Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 001030 ( Pmc/Corpus ); précédent : 0010299; suivant : 0010310 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Assembly Pathway of the Mitochondrial Carrier Translocase Involves Four Preprotein Translocases
<xref ref-type="fn" rid="fn2"></xref>
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Wagner, Karina" sort="Wagner, Karina" uniqKey="Wagner K" first="Karina" last="Wagner">Karina Wagner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gebert, Natalia" sort="Gebert, Natalia" uniqKey="Gebert N" first="Natalia" last="Gebert">Natalia Gebert</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guiard, Bernard" sort="Guiard, Bernard" uniqKey="Guiard B" first="Bernard" last="Guiard">Bernard Guiard</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brandner, Katrin" sort="Brandner, Katrin" uniqKey="Brandner K" first="Katrin" last="Brandner">Katrin Brandner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Truscott, Kaye N" sort="Truscott, Kaye N" uniqKey="Truscott K" first="Kaye N." last="Truscott">Kaye N. Truscott</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiedemann, Nils" sort="Wiedemann, Nils" uniqKey="Wiedemann N" first="Nils" last="Wiedemann">Nils Wiedemann</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pfanner, Nikolaus" sort="Pfanner, Nikolaus" uniqKey="Pfanner N" first="Nikolaus" last="Pfanner">Nikolaus Pfanner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rehling, Peter" sort="Rehling, Peter" uniqKey="Rehling P" first="Peter" last="Rehling">Peter Rehling</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18458057</idno>
<idno type="pmc">2447139</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447139</idno>
<idno type="RBID">PMC:2447139</idno>
<idno type="doi">10.1128/MCB.02216-07</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">001030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Assembly Pathway of the Mitochondrial Carrier Translocase Involves Four Preprotein Translocases
<xref ref-type="fn" rid="fn2"></xref>
<xref ref-type="fn" rid="fn1"></xref>
</title>
<author>
<name sortKey="Wagner, Karina" sort="Wagner, Karina" uniqKey="Wagner K" first="Karina" last="Wagner">Karina Wagner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gebert, Natalia" sort="Gebert, Natalia" uniqKey="Gebert N" first="Natalia" last="Gebert">Natalia Gebert</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guiard, Bernard" sort="Guiard, Bernard" uniqKey="Guiard B" first="Bernard" last="Guiard">Bernard Guiard</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brandner, Katrin" sort="Brandner, Katrin" uniqKey="Brandner K" first="Katrin" last="Brandner">Katrin Brandner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Truscott, Kaye N" sort="Truscott, Kaye N" uniqKey="Truscott K" first="Kaye N." last="Truscott">Kaye N. Truscott</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiedemann, Nils" sort="Wiedemann, Nils" uniqKey="Wiedemann N" first="Nils" last="Wiedemann">Nils Wiedemann</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pfanner, Nikolaus" sort="Pfanner, Nikolaus" uniqKey="Pfanner N" first="Nikolaus" last="Pfanner">Nikolaus Pfanner</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rehling, Peter" sort="Rehling, Peter" uniqKey="Rehling P" first="Peter" last="Rehling">Peter Rehling</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular and Cellular Biology</title>
<idno type="ISSN">0270-7306</idno>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mol Cell Biol</journal-id>
<journal-id journal-id-type="publisher-id">mcb</journal-id>
<journal-title>Molecular and Cellular Biology</journal-title>
<issn pub-type="ppub">0270-7306</issn>
<issn pub-type="epub">1098-5549</issn>
<publisher>
<publisher-name>American Society for Microbiology (ASM)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18458057</article-id>
<article-id pub-id-type="pmc">2447139</article-id>
<article-id pub-id-type="publisher-id">2216-07</article-id>
<article-id pub-id-type="doi">10.1128/MCB.02216-07</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Assembly Pathway of the Mitochondrial Carrier Translocase Involves Four Preprotein Translocases
<xref ref-type="fn" rid="fn2"></xref>
<xref ref-type="fn" rid="fn1"></xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wagner</surname>
