Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques

Identifieur interne : 000133 ( PascalFrancis/Corpus ); précédent : 000132; suivant : 000134

Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques

Auteurs : Stan D. Wullschleger ; P. J. Hanson ; D. E. Todd

Source :

RBID : Pascal:01-0203679

Descripteurs français

English descriptors

Abstract

Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day-1 in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0378-1127
A02 01      @0 FECMDW
A03   1    @0 For. ecol. manage.
A05       @2 143
A06       @2 1-3
A08 01  1  ENG  @1 Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques
A09 01  1  ENG  @1 The Science of Managing Forests to Sustain Water Resources
A11 01  1    @1 WULLSCHLEGER (Stan D.)
A11 02  1    @1 HANSON (P. J.)
A11 03  1    @1 TODD (D. E.)
A12 01  1    @1 BROOKS (Robert T.) @9 ed.
A12 02  1    @1 LUST (Noël) @9 ed.
A14 01      @1 Environmental Sciences Division, Oak Ridge National Laboratory @2 Oak Ridge, TN 37831-6422 @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 USDA Forest Service, Northeastern Research Station @2 Amherst, Massachusetts, 01003 @3 USA @Z 1 aut.
A15 02      @1 University of Ghent, Laboratory of Forestry @2 9090 Gontrode @3 BEL @Z 2 aut.
A20       @1 205-213
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 17223 @5 354000094581190190
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 01-0203679
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Forest ecology and management
A66 01      @0 NLD
C01 01    ENG  @0 Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day-1 in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.
C02 01  X    @0 002A33C01
C02 02  X    @0 001E01N03
C02 03  2    @0 226A03
C03 01  X  FRE  @0 Modèle prévision @5 01
C03 01  X  ENG  @0 Forecast model @5 01
C03 01  X  SPA  @0 Modelo previsión @5 01
C03 02  X  FRE  @0 Estimation @5 02
C03 02  X  ENG  @0 Estimation @5 02
C03 02  X  SPA  @0 Estimación @5 02
C03 03  X  FRE  @0 Evapotranspiration @5 03
C03 03  X  ENG  @0 Evapotranspiration @5 03
C03 03  X  SPA  @0 Evapotranspiración @5 03
C03 04  X  FRE  @0 Peuplement forestier mélangé @5 04
C03 04  X  ENG  @0 Mixed forest stand @5 04
C03 04  X  SPA  @0 Rodal forestal mixto @5 04
C03 05  X  FRE  @0 Xylème @5 05
C03 05  X  ENG  @0 Xylem @5 05
C03 05  X  SPA  @0 Xilema @5 05
C03 06  X  FRE  @0 Sève @5 06
C03 06  X  ENG  @0 Sap @5 06
C03 06  X  SPA  @0 Savia @5 06
C03 07  X  FRE  @0 Bassin versant @5 07
C03 07  X  ENG  @0 Watershed @5 07
C03 07  X  SPA  @0 Cuenca @5 07
C03 08  X  FRE  @0 Hydrologie @5 08
C03 08  X  ENG  @0 Hydrology @5 08
C03 08  X  SPA  @0 Hidrología @5 08
C03 09  X  FRE  @0 Comparaison interspécifique @5 09
C03 09  X  ENG  @0 Interspecific comparison @5 09
C03 09  X  SPA  @0 Comparación interespecífica @5 09
C03 10  X  FRE  @0 Quercus alba @2 NS @5 11
C03 10  X  ENG  @0 Quercus alba @2 NS @5 11
C03 10  X  SPA  @0 Quercus alba @2 NS @5 11
C03 11  X  FRE  @0 Quercus rubra @2 NS @5 12
C03 11  X  ENG  @0 Quercus rubra @2 NS @5 12
C03 11  X  SPA  @0 Quercus rubra @2 NS @5 12
C03 12  X  FRE  @0 Acer rubrum @2 NS @5 13
C03 12  X  ENG  @0 Acer rubrum @2 NS @5 13
C03 12  X  SPA  @0 Acer rubrum @2 NS @5 13
C03 13  X  FRE  @0 Liriodendron tulipifera @2 NS @5 14
C03 13  X  ENG  @0 Liriodendron tulipifera @2 NS @5 14
C03 13  X  SPA  @0 Liriodendron tulipifera @2 NS @5 14
C03 14  X  FRE  @0 Tennessee @2 NG @5 20
C03 14  X  ENG  @0 Tennessee @2 NG @5 20
C03 14  X  SPA  @0 Tennessee @2 NG @5 20
C03 15  X  FRE  @0 Composition floristique @5 33
C03 15  X  ENG  @0 Floristic composition @5 33
C03 15  X  SPA  @0 Composición florística @5 33
C03 16  X  FRE  @0 Ressource eau @5 34
C03 16  X  ENG  @0 Water resources @5 34
C03 16  X  SPA  @0 Recurso agua @5 34
C03 17  X  FRE  @0 Nyssa sylvatica @2 NS @4 INC @5 76
C03 18  X  FRE  @0 Quercus prinus @2 NS @4 INC @5 77
C07 01  X  FRE  @0 Fagaceae @2 NS
C07 01  X  ENG  @0 Fagaceae @2 NS
C07 01  X  SPA  @0 Fagaceae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Aceraceae @2 NS
C07 05  X  ENG  @0 Aceraceae @2 NS
C07 05  X  SPA  @0 Aceraceae @2 NS
C07 06  X  FRE  @0 Magnoliaceae @2 NS
C07 06  X  ENG  @0 Magnoliaceae @2 NS
C07 06  X  SPA  @0 Magnoliaceae @2 NS
C07 07  X  FRE  @0 Etats Unis @2 NG
C07 07  X  ENG  @0 United States @2 NG
C07 07  X  SPA  @0 Estados Unidos @2 NG
C07 08  X  FRE  @0 Amérique du Nord @2 NG
C07 08  X  ENG  @0 North America @2 NG
C07 08  X  SPA  @0 America del norte @2 NG
C07 09  X  FRE  @0 Amérique @2 NG
C07 09  X  ENG  @0 America @2 NG
C07 09  X  SPA  @0 America @2 NG
C07 10  X  FRE  @0 Arbre forestier feuillu @5 40
C07 10  X  ENG  @0 Hardwood forest tree @5 40
C07 10  X  SPA  @0 Arbol forestal frondoso @5 40
C07 11  X  FRE  @0 Nyssaceae @2 NS @5 47
C07 11  X  ENG  @0 Nyssaceae @2 NS @5 47
C07 11  X  SPA  @0 Nyssaceae @2 NS @5 47
N21       @1 141
pR  
A30 01  1  ENG  @1 The Science of Managing Forests to Sustain Water Resources. International Conference @3 Sturbridge, Massachusetts USA @4 1998-11-08

