Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques

Identifieur interne : 000128 ( PascalFrancis/Checkpoint ); précédent : 000127; suivant : 000129

Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques

Auteurs : Stan D. Wullschleger [États-Unis] ; P. J. Hanson [États-Unis] ; D. E. Todd [États-Unis]

Source :

RBID : Pascal:01-0203679

Descripteurs français

English descriptors

Abstract

Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day-1 in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0203679

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</title>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D." last="Wullschleger">Stan D. Wullschleger</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanson, P J" sort="Hanson, P J" uniqKey="Hanson P" first="P. J." last="Hanson">P. J. Hanson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Todd, D E" sort="Todd, D E" uniqKey="Todd D" first="D. E." last="Todd">D. E. Todd</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0203679</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0203679 INIST</idno>
<idno type="RBID">Pascal:01-0203679</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000133</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000002</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000128</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000128</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</title>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D." last="Wullschleger">Stan D. Wullschleger</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanson, P J" sort="Hanson, P J" uniqKey="Hanson P" first="P. J." last="Hanson">P. J. Hanson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Todd, D E" sort="Todd, D E" uniqKey="Todd D" first="D. E." last="Todd">D. E. Todd</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Forest ecology and management</title>
<title level="j" type="abbreviated">For. ecol. manage.</title>
<idno type="ISSN">0378-1127</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Forest ecology and management</title>
<title level="j" type="abbreviated">For. ecol. manage.</title>
<idno type="ISSN">0378-1127</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer rubrum</term>
<term>Estimation</term>
<term>Evapotranspiration</term>
<term>Floristic composition</term>
<term>Forecast model</term>
<term>Hydrology</term>
<term>Interspecific comparison</term>
<term>Liriodendron tulipifera</term>
<term>Mixed forest stand</term>
<term>Quercus alba</term>
<term>Quercus rubra</term>
<term>Sap</term>
<term>Tennessee</term>
<term>Water resources</term>
<term>Watershed</term>
<term>Xylem</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle prévision</term>
<term>Estimation</term>
<term>Evapotranspiration</term>
<term>Peuplement forestier mélangé</term>
<term>Xylème</term>
<term>Sève</term>
<term>Bassin versant</term>
<term>Hydrologie</term>
<term>Comparaison interspécifique</term>
<term>Quercus alba</term>
<term>Quercus rubra</term>
<term>Acer rubrum</term>
<term>Liriodendron tulipifera</term>
<term>Tennessee</term>
<term>Composition floristique</term>
<term>Ressource eau</term>
<term>Nyssa sylvatica</term>
<term>Quercus prinus</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Hydrologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day
<sup>-1</sup>
in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-1127</s0>
</fA01>
<fA02 i1="01">
<s0>FECMDW</s0>
</fA02>
<fA03 i2="1">
<s0>For. ecol. manage.</s0>
</fA03>
<fA05>
<s2>143</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The Science of Managing Forests to Sustain Water Resources</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WULLSCHLEGER (Stan D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HANSON (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TODD (D. E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BROOKS (Robert T.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LUST (Noël)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>USDA Forest Service, Northeastern Research Station</s1>
<s2>Amherst, Massachusetts, 01003</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Ghent, Laboratory of Forestry</s1>
<s2>9090 Gontrode</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>205-213</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17223</s2>
<s5>354000094581190190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0203679</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Forest ecology and management</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day
<sup>-1</sup>
in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A33C01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01N03</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Estimation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Estimation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estimación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Evapotranspiration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Evapotranspiration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Evapotranspiración</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Peuplement forestier mélangé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mixed forest stand</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rodal forestal mixto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Xylème</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Xylem</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Xilema</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sève</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Savia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bassin versant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Watershed</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Cuenca</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hydrologie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hydrology</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hidrología</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Comparaison interspécifique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Interspecific comparison</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Comparación interespecífica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composition floristique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Floristic composition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Composición florística</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ressource eau</s0>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Water resources</s0>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Recurso agua</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nyssa sylvatica</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Quercus prinus</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Arbre forestier feuillu</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Hardwood forest tree</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Arbol forestal frondoso</s0>
<s5>40</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fN21>
<s1>141</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>The Science of Managing Forests to Sustain Water Resources. International Conference</s1>
<s3>Sturbridge, Massachusetts USA</s3>
<s4>1998-11-08</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D." last="Wullschleger">Stan D. Wullschleger</name>
</region>
<name sortKey="Hanson, P J" sort="Hanson, P J" uniqKey="Hanson P" first="P. J." last="Hanson">P. J. Hanson</name>
<name sortKey="Todd, D E" sort="Todd, D E" uniqKey="Todd D" first="D. E." last="Todd">D. E. Todd</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000128 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000128 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:01-0203679
   |texte=   Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024