<given-names>Karina</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gebert</surname>
<given-names>Natalia</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guiard</surname>
<given-names>Bernard</given-names>
</name>
<xref ref-type="aff" rid="aff1">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Brandner</surname>
<given-names>Katrin</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Truscott</surname>
<given-names>Kaye N.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wiedemann</surname>
<given-names>Nils</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pfanner</surname>
<given-names>Nikolaus</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rehling</surname>
<given-names>Peter</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff1">5</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff id="aff1">Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, D-79104 Freiburg, Germany,
<label>1</label>
Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany,
<label>2</label>
Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France,
<label>3</label>
Department of Biochemistry, La Trobe University, Melbourne 3086, Australia,
<label>4</label>
Abteilung für Biochemie II, Universität Göttingen, D-37073 Göttingen, Germany
<label>5</label>
</aff>
<author-notes>
<fn id="cor1">
<label>*</label>
<p>Corresponding author. Mailing address for Nikolaus Pfanner: Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, D-79104 Freiburg, Germany. Phone: 49-761-203-5224. Fax:49-761-203-5261. E-mail:
<email>nikolaus.pfanner@biochemie.uni-freiburg.de</email>
. Mailing address for Peter Rehling: Abteilung für Biochemie II, Universität Göttingen, Heinrich-Düker-Weg 12, D-37073 Göttingen, Germany. Phone: 49-551-39-5947. Fax: 49-551-39-5979. E-mail:
<email>peter.rehling@medizin.uni-goettingen.de</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>7</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>5</day>
<month>5</month>
<year>2008</year>
</pub-date>
<volume>28</volume>
<issue>13</issue>
<fpage>4251</fpage>
<lpage>4260</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>12</month>
<year>2007</year>
</date>
<date date-type="rev-recd">
<day>28</day>
<month>2</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>25</day>
<month>4</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2008, American Society for Microbiology</copyright-statement>
</permissions>
<self-uri xlink:title="pdf" xlink:href="zmb01308004251.pdf"></self-uri>
<abstract>
<p>The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.</p>
</abstract>
</article-meta>
</front>
<floats-wrap>
<fig position="float" id="f1">
<label>FIG. 1.</label>
<caption>
<p>Membrane-integral components of the TIM22 complex assemble via different intermediates.
<sup>35</sup>
S-radiolabeled Tim22 (A), Tim54 (B), and Tim18 (C) were imported into isolated
<italic>tim22</italic>
-
<italic>14</italic>
mitochondria at temperatures of 16°C to 25°C in the presence or absence of Δψ and subsequently treated with 50 μg/ml proteinase K (Prot. K). After solubilization in digitonin buffer, samples were subjected to blue native electrophoresis and analyzed by digital autoradiography. Import of Tim22 (D), Tim54 (E), and Tim18 (F) into isolated
<italic>tim54</italic>
-
<italic>11</italic>
and
<italic>tim54</italic>
-
<italic>16</italic>
mitochondria and subsequent sample analysis was carried out as described for panels A to C. Tim22 (G), Tim54 (H), and Tim18 (I) were imported into
<italic>tim18</italic>
Δ mitochondria as described above. Arrowheads, low-molecular-mass form of Tim54; asterisks, low-molecular-mass intermediate of Tim18; WT, wild type.</p>
</caption>
<graphic xlink:href="zmb0130875710001"></graphic>
</fig>
<fig position="float" id="f2">
<label>FIG. 2.</label>
<caption>
<p>Tim22 assembly occurs through low-molecular-mass intermediates. (A) Antibody shift analysis of imported Tim22 in wild-type (WT) mitochondria. After swelling of mitochondria, complexes were shifted by incubation with increasing amounts of antisera against Tim22 and Tim18. After solubilization with digitonin buffer, protein complexes were separated by blue native electrophoresis and analyzed by digital autoradiography. (B) Pulse-chase analysis of Tim22 assembly.