Format Inist (serveur)

NO : PASCAL 01-0203679 INIST
ET : Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques
AU : WULLSCHLEGER (Stan D.); HANSON (P. J.); TODD (D. E.); BROOKS (Robert T.); LUST (Noël)
AF : Environmental Sciences Division, Oak Ridge National Laboratory/Oak Ridge, TN 37831-6422/Etats-Unis (1 aut., 2 aut., 3 aut.); USDA Forest Service, Northeastern Research Station/Amherst, Massachusetts, 01003/Etats-Unis (1 aut.); University of Ghent, Laboratory of Forestry/9090 Gontrode/Belgique (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Forest ecology and management; ISSN 0378-1127; Coden FECMDW; Pays-Bas; Da. 2001; Vol. 143; No. 1-3; Pp. 205-213; Bibl. 24 ref.
LA : Anglais
EA : Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day-1 in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.
CC : 002A33C01; 001E01N03; 226A03
FD : Modèle prévision; Estimation; Evapotranspiration; Peuplement forestier mélangé; Xylème; Sève; Bassin versant; Hydrologie; Comparaison interspécifique; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Composition floristique; Ressource eau; Nyssa sylvatica; Quercus prinus
FG : Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Aceraceae; Magnoliaceae; Etats Unis; Amérique du Nord; Amérique; Arbre forestier feuillu; Nyssaceae
ED : Forecast model; Estimation; Evapotranspiration; Mixed forest stand; Xylem; Sap; Watershed; Hydrology; Interspecific comparison; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Floristic composition; Water resources
EG : Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Aceraceae; Magnoliaceae; United States; North America; America; Hardwood forest tree; Nyssaceae
SD : Modelo previsión; Estimación; Evapotranspiración; Rodal forestal mixto; Xilema; Savia; Cuenca; Hidrología; Comparación interespecífica; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Composición florística; Recurso agua
LO : INIST-17223.354000094581190190
ID : 01-0203679

