlinePgn>e0223149</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0223149</ELocationID>
<Abstract>
<AbstractText>Mutualistic plant-microbe associations are widespread in natural ecosystems and have made major contributions throughout the evolutionary history of terrestrial plants. Amongst the most remarkable of these are the so-called root endosymbioses, resulting from the intracellular colonization of host tissues by either arbuscular mycorrhizal (AM) fungi or nitrogen-fixing bacteria that both provide key nutrients to the host in exchange for energy-rich photosynthates. Actinorhizal host plants, members of the Eurosid 1 clade, are able to associate with both AM fungi and nitrogen-fixing actinomycetes known as Frankia. Currently, little is known about the molecular signaling that allows these plants to recognize their fungal and bacterial partners. In this article, we describe the use of an in vivo Ca2+ reporter to identify symbiotic signaling responses to AM fungi in roots of both Casuarina glauca and Discaria trinervis, actinorhizal species with contrasting modes of Frankia colonization. This approach has revealed that, for both actinorhizal hosts, the short-chain chitin oligomer chitotetraose is able to mimic AM fungal exudates in activating the conserved symbiosis signaling pathway (CSSP) in epidermal root cells targeted by AM fungi. These results mirror findings in other AM host plants including legumes and the monocot rice. In addition, we show that chitotetraose is a more efficient elicitor of CSSP activation compared to AM fungal lipo-chitooligosaccharides. These findings reinforce the likely role of short-chain chitin oligomers during the initial stages of the AM association, and are discussed in relation to both our current knowledge about molecular signaling during Frankia recognition as well as the different microsymbiont root colonization mechanisms employed by actinorhizal hosts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chabaud</LastName>
<ForeName>Mireille</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fournier</LastName>
<ForeName>Joëlle</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brichet</LastName>
<ForeName>Lukas</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdou-Pavy</LastName>
<ForeName>Iltaf</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Imanishi</LastName>
<ForeName>Leandro</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brottier</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0002-8584-2199</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pirolles</LastName>
<ForeName>Elodie</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hocher</LastName>
<ForeName>Valérie</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Franche</LastName>
<ForeName>Claudine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bogusz</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Plant Diversity, Adaptation and Development (IRD/University of Montpellier), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wall</LastName>
<ForeName>Luis G</ForeName>
<Initials>LG</Initials>
<Identifier Source="ORCID">0000-0003-0880-8023</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Microbiology and Soil Biological Interactions, Department of Science and Technology, National University of Quilmes, CONICET, Bernal, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Svistoonoff</LastName>
<ForeName>Sergio</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gherbi</LastName>
<ForeName>Hassen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Tropical and Mediterranean Symbioses (IRD/INRA/CIRAD/University of Montpellier/Supagro), Montpellier, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barker</LastName>
<ForeName>David G</ForeName>
<Initials>DG</Initials>
<Identifier Source="ORCID">0000-0001-6361-119X</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Plant-Microbe Interactions (INRA/CNRS/University of Toulouse), Castanet-Tolosan, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009844">Oligosaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5567-52-2</RegistryNumber>
<NameOfSubstance UI="C012238">chitotetrose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D007887" MajorTopicYN="N">Fabaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073567" MajorTopicYN="N">Fagales</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040161" MajorTopicYN="N">Frankia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009586" MajorTopicYN="N">Nitrogen Fixation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009844" MajorTopicYN="N">Oligosaccharides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055170" MajorTopicYN="N">Plant Root Nodulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31600251</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0223149</ArticleId>
<ArticleId IdType="pii">PONE-D-19-15221</ArticleId>
<ArticleId IdType="pmc">PMC6786586</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2017 Apr;214(2):533-538</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27918078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Sep;13(9):492-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Apr;11(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2017 Jul;199(5):641-647</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28105505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(6):883-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 6;469(7328):58-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21209659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Nov;24(11):1317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Apr 1;68(8):1905-1918</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27756807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24691197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Apr 12;1:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20975672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 31;8(5):e64515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jun;23(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20459313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 15;543(7645):328-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28300100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1985-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6303-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15079070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2013;29:593-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):763-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4928-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Oct 18;9:1494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30405656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 May 26;356(6340):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Oct;13(10):1109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11043472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Aug;219(3):1018-1030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29790172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):190-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Mar;27(3):823-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Nov;208(3):887-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26096779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2016 Dec;66(12):5201-5210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27624710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):315-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21225294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(1):86-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26484850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1440-1446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369864</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000301 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000301 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31600251
   |texte=   Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:31600251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020