<sup>35</sup>
S-labeled Tim22 was imported into mitochondria as indicated in the scheme, and samples were analyzed by blue native electrophoresis and digital autoradiography. (C) Radiolabeled Tim22 was imported into wild-type and
<italic>tim10</italic>
-
<italic>2</italic>
mitochondria in the presence or absence of a Δψ and treated with 50 μg/ml proteinase K. Import was carried out at 25°C after a 15-min preincubation of mitochondria at 37°C. Samples were subjected to SDS-PAGE and analyzed by digital autoradiography. (D) Import of Tim22 precursor protein was done as described for panel C, and samples were analyzed by blue native electrophoresis and digital autoradiography (left panel). Isolated wild-type and
<italic>tim10</italic>
-
<italic>2</italic>
mitochondria were incubated at 37°C for 15 min prior to solubilization in digitonin buffer and separation of complexes by blue native electrophoresis. Western blot analysis was performed with the indicated antiserum (right panel).</p>
</caption>
<graphic xlink:href="zmb0130875710002"></graphic>
</fig>
<fig position="float" id="f3">
<label>FIG. 3.</label>
<caption>
<p>Tim54 forms a TOM-TIM intermediate. (A) Assembly of radiolabeled Tim54 in wild-type (WT) mitochondria. After import of Tim54, samples were left untreated or treated with 50 μg/ml proteinase K, solubilized in digitonin buffer, and then analyzed by blue native electrophoresis and digital autoradiography. (B) After import of radiolabeled Tim54, complexes were shifted with antisera against Tom40 and porin or incubated with BSA. As a control, Tom22 was imported and shifted as described for Tim54. Analysis was carried out by blue native electrophoresis and digital autoradiography. (C) Radiolabeled Tim54 was imported into isolated wild-type and
<italic>tim50</italic>
-
<italic>1</italic>
mitochondria in the presence or absence of Δψ. After treatment with proteinase K, proteins were separated by SDS-PAGE and visualized by digital autoradiography. (D)
<sup>35</sup>
S-labeled Tim54 was imported into wild-type and
<italic>tim50</italic>
-
<italic>1</italic>
mitochondria. After treatment with digitonin-containing buffer, complexes were separated by blue native electrophoresis and subjected to digital autoradiography. (E) Tim54 was imported into wild-type mitochondria and subjected to antibody shift/depletion analysis as described in Materials and Methods. Samples were analyzed by blue native electrophoresis and digital autoradiography. Arrowheads, low-molecular-mass form of Tim54.</p>
</caption>
<graphic xlink:href="zmb0130875710003"></graphic>
</fig>
<fig position="float" id="f4">
<label>FIG. 4.</label>
<caption>
<p>Tim54 assembly is dependent on the TIM10 complex. (A) Assembly of Tim54 in
<italic>tim10</italic>
-
<italic>2</italic>
mutant mitochondria. Radiolabeled Tim54 was imported into isolated wild-type (WT) and
<italic>tim10</italic>
-
<italic>2</italic>
mitochondria in the presence or absence of a Δψ after a 15-min preincubation at 37°C. Where indicated, mitochondria were treated with proteinase K. Complexes were separated by blue native electrophoresis and visualized by digital autoradiography. (B)
<sup>35</sup>
S-labeled Tim54 was imported as described in panel A, including treatment with proteinase K. Samples were analyzed by SDS-PAGE and digital autoradiography. (C) Radiolabeled Tim54 was imported. The mitochondria were treated with proteinase K and subjected to treatment with carbonate. Total (T), pellet (P), and supernatant (S) were analyzed by SDS-PAGE and digital autoradiography ([
<sup>35</sup>
S]Tim54) or immunolabeling (Tom70, Mge1). (D) Radiolabeled Tim18 was imported into wild-type and
<italic>tim10</italic>
-
<italic>2</italic>
mitochondria as described in panel A. Arrowhead, low-molecular-mass form of Tim54; asterisk, low-molecular-mass intermediate of Tim18.</p>
</caption>
<graphic xlink:href="zmb0130875710004"></graphic>
</fig>
<fig position="float" id="f5">
<label>FIG. 5.</label>
<caption>
<p>Tim54 and Tim10 interact at the carrier translocase. (A) Tim18
<sub>ProtA</sub>
mitochondria were subjected to chemical cross-linking as described in Materials and Methods. The TIM22 complex was purified by IgG-Sepharose chromatography. After washing and elution, proteins were separated by SDS-PAGE and analyzed by immunolabeling with antibodies against Tim54 and Tim10. Circle, unspecific cross-reaction of anti-Tim10. (B) After import of radiolabeled Tim54 into Tim18
<sub>ProtA</sub>
mitochondria, proteins were cross-linked as described in Materials and Methods and the TIM22 complex was purified with IgG-Sepharose. After washing and elution of the proteins, an immunoprecipitation was performed with antibodies against Tim9, Tim10, and Tim12. Samples were analyzed by SDS-PAGE and digital autoradiography.</p>
</caption>
<graphic xlink:href="zmb0130875710005"></graphic>
</fig>
</floats-wrap>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001030  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001030  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024