Links to Exploration step

Pascal:01-0203679

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</title>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D." last="Wullschleger">Stan D. Wullschleger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hanson, P J" sort="Hanson, P J" uniqKey="Hanson P" first="P. J." last="Hanson">P. J. Hanson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Todd, D E" sort="Todd, D E" uniqKey="Todd D" first="D. E." last="Todd">D. E. Todd</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0203679</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0203679 INIST</idno>
<idno type="RBID">Pascal:01-0203679</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</title>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D." last="Wullschleger">Stan D. Wullschleger</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hanson, P J" sort="Hanson, P J" uniqKey="Hanson P" first="P. J." last="Hanson">P. J. Hanson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Todd, D E" sort="Todd, D E" uniqKey="Todd D" first="D. E." last="Todd">D. E. Todd</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Forest ecology and management</title>
<title level="j" type="abbreviated">For. ecol. manage.</title>
<idno type="ISSN">0378-1127</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Forest ecology and management</title>
<title level="j" type="abbreviated">For. ecol. manage.</title>
<idno type="ISSN">0378-1127</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer rubrum</term>
<term>Estimation</term>
<term>Evapotranspiration</term>
<term>Floristic composition</term>
<term>Forecast model</term>
<term>Hydrology</term>
<term>Interspecific comparison</term>
<term>Liriodendron tulipifera</term>
<term>Mixed forest stand</term>
<term>Quercus alba</term>
<term>Quercus rubra</term>
<term>Sap</term>
<term>Tennessee</term>
<term>Water resources</term>
<term>Watershed</term>
<term>Xylem</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle prévision</term>
<term>Estimation</term>
<term>Evapotranspiration</term>
<term>Peuplement forestier mélangé</term>
<term>Xylème</term>
<term>Sève</term>
<term>Bassin versant</term>
<term>Hydrologie</term>
<term>Comparaison interspécifique</term>
<term>Quercus alba</term>
<term>Quercus rubra</term>
<term>Acer rubrum</term>
<term>Liriodendron tulipifera</term>
<term>Tennessee</term>
<term>Composition floristique</term>
<term>Ressource eau</term>
<term>Nyssa sylvatica</term>
<term>Quercus prinus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day
<sup>-1</sup>
in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-1127</s0>
</fA01>
<fA02 i1="01">
<s0>FECMDW</s0>
</fA02>
<fA03 i2="1">
<s0>For. ecol. manage.</s0>
</fA03>
<fA05>
<s2>143</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The Science of Managing Forests to Sustain Water Resources</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WULLSCHLEGER (Stan D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HANSON (P. J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TODD (D. E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BROOKS (Robert T.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LUST (Noël)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory</s1>
<s2>Oak Ridge, TN 37831-6422</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>USDA Forest Service, Northeastern Research Station</s1>
<s2>Amherst, Massachusetts, 01003</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Ghent, Laboratory of Forestry</s1>
<s2>9090 Gontrode</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>205-213</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17223</s2>
<s5>354000094581190190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0203679</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Forest ecology and management</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day
<sup>-1</sup>
in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A33C01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01N03</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>226A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Estimation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Estimation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estimación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Evapotranspiration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Evapotranspiration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Evapotranspiración</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Peuplement forestier mélangé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mixed forest stand</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Rodal forestal mixto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Xylème</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Xylem</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Xilema</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sève</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Sap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Savia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bassin versant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Watershed</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Cuenca</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hydrologie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hydrology</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hidrología</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Comparaison interspécifique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Interspecific comparison</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Comparación interespecífica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Quercus alba</s0>
<s2>NS</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Quercus rubra</s0>
<s2>NS</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Acer rubrum</s0>
<s2>NS</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Liriodendron tulipifera</s0>
<s2>NS</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tennessee</s0>
<s2>NG</s2>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composition floristique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Floristic composition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Composición florística</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ressource eau</s0>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Water resources</s0>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Recurso agua</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nyssa sylvatica</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Quercus prinus</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Fagaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Aceraceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Magnoliaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Arbre forestier feuillu</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Hardwood forest tree</s0>
<s5>40</s5>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Arbol forestal frondoso</s0>
<s5>40</s5>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Nyssaceae</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fN21>
<s1>141</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>The Science of Managing Forests to Sustain Water Resources. International Conference</s1>
<s3>Sturbridge, Massachusetts USA</s3>
<s4>1998-11-08</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 01-0203679 INIST</NO>
<ET>Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques</ET>
<AU>WULLSCHLEGER (Stan D.); HANSON (P. J.); TODD (D. E.); BROOKS (Robert T.); LUST (Noël)</AU>
<AF>Environmental Sciences Division, Oak Ridge National Laboratory/Oak Ridge, TN 37831-6422/Etats-Unis (1 aut., 2 aut., 3 aut.); USDA Forest Service, Northeastern Research Station/Amherst, Massachusetts, 01003/Etats-Unis (1 aut.); University of Ghent, Laboratory of Forestry/9090 Gontrode/Belgique (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Forest ecology and management; ISSN 0378-1127; Coden FECMDW; Pays-Bas; Da. 2001; Vol. 143; No. 1-3; Pp. 205-213; Bibl. 24 ref.</SO>
<LA>Anglais</LA>
<EA>Thermal dissipation probes inserted into hydro-active sapwood were used to measure rates of xylem sap flow for six major hardwood species growing in an upland oak forest of east TN. Species-specific estimates of sap flow were combined with total sapwood area for trees of the forest overstory and understory, and daily rates of stand transpiration were derived. A seasonal analysis of sap flow for nine chestnut oak (Quercus prinus L.) trees measured in 1996 showed that radiation, vapor pressure deficit, and fractional leaf area index (LAI) were sufficient to describe rates of daily transpiration. Application of an empirical model to climatic data collected in 1997 and maximum daily rates of sap flow for white oak (Quercus alba L.), northern red oak (Quercus rubra L.), black gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) indicated that stand transpiration peaked at 2.2 mm day
<sup>-1</sup>
in mid-May prior to canopy closure. Total transpiration during the season was 267 mm: 221 mm from overstory trees and 46 mm from understory saplings. Transpiration from the overstory was dominated by red maple (59 mm) and black gum (49 mm). Chestnut oak, which accounted for 27% of the stand basal area, contributed only 35 mm or 16% to total overstory transpiration. The relative contribution of each species to stand transpiration was driven largely by sapwood area per unit ground area and to a lesser extent by species-specific differences in daily water use. Such information should prove useful in exploring the impact of harvest operations on site water balance and in understanding the ecologica basis for how species composition affects forest water use.</EA>
<CC>002A33C01; 001E01N03; 226A03</CC>
<FD>Modèle prévision; Estimation; Evapotranspiration; Peuplement forestier mélangé; Xylème; Sève; Bassin versant; Hydrologie; Comparaison interspécifique; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Composition floristique; Ressource eau; Nyssa sylvatica; Quercus prinus</FD>
<FG>Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Aceraceae; Magnoliaceae; Etats Unis; Amérique du Nord; Amérique; Arbre forestier feuillu; Nyssaceae</FG>
<ED>Forecast model; Estimation; Evapotranspiration; Mixed forest stand; Xylem; Sap; Watershed; Hydrology; Interspecific comparison; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Floristic composition; Water resources</ED>
<EG>Fagaceae; Dicotyledones; Angiospermae; Spermatophyta; Aceraceae; Magnoliaceae; United States; North America; America; Hardwood forest tree; Nyssaceae</EG>
<SD>Modelo previsión; Estimación; Evapotranspiración; Rodal forestal mixto; Xilema; Savia; Cuenca; Hidrología; Comparación interespecífica; Quercus alba; Quercus rubra; Acer rubrum; Liriodendron tulipifera; Tennessee; Composición florística; Recurso agua</SD>
<LO>INIST-17223.354000094581190190</LO>
<ID>01-0203679</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0203679
   |texte=   